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1.1 Contexte général

Le phénomène d’interaction fluide-structure est présent dans différents domaines, comme par
exemple la biologie ou l’aéronautique. Plus spécifiquement, un exemple concret dans le domaine
de la biologie est le cas de l’écoulement sanguin dans une artère, ou dans le cas de l’aéronautique,
l’écoulement d’air autour d’une aile d’avion.

Parmi la grande diversité de modèles fluide-structure existant dans la littérature, nous nous
intéressons, dans ce qui suit, à un système couplant les équations de Navier-Stokes avec des
conditions aux limites mixtes comme modèle pour le fluide, et une équation d’Euler-Bernoulli
amortie, avec des conditions limites de type encastrée et extrémité libre, comme modèle pour la
structure. Nous présentons ci-dessous un bref résumé du contenu de chaque chapitre de la thèse.

• Existence de solutions (Chapitres 2 et 3)

Dans le Chapitre 2, nous analysons le système de Stokes stationnaire avec conditions aux li-
mites mixtes dans des domaines présentant des coins rentrants. Ce chapitre est utilisé dans
l’analyse du Chapitre 3, où nous démontrons un résultat d’existence d’une solution forte locale

1



1.2. Description du modèle étudié 2

en temps du système fluide-structure.

• Stabilisation du système (Chapitre 5)

Dans le Chapitre 5, nous nous intéressons à la stabilisation du modèle fluide-structure autour
d’une solution stationnaire instable. Afin d’atteindre cet objectif, nous construisons un contrôle
de dimension finie agissant sur la structure.

• Simulations numériques (Chapitres 4 et 6)

Un troisième axe de ce travail de thèse, concerne les simulations numériques du système en
question. Dans une première partie, au Chapitre 4, nous présentons des simulations numériques
du problème direct. Ensuite, au Chapitre 6, nous présentons des simulations du problème de
stabilisation.

1.2 Description du modèle étudié

Nous supposons qu’une structure S = Sr ∪ Se est immergée dans une cavité remplie d’un
fluide Newtonien incompressible et visqueux en deux dimensions. Ici, Sr designe la partie rigide
de la structure et Se la partie élastique. Nous désignerons par Ω le domaine représentant la
configuration de référence, lequel est donné par

Ω = ([−L/2, L]× [−`, `]) \ S, (1.2.1)

comme indiqué à la Figure 1.1.

Figure 1.1 – Configuration de référence.

La frontière du domaine Ω est donnée par

Γ = Γi ∪ Γr ∪ Γs ∪ Γw ∪ Γn, (1.2.2)

où Γs = Γ−s ∪ Γ+
s ∪ Γ`s, avec Γ−s = [0, `s]× {−e}, Γ+

s = [0, `s]× {e} et Γ`s = {`s} × [−e, e]. Nous
posons également Γd = Γ \ Γn.

Dans le cas instationnaire, l’interaction entre le fluide et la structure entraîne une déformation
de la géometrie, comme le montre la Figure 1.2.
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Figure 1.2 – Domaine physique. Les lignes pointillées vertes indiquent la ligne centrale de
référence.

Soit T > 0. Nous supposons que la partie élastique Se de la structure est entièrement décrite
par le déplacement η de la ligne centrale (voir Figure 1.2). Pour une fonction η donnée, définie
de (0, T )× (0, `s) dans R, qui décrit le déplacement de l’axe central de la poutre, nous désignons
par Ωη(t) le domaine du fluide à l’instant t et par Γη(t) = Γ−η(t) ∪ Γ+

η(t) ∪ Γ`η(t) l’interface fluide-
structure, où Γ−η(t) et Γ+

η(t) représentent respectivement le bas et le haut de la structure, et Γ`η(t)
la partie latérale (voir Figure 1.2). Plus précisément, Γ−η(t), Γ+

η(t) et Γ`η(t) sont données par

Γ−η(t) = {(x1, η(t, x1)− e)| x1 ∈ [0, `s]}, Γ+
η(t) = {(x1, η(t, x1) + e)| x1 ∈ [0, `s]}

et Γ`η(t) = {(`s, x2) | x2 = (1− λ)(−e+ η(t, `s)) + λ(e+ η(t, `s))), λ ∈ [0, 1]}.
(1.2.3)

Pour 0 < T ≤ ∞, nous notons

QTη =
⋃

t∈(0,T )

(
{t} × Ωη(t)

)
, ΣT

η =
⋃

t∈(0,T )

(
{t} × Γη(t)

)
,

QT = (0, T )× Ω, ΣT
s = (0, T )× Γs,

ΣT
i = (0, T )× Γi, ΣT

w = (0, T )× Γw,
ΣT
r = (0, T )× Γr, ΣT

n = (0, T )× Γn.

(1.2.4)

• Le fluide

Nous supposerons que le fluide est Newtonien, incompressible et visqueux en deux dimensions.
Nous modélisons le fluide par les équations de Navier-Stokes incompressibles

∂tu + (u · ∇)u− div σ(u, p) = 0 dans QTη , (1.2.5a)
div u = 0 dans QTη , (1.2.5b)
u(0) = u0 dans Ω, (1.2.5c)

où u et p sont respectivement la vitesse et la pression du fluide. Ici, σ(u, p) représente le tenseur
des contraintes du fluide donné par

σ(u, p) = 2νε(u)− pI, ε(u) = 1
2(∇u + (∇u)>),

avec ν > 0 représentant la viscosité du fluide.

Dans cette thèse, nous imposons une condition de type Dirichlet non homogène à l’entrée Γi
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du canal, tandis qu’à la sortie Γn, nous imposons une condition de type Neumann homogène.
D’autre part, sur les parties supérieure et inférieure Γw du canal, ainsi que sur Γr, nous imposons
une condition de type Dirichlet homogène. Plus précisément,

u = gi sur ΣT
i , σ(u, p)n = 0 sur ΣT

n , (1.2.6a)
u = 0 sur ΣT

w ∪ ΣT
r , (1.2.6b)

où gi est donnée.

• La structure

Nous modélisons le déplacement η de la ligne centrale par l’équation de poutre Euler-Bernoulli
amortie

∂2
t η + α∆2

sη + γBηt = H(u, p, η) dans (0, T )× (0, `s), (1.2.7a)
η(0) = 0 et ∂tη(0) = η0

2 dans (0, `s), (1.2.7b)

où les paramètres α > 0 et γ > 0 sont des constantes relatives à la nature de la structure. Ici,
∆2
s = ∂4

∂x4 avec comme domaine D(∆2
s) = H4

{0,`s}(0, `s), représente l’opérateur bi-Laplacien sur
(0, `s). Dans cette thèse, l’opérateur d’amortissement B sera défini comme une puissance de ∆2

s,
sur un domaine D(B) ad hoc. Plus précisément, B = (∆2

s)r, avec 1/2 ≤ r ≤ 1. Le terme source
H dans le second membre de l’équation de la structure est donné par

H(u, p, η) = −
(
σ+(u, p)n+

η(t) + σ−(u, p)n−η(t)

)√
1 + (∂x1η)2 · ~e2, (1.2.8)

où
σ±(u, p) = σ(u(t, x1, η(t, x1)± e), p(t, x1, η(t, x1)± e)),

et n+
η(t) (respectivement n−η(t)) est le vecteur unitaire normal à Γ+

η(t) (respectivement à Γ−η(t))
extérieur à Ωη(t). Ici, ~e2 = (0, 1). La déduction de l’expression de H donnée en (1.2.8), ainsi que
les simplifications effectuées dans le modèle, sont présentées dans l’Annexe A.

À l’extrémité gauche de la structure en x = 0, nous imposons des conditions d’encastrement et
une condition d’extremité libre en x = `s. De manière plus précise,

η = 0 et ∂x1η = 0 sur (0, T )× {0}, (1.2.9a)
∂2
x1η = 0 et ∂3

x1η = 0 sur (0, T )× {`s}. (1.2.9b)

• Les interactions

Tout d’abord, nous considérons la condition cinématique

u = ηt~e2 on ΣT
η . (1.2.10)

La condition dynamique est encapsulée dans le terme H qui apparaît dans le membre de droite
de l’équation (1.2.7a), dont l’expression explicite est donnée en (1.2.8).
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En résumé, le modèle fluide-structure qui nous intéresse dans cette thèse est donné par

∂tu + (u · ∇)u− div σ(u, p) = 0 dans QTη ,
div u = 0 dans QTη ,
u = gi sur ΣT

i , u = 0 sur ΣT
r ∪ ΣT

w,

u = ηt~e2 sur ΣT
η , σ(u, p)n = 0 sur ΣT

n ,

u(0) = u0 dans Ω,
∂2
t η + α∆2

sη + γBηt = H(u, p, η) dans (0, T )× (0, `s),
η = 0 and ∂x1η = 0 sur (0, T )× {0},
∂2
x1η = 0 and ∂3

x1η = 0 sur (0, T )× {`s},
η(0) = 0 and ∂tη(0) = η0

2 dans (0, `s).

(1.2.11)

Dans ce qui suit, nous décrirons plus en détail la contribution de chaque chapitre de la thèse.

1.3 Résultats de la thèse

1.3.1 Chapitre 2 : Étude du système de Stokes stationnaire avec condi-
tions aux limites mixtes dans des domaines polygonaux curvilignes non
convexes

• Formulation du problème et littérature existante

Dans ce chapitre, nous considérons un système de Stokes stationnaire avec des conditions aux
limites mixtes, de type Dirichlet et Neumann, dans un domaine Ω polygonal curviligne non
convexe borné de R2 (par exemple, le domaine représenté dans la Figure 1.1). Plus précisément,
nous nous intéressons à l’étude du système{

−div σ(w, π) = F dans Ω, div w = h dans Ω,
w = g sur Γd, σ(w, π)n = 0 sur Γn,

(1.3.1)

où F, h et g sont données.

Bien que les résultats énoncés dans ce chapitre soient intéressants en eux-mêmes, leur moti-
vation principale provient de l’étude de l’existence de solutions fortes du système d’interaction
fluide-structure (1.2.11), problème dans lequel nous devons étudier la régularité des solutions
du système (1.3.1), lorsque le domaine est donné, par exemple, par celui représenté sur Figure
1.2, et que les donneés F et h sont irrégulières. Pour entamer la discussion, commençons par
rappeler les résultats existants dans la littérature.

D’après [MR10, Theorem 9.4.5], nous savons que la solution (w, π) du système de Stokes (1.3.1)
avec des conditions aux limites mixtes Dirichlet-Neumann satisfait

(w, π) appartient à l’espace de Sobolev pondéré H2
δ(Ω)×H1

δ (Ω)

lorsque F ∈ L2
δ(Ω), h ∈ H1

δ (Ω) et g ∈ H
3
2
δ (Γd),

(R1)

pour tout δ ∈ (δ∗, 1), où δ∗ ∈ (0, 1/2).
D’autre part, pour le système de Stokes avec seulement une condition limite de type Dirichlet,
w = g sur Γ = Γd (i.e., Γn = ∅), plus une condition de compatibilité appropriée sur h et g, nous
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avons
(w, π) appartient à l’espace de Sobolev H

3
2 +α(Ω)×H

1
2 +α(Ω),

lorsque F ∈ H−
1
2 +α(Ω), h ∈ H

1
2 +α(Ω), g ∈ H1+α(Γ) pour tout α ∈ (0, α∗),

(R2)

où l’exposant critique α∗ ∈ (0, 1/2) dépend des angles aux coins de Γ. Ce résultat est démontré
dans [Dau89, Theorem 5.5(a)] lorsque g = 0 et étendu à g 6= 0 dans [BR, Corollary 3.3].

Un système d’interaction fluide-structure similaire à (1.2.11) a été étudié dans [FNR19], mais
avec des conditions d’encastrement aux deux extrémités de la poutre élastique. Dans ce cas, le
problème non linéaire peut être étudié dans le cadre des espaces avec poids H2

δ(Ω) et H1
δ (Ω). Par

conséquent, la question naturelle est de savoir s’il est possible d’utiliser le résultat de régularité
(R1) dans le cas du modèle (1.2.11).

Dans le cas considéré du modèle (1.2.11), où une condition d’encastrement est imposée d’un
côté et une condition d’extrémité libre de l’autre, le résultat de régularité (R1) reste toujours
valable pour le système d’interaction fluide-structure linéarisé. Cependant, cette approache n’est
pas suffisante pour traiter le système d’interaction fluide-structure non linéaire. Cela est dû à un
décalage entre les résultats de régularité obtenus dans les espaces de Sobolev avec poids pour les
solutions du modèle linéaire non homogène et la régularité correspondante de certains termes
non linéaires du modèle (qui joueront le rôle des termes non homogènes dans une procédure de
point fixe).

• Présentation de nos résultats

Afin de simplifier la présentation de nos résultats, nous considérons la géometrie Ω donnée
à la Figure 1.1. Les hypothèses générales sur la géometrie sont présentées dans la sous-section
2.2.1. Nous introduissons les espaces fonctionnels suivants :

L2(Ω) = L2(Ω;R2) et, avec s > 0, Hs(Ω) = Hs(Ω;R2),
H1

Γd(Ω) = {u ∈ H1(Ω) | u = 0 sur Γd},
V0
n,Γd(Ω) = {u ∈ L2(Ω) | div u = 0 in Ω, u · n = 0 sur Γd},

V1
Γd(Ω) = H1

Γd(Ω) ∩V0
n,Γd(Ω).

Étant donnée β > 0, nous introduisons les espaces de Sobolev avec poids

‖w‖H2
β

:=

 2∑
|k|=0

2∑
i=1

∫
Ω

( ∏
J∈J

r2β
J

)
|∂kwi|2dx

1/2

, w ∈ C∞(Ω;R2)

‖p‖H1
β

:=

 1∑
|k|=0

∫
Ω

( ∏
J∈J

r2β
J

)
|∂kp|2dx

1/2

, p ∈ C∞(Ω;R)

(1.3.2)

où rJ designe la distance au point de junction J ∈ J , k = (k1, k2) ∈ N2 est un muti-indice de
longueur |k| = k1 +k2, ∂k désigne l’opérateur différentiel partiel correspondant et w = (w1, w2).
Nous désignons par H2

β(Ω;R2) (respectivement H1
β(Ω)) la fermeture de C∞(Ω;R2) (respective-

ment C∞(Ω)) dans la norme ‖·‖H2
β
(respectivement ‖·‖H1

β
).

On désigne par Jdd ⊂ J l’ensemble des points correspondant à une jonction entre deux condi-
tions aux limites de Dirichlet. Soient U et V deux ouverts disjoints de R2 tels que Jd,d ⊂ U
et Γn ⊂ V. En particulier, V ne contient aucun point correspondant à une jonction Dirichlet-
Dirichlet. Introduisons maintenant une fonction de troncature Ψ ∈ C∞(R2) vérifiant 0 ≤ Ψ ≤ 1
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et
Ψ = 1 dans U et Ψ = 0 dans V. (1.3.3)

Soit α ∈ (0, α∗) et δ ∈ (δ∗, 1). Nous introduisons les espaces de Sobolev hétérogènes suivants

H−
1
2 +α,0(Ω) =

{
F ∈ H−

1
2 +α

Γd (Ω)|(1−Ψ)F ∈ L2(Ω)
}
,

H
1
2 +α,1(Ω) =

{
p ∈ H

1
2 +α(Ω)|(1−Ψ)p ∈ H1(Ω)

}
,

H
1
2 +α,1
δ (Ω) =

{
p ∈ H

1
2 +α(Ω)|(1−Ψ)p ∈ H1

δ (Ω)
}
,

H
3
2 +α,2
δ (Ω) =

{
v ∈ H

3
2 +α(Ω)|(1−Ψ)v ∈ H2

δ(Ω)
}
,

(1.3.4)

qui sont respectivement munis des normes

‖F‖
H−

1
2 +α,0 :=

(
‖F‖2

H
− 1

2 +α
Γd

+ ‖(1−Ψ)F‖2L2

)1/2
,

‖p‖
H

1
2 +α,1 :=

(
‖p‖2

H
1
2 +α + ‖(1−Ψ)p‖2H1

)1/2
,

‖p‖
H

1
2 +α,1
δ

:=
(
‖p‖2

H
1
2 +α + ‖(1−Ψ)p‖2H1

δ

)1/2
,

‖u‖
H

3
2 +α,2
δ

:=
(
‖u‖2

H
3
2 +α + ‖(1−Ψ)u‖2H2

δ

)1/2
.

Présentons maintenant les principaux résultats de ce chapitre, ainsi que les idées essentielles de
leurs preuves respectives.

1. Régularité du système de Stokes stationnaire.

Theorem 1.3.1. Supposons que F ∈ H−
1
2 +α,0(Ω), h ∈ H

1
2 +α,1(Ω) et g ∈ H

3
2 (Γd). Alors, la

solution variationnelle (w, π) du système (1.3.1) appartient à H
3
2 +α,2
δ (Ω)×H

1
2 +α,1
δ (Ω). De plus,

il existe une constante Cα,δ > 0 telle que

‖w‖
H

3
2 +α,2
δ

(Ω)
+ ‖π‖

H
1
2 +α,1
δ

(Ω)
≤ Cα,δ

(
‖F‖

H−
1
2 +α,0(Ω)

+ ‖h‖
H

1
2 +α,1(Ω)

+ ‖g‖
H

3
2 (Γd)

)
. (1.3.5)

Idée de la preuve. L’idée principale de la preuve est d’utiliser un argument de troncature qui
nous permet de considérer deux systèmes : un premier système avec des conditions de type Di-
richlet, c’est-à-dire Γn = ∅, qui nous permet d’utiliser le résultat de régularité (R2). Ensuite, un
second système avec des conditions mixtes, nous permettant d’utiliser le résultat de régularité
(R1). Il est important de souligner que la fonction de troncature Ψ choisie est la même que celle
définie dans (1.3.3), ce qui est naturel, compte tenu de la régularité des données F et h.

2. Analyticité du semigroupe associé à l’opérateur de Stokes sur V−
1
2 +α

n,Γd (Ω).

Commençons par introduire l’opérateur de Stokes. L’opérateur de Stokes (A0,D(A0; V0
n,Γd(Ω)))

dans V0
n,Γd(Ω) est défini par

D(A0; V0
n,Γd(Ω)) =

{
w ∈ H

3
2 +α(Ω) ∩V1

Γd(Ω) | ∃π ∈ H
1
2 +α(Ω) tel que

div σ(w, π) ∈ L2(Ω) et σ(w, π)n = 0 sur Γn
}
,

A0w = P div σ(w, π).
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Pour tout α ∈ (0, α∗), nous introduisons l’espace hétérogène

V−
1
2 +α,0

n,Γd (Ω) :=
{

v ∈ V−
1
2 +α

n,Γd (Ω) | (1−Ψ)v ∈ L2(Ω)
}
. (1.3.6)

Cet espace muni de sa norme naturelle est un espace de Hilbert (voir Proposition 2.4.5).

Comme l’opérateur A0 est un isomoprhisme de D(A0; V0
n,Γd(Ω)) dans V0

n,Γd(Ω) et de V1
Γd(Ω)

dans V−1
Γd (Ω), on en déduit que qu’il est également un isomorphisme de

D(A0; V−
1
2 +α

n,Γd (Ω)) = [D(A0; V0
n,Γd(Ω)),V1

Γd(Ω)] 1
2−α

dans [V0
n,Γd(Ω),V−1

Γd (Ω)] 1
2−α

= V−
1
2 +α

n,Γd (Ω).
(1.3.7)

L’égalité [V0
n,Γd(Ω),V−1

Γd (Ω)] 1
2−α

= V−
1
2 +α

n,Γd (Ω) est établie dans le Lemme 2.4.7, dont la preuve
repose sur un résultat similaire établi dans [MM08] dans le cas de conditions de Dirichlet partout
et sur l’existence d’un opérateur d’extension E qui est précisé en (??). Dans le Lemme 3.3.1 du
Chapitre 3, nous montrons l’existence d’un tel opérateur dans le cadre de la geométrie étudiée
dans ce chapitre.

Pour tout θ ∈ (π/2, π), nous définissons le secteur Σθ par

Σθ = {λ ∈ C | | arg(λ)| < θ} .

Theorem 1.3.2. L’opérateur non borné (A0,D(A0; V−
1
2 +α

n,Γd (Ω))) est le générateur infinitésimal

d’un semigroupe analytique sur V−
1
2 +α

n,Γd (Ω).

Idée de la preuve. D’après [EN06, Théorème 4.6, p. 95], il suffit de montrer que l’opérateur

(A0,D(A0; V−
1
2 +α

n,Γd (Ω))) est sectoriel et à domaine dense.

(a) Sectorialité de l’opérateur de Stokes sur V−
1
2 +α

n,Γd (Ω)

Proposition 1.3.1. Soit α ∈ (0, α∗). Il existe θ0 ∈ (π/2, π) et C > 0 tel que

‖(λI −A0)−1‖
L(V

− 1
2 +α

n,Γd
(Ω))
≤ C

|λ|
, pour tout λ ∈ Σθ0 \ {0}. (1.3.8)

Idée de la preuve. L’inégalité (1.3.8) s’obtient par interpolation. D’abord, comme l’opé-
rateur de Stokes (A0,D(A0; V0

n,Γd(Ω))) est sectoriel sur V0
n,Γd(Ω), il existe θ0 ∈ (π/2, π)

et C0 > 0 tel que
‖(λI −A0)−1F‖V0

n,Γd
(Ω) ≤

C0
|λ|
‖F‖V0

n,Γd
(Ω), (1.3.9)

pour tout λ ∈ Σθ0 \ {0} et F ∈ V0
n,Γd(Ω). D’autre part, des calculs directs permettent de

montrer qu’il existe C1 > 0 tel que

‖(λI −A0)−1F‖V−1
Γd
≤ C1
|λ|
‖F‖V−1

Γd
, (1.3.10)

pour tout λ ∈ Σθ0 \ {0} et F ∈ V0
n,Γd(Ω). Ensuite, en interpolant (1.3.9) et (1.3.10) et

en utilisant le Lemme 2.4.7 et la densité de V0
n,Γd(Ω) dans V−

1
2 +α

n,Γd (Ω), on déduit (1.3.8)

pour tout F ∈ V−
1
2 +α,0

n,Γd (Ω) et pour tout λ ∈ Σθ0 \ {0}.
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(b) L’opérateur (A0,D(A0; V−
1
2 +α

n,Γd (Ω))) est à domaine dense.

Proposition 1.3.2. Le domaine D(A0; V−
1
2 +α

n,Γd (Ω)) de l’opérateur de Stokes

(A0,D(A0; V−
1
2 +α

n,Γd (Ω))) est dense dans V−
1
2 +α

n,Γd (Ω).

Idée de la preuve. La preuve repose sur une modification de [Paz83, Théorème 4.6, p. 16]
(voir Proposition 2.4.9(iii)) et de l’estimation (1.3.8).

3. Réécriture du système (1.3.1) en termes d’opérateurs.

Avant de présenter le théorème principal de cette sous-section, nous introduirons des notations.
D designe un opérateur de relèvement de la trace sur Γi (voir la définition (2.4.64)), tandis que
les opérateurs Np et Nv sont définis comme suit :

Np ∈ L(H−
1
2 +α,0(Ω), H

1
2 +α,1(Ω)), NpF = q, (1.3.11)

où q est solution du système

∆q = div F dans Ω, ∂q

∂n
= F · n sur Γd, q = 0 sur Γn, (1.3.12)

et
Nv ∈ L(H

3
2 +α(Ω), L2(Ω)), Nvw = ρ, (1.3.13)

où ρ est solution du système

∆ρ = 0 dans Ω, ∂ρ

∂n = ν∆w · n sur Γd, ρ = 2νε(w)n · n sur Γn. (1.3.14)

Theorem 1.3.3. Supposons que F ∈ H−
1
2 +α,0(Ω), g ∈ H

3
2 (Γd) et h = 0. Le couple (w, π) ∈

H
3
2 +α,2
δ (Ω) ×H

1
2 +α,1
δ (Ω) est une solution variationnelle de (1.3.1) si et seulement si Pw, (I −

P )w, et π sont solutions du système suivant :{
−A0Pw +A0PDg = PF,
(I − P )w = (I − P )Dg, π = NpF +Nvw.

(1.3.15)

Idée de la preuve. Les principales difficultés de la preuve résident dans le fait de montrer que
les opérateurs Np ∈ L(H−

1
2 +α,0(Ω), H

1
2 +α,1(Ω)) et Nv ∈ L(H

3
2 +α(Ω), L2(Ω)) sont bien définis

et que la pression peut s’exprimer comme π = NpF +Nvw.
(a) Opérateurs Np et Nv bien définis

Pour montrer que les opérateurs Np et Nv sont bien définis, il est tout d’abord néces-
saire de préciser le sens des solutions de (1.3.12) et (1.3.14), respectivement. Dans le cas
du système (1.3.12), où l’on utilise la notion de solution par transposition, une analyse
précise de la régularité de celle-ci est requise (voir Lemme 2.4.4). En ce qui concerne le
système (1.3.14), où l’on utilise une notion de solution très-faible, on conclut à l’aide du
Théorème de représentation de Riesz (voir Lemme 2.4.8).

(b) Justification de l’expression de la pression π

Une fois les opérateurs Np et Nv bien définis, il est nécessaire de montrer que la pression
peut s’exprimer comme π = NpF +Nvw. L’idée centrale de la démonstration repose sur
l’utilisation du système satisfait par (w, π) ainsi qu’un argument de densité (voir Lemme
2.4.9). Ce dernier argument est utilisé pour justifier certaines intégrations par parties.
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1.3.2 Chapitre 3 : Existence d’une solution forte locale en temps pour le
système d’interaction fluide-structure

Tout au long de cette section, nous considérons la configuration geométrique représentée dans la
Figure 1.2, dont la description précise a été introduite dans la Section 1.2 (voir (1.2.1), (1.2.2)
et (1.2.4)).

• Formulation du problème et littérature existante

Dans ce chapitre, nous prouvons l’existence d’une solution forte locale en temps pour le sys-
tème d’interaction fluide-structure

∂tu + (u · ∇)u− div σ(u, p) = 0 dans QTη , (1.3.16a)
div u = 0 dans QTη , (1.3.16b)
u = gi on ΣT

i , u = 0 sur ΣT
w, u = 0 sur ΣT

r , (1.3.16c)
u = ηt~e2 sur ΣT

η , σ(u, p)n = 0 sur ΣT
n , (1.3.16d)

u(0) = u0 dans Ω, (1.3.16e)
∂2
t η + α∆2

sη + γBηt = H(u, p, η) dans (0, T )× (0, `s), (1.3.16f)
η = 0 et ∂x1η = 0 sur (0, T )× {0}, (1.3.16g)
∂2
x1η = 0 et ∂3

x1η = 0 sur (0, T )× {`s}, (1.3.16h)
η(0) = 0 et ∂tη(0) = η0

2 dans (0, `s), (1.3.16i)

où
H(u, p, η) = −

(
σ+(u, p)n+

η(t) + σ−(u, p)n−η(t)

)√
1 + (∂x1η)2 · ~e2,

avec
σ±(u, p) = σ(u(t, x1, η(t, x1)± e), p(t, x1, η(t, x1)± e)),

et n+
η(t) (respectivement n−η(t)) est le vecteur normal unitaire Γ+

η(t) (respectivement Γ−η(t)) exté-
rieur à Ωη(t). Ici, ~e2 = (0, 1). Tout au long de ce chapitre, nous supposerons que l’opérateur
d’amortissement B est donné par B = (∆2

s)1/2 avec un domaine D(B) que nous préciserons
ultérieurement. Cependant, comme nous le verrons dans la Remarque 6, le résultat principal de
ce chapitre reste également valable dans le cas B = (∆2

s)r avec r ∈ (1/2, 1], où le domaine D(B)
sera précisé plus tard.

Nous présentons ci-dessous une liste non-exhaustive de travaux portant sur l’existence de solu-
tions pour des modèles d’interaction fluide-structure. Nous limiterons cette présentation à l’étude
de modèles couplant les équations de Navier-Stokes incompressibles et une structure modélisée
par une équation de poutre ou de plaque.

En ce qui concerne l’étude de solutions faibles, à notre connaisance, le premier résultat dans
cette direction est dû à Chambolle et al. [CDEG05], où les auteurs ont étudié un système cou-
plant les équations incompressible de Navier-Stokes en 3D et un équation de plaque amortie
2D. Ce résultat a ensuite été étendu par Grandmont [Gra08] au cas non amorti. Dans les deux
travaux, qui sont également valables dans le cas 2D/1D, l’existence de solutions faibles se vérifie
tant que la structure ne touche pas la partie fixe de la frontière du fluide. Récemment, Casanova
et al. [CGH21] ont démontré, dans un cadre 2D/1D sans amortissement, l’existence de solutions
faibles globales en temps, indépendamment d’un éventuel contact entre la structure et la partie
fixe du domaine fluide.
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Concernant l’étude de solutions fortes, à notre connaissance, le premier résultat a été obtenu par
Beirão da Veiga [Bei04] dans le cas où la dynamique de la structure est régie par une équation
de poutre d’Euler-Bernoulli amortie. Plus précisément, l’auteur montre un résultat d’existence
locale en temps sous l’hypothèse d’une condition de petitesse sur les données initiales. Ce ré-
sultat a ensuite été amelioré par Lequeurre [Leq11], qui démontre le même résultat d’existence
locale en temps, mais sans supposer une condition de petitesse sur les données initiales. Le cas
non amorti est traité dans Badra et al. [BT19], où les auteurs prouvent l’existence d’une solution
forte locale en temps.

• Présentation de nos résultats

La principale contribution de ce chapitre est la preuve d’existence d’une solution forte locale en
temps du système (1.3.16). Commençons par introduire les espaces fonctionnels :

L2(Ω) = L2(Ω;R2) et, avec s > 0, Hs(Ω) = Hs(Ω;R2),
Hs

Γd(Ω) = {u ∈ Hs(Ω) | u = 0 sur Γd} avec s > 1/2,
V0
n,Γd(Ω) = {u ∈ L2(Ω) | div u = 0 in Ω, u · n = 0 sur Γd},

V1
Γd(Ω) = H1

Γd(Ω) ∩V0
n,Γd(Ω),

H1
{0}(0, `s) = {µ ∈ H1(0, `s) | µ(0) = 0},

H2
{0}(0, `s) = {µ ∈ H2(0, `s) | µ(0) = ∂x1µ(0) = 0},

H3
{0,`s}(0, `s) = {µ ∈ H3(0, `s) ∩H2

{0}(0, `s) | ∂
2
x1µ(`s) = 0},

H4
{0,`s}(0, `s) = {µ ∈ H4(0, `s) ∩H2

{0}(0, `s) | ∂
2
x1µ(`s) = ∂3

x1µ(`s) = 0},

H2,1
{0}((0, T )× (0, `s)) = L2(0, T ;H2

{0}(0, `s)) ∩H
1(0, T ;L2(0, `s)),

H4,2
{0,`s}((0, T )× (0, `s)) = L2(0, T ;H4

{0,`s}(0, `s)) ∩H
2(0, T ;L2(0, `s)).

Tous les espaces précédents sont munis de leurs normes naturelles.

Nous introduisons l’espace des conditions d’entrée

H(Γi) =
{
g = (g1, g2) | g2 = 0 et g1 ∈ H

3
2 (Γi) ∩H1

0 (Γi)
}
, (1.3.17)

muni de la norme (g1, g2) 7→ ‖g1‖
H

3
2 (Γi)

. Si nous identifions V0
n,Γd(Ω) avec son dual et si V−1

Γd (Ω)
désigne le dual de V1

Γd(Ω), nous avons

V1
Γd(Ω) ↪→ V0

n,Γd(Ω) ↪→ V−1
Γd (Ω)

avec des injections continues à image dense. Étant donnée β > 0, nous introduisons les espaces
de Sobolev avec poids

‖w‖H2
β

:=

 2∑
|k|=0

2∑
i=1

∫
Ω

( ∏
J∈J

r2β
J

)
|∂kwi|2dx

1/2

, w ∈ C∞(Ω;R2)

‖p‖H1
β

:=

 1∑
|k|=0

∫
Ω

( ∏
J∈J

r2β
J

)
|∂kp|2dx

1/2

, p ∈ C∞(Ω;R)

(1.3.18)

où rJ designe la distance au point de junction J ∈ J , k = (k1, k2) ∈ N2 est un muti-indice de
longueur |k| = k1 +k2, ∂k désigne l’opérateur différentiel partiel correspondant et w = (w1, w2).
Nous désignons par H2

β(Ω;R2) (respectivement H1
β(Ω)) la fermeture de C∞(Ω;R2) (respective-
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ment C∞(Ω)) dans la norme ‖·‖H2
β
(respectivement ‖·‖H1

β
).

Soit ε > 0. Nous introduisons la fonction de troncature Ψ ∈ C∞(R2) satisfaisant 0 ≤ Ψ ≤ 1,

Ψ = 1 on (−L/2, `s + ε/2)× (−`, `) and Ψ = 0 on (`s + ε, L)× (−`, `). (1.3.19)

Figure 1.3 – Décomposition du domaine Ω.

Nous définissons également Ω2 = (`s + ε/2, L)× (−`, `) (voir Figure 1.3) et introduisons les
espaces de Sobolev hétérogènes

H−
1
2 +α,0(Ω) =

{
F ∈ H−

1
2 +α

Γd (Ω)|(1−Ψ)F ∈ L2(Ω)
}
,

H
1
2 +α,1(Ω) =

{
p ∈ H

1
2 +α(Ω)|(1−Ψ)p ∈ H1(Ω)

}
,

H
1
2 +α,1
δ (Ω) =

{
p ∈ H

1
2 +α(Ω)|(1−Ψ)p ∈ H1

δ (Ω)
}
,

H
3
2 +α,2
δ (Ω) =

{
v ∈ H

3
2 +α(Ω)|(1−Ψ)v ∈ H2

δ(Ω)
}
,

(1.3.20)

munis de leurs normes naturelles.

Une difficulté propre aux problèmes d’interactions fluide-structure est le fait que le domaine
du fluide change au cours du temps. Une manière de faire face à cette difficulté, et qui corres-
pond à la stratégie que nous adopterons dans ce chapitre, consiste à définir un difféomorphisme
X entre le domaine fixe Ω en fonction de η, que nous appellerons domaine de référence, et le
domaine du fluide Ωη(t) à l’instant t, que nous appellerons domaine physique. Cette transforma-
tion, qui est définie dans le Chapitre 3 (voir (3.2.9)), est utilisée pour définir le changement de
variables suivant :

û(t, z) = u(t,X(t, z)) et p̂(t, z) = p(t,X(t, z)), (1.3.21)

pour tout (t, z) ∈ (0, T )× Ω. Ainsi, nous obtenons que (û, p̂, η) satisfait le système

∂tû− div σ(û, p̂) = F̂f (û, p̂, η) dans QT , (1.3.22a)
div û = div Ĝdiv(û, η) dans QT , (1.3.22b)
û = gi sur ΣT

i , û = 0 on ΣT
w, û = 0 sur ΣT

r , (1.3.22c)
û = ηt~e2 sur ΣT

s , σ(û, p̂)n = 0 sur ΣT
n , (1.3.22d)

û(0) = u0 dans Ω, (1.3.22e)
∂2
t η + α∆2

sη + γBηt = −γ+
s p̂+ γ−s p̂+ F̂s(û, p̂, η) dans (0, T )× (0, `s), (1.3.22f)

η = 0 et ∂z1η = 0 sur (0, T )× {0}, (1.3.22g)
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∂2
z1η = 0 et ∂3

z1η = 0 sur (0, T )× {`s}, (1.3.22h)
η(0) = 0 et ηt(0) = η0

2 dans (0, `s), (1.3.22i)

où B = (∆2
s)

1
2 , avec D(B) = H2

{0}(0, `s). Ici, les termes F̂f , Ĝdiv et F̂s encapsulent les termes non
linéaires obtenus après le changement de variables. Pour les epressions précises de ces termes, le
lecteur est renvoyé au Chapitre 3 (voir (3.2.14), (3.2.15) et (3.2.16)).

De cette manière, nous avons réussi à réduire le système (1.3.16), formulé initialement sur le
domaine physique Ωη(t), à un système posé sur le domaine de référence Ω. Cependant, le prix
à payer est l’apparition de nouvelles non-linéarités F̂f , Ĝdiv et F̂s dans le système résultant
(1.3.22). Comme nous verrons plus tard, ce sont précisément ces termes, ainsi que le fait de
considérer des conditions aux limites libres sur une extrémité de la structure (voir (1.3.22h)),
les principales difficultés rencontrées dans l’analyse du problème.

Avant de definir les espaces de Sobolev dans le domaine dépendant du temps Ωη(t), nous rap-
pelons que la définition précise de l’ensemble E(0, T ) ⊂ H4,2

{0,`s}((0, T ) × (0, `s)) est introduite
au Chapitre 3 (voir (3.2.8)). De même, les définitions des ensembles OL et OR sont données au
Chapitre 3 (voir (3.2.10)).

Definition 1.3.1. Soit T > 0. Pour tout η ∈ E(0, T ), nour dirons que u appartient à
L2(0, T ; H

3
2 +α,1
δ (Ωη(·))) (respectivement à H1(0, T ; H−

1
2 +α,0(Ωη(·))) s’il existe

X ∈ L2(0, T ; H2+a0(OL)) ∩ L2(0, T ; H4(OR)) ∩ H2(0, T ; L2(Ω)), avec 0 < a0 < 1/2, tel que
pour tout t ∈ [0, T ], X(t, ·) est un C1−difféomorphisme de Ω sur Ωη(t), et lorsque û définie par

û(t, z) = u(t,X(t, z)), pour tout (t, z) ∈ [0, T ]× Ω,

appartenant à L2(0, T ; H
3
2 +α,2
δ (Ω)) (respectivement à H1(0, T ; H−

1
2 +α,0(Ω))). De même, nous

dirons que p appartient à L2(0, T ;H
1
2 +α,1
δ (Ωη(·))) lorsque p̂, défini par

p̂(t, z) = p(t,X(t, z)), pour tout (t, z) ∈ [0, T ]× Ω,

appartient à L2(0, T ;H
1
2 +α,1
δ (Ω)).

Nous nous intéressons aux solutions (u, p, η) du système (1.3.16) satisfaisant

u ∈ L2(0, T ; H
3
2 +α,2
δ (Ωη(·))) ∩H1(0, T ; H−

1
2 +α,0(Ωη(·)),

p ∈ L2(0, T ;H
1
2 +α,1
δ (Ωη(·))),

η ∈ L2(0, T ;H4
{0,`s}(0, `s)) ∩H

2(0, T ;L2(0, `s)).

(1.3.23)

Definition 1.3.2. Nous disons que le triplet (u, p, η) est une solution forte du système (1.3.22)
sur l’intervalle de temps (0, T ), lorsqu’il satisfait (1.3.23), les équations (1.3.16a)-(1.3.16b) au
sens des distributions dans QTη , l’équation (1.3.16f) au sens des distributions dans (0, T )×(0, `s),
les équations (1.3.16c)-(1.3.16d)-(1.3.16g)-(1.3.16h) au sens des traces, et les conditions initiales
énoncées dans (1.3.16e) et (1.3.16i).

Nous introduisons l’espace

ZT =
(
L2(0, T ; H

3
2 +α,2
δ (Ω)) ∩H1(0, T ; H−

1
2 +α,0(Ω))

)
× L2(0, T ;H

1
2 +α,1
δ (Ω))×H4,2

{0,`s}((0, T )× (0, `s)),
(1.3.24)
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muni de la norme

‖(u, p, η)‖ZT = ‖u‖
L2(0,T ;H

3
2 +α,2
δ

(Ω))∩H1(0,T ;H−
1
2 +α,0(Ω))

+ ‖p‖
L2(0,T ;H

1
2 +α,1
δ

(Ω))
+ ‖η‖

H4,2
{0,`s}

((0,T )×(0,`s)).
(1.3.25)

Nous introduisons également l’ensemble

B(T,R,u0, η
0
2) :=

{
(û, p̂, η) ∈ ZT | ‖(û, p̂, η)‖ZT ≤ R, η ∈ E(0, T )

et û(0) = u0, η(0) = 0, ηt(0) = η0
2

}
.

(1.3.26)

Le résultat principal du chapitre est le suivant :
Theorem 1.3.4. Pour tout u0 ∈ H1(Ω), η0

2 ∈ H1
{0}(0, `s) et gi ∈ H1

{0}(0, 1; H(Γi)) satisfaisant

u0 = 0 sur Γi, u0 = 0 sur Γr ∪ Γw,
u0 = η0

2(0, ·)~e2 sur Γs, div u0 = 0 dans Ω,
(1.3.27)

il existe T ∈ (0, 1) et R > 0 tels que le système (1.3.22) admet une solution unique (û, p̂, η) dans
B(T,R,u0, η

0
2). De plus, si l’on pose

u(t, x) = û(t,X−1(t, x)) et p(t, x) = p̂(t,X−1(t, x)), pour tout x ∈ Ωη(t), t ∈ [0, T ],

où la transformation X(t, ·) : Ω −→ Ωη(t) est celle définie dans (3.2.9), alors (u, p, η) est une
solution du système (1.3.16).

Avant de décrire plus en détail les éléments qui font partie de la preuve, commençons par
présenter l’idée générale de la stratégie.

1) Description générale de la preuve.

Comme mentionné ci-dessus, les principales difficultés résident dans la présence des termes non
linéaires F̂f , Ĝdiv et F̂s dans le système (1.3.22), ainsi que le fait de considérer des conditions
aux limites libres sur une extrémité de la structure (voir (1.3.22h)). Nous expliquons ci-dessous
ces point clés.

Pour traiter le problème non linéaire (1.3.22), nous utilisons une approche classique, qui a été
utilisée par exemple dans [MRR20] et [FNR19]. Tout d’abord, nous associons au problème non
linéaire un problème linéaire (PL) avec des termes sources non homogènes, ces derniers repré-
sentant les non linéarités. Ensuite, après avoir résolu le problème linéaire, nous appliquons le
Théorème du point fixe de Banach pour traiter le problème non linéaire. Dans cette analyse,
les points cruciaux sont l’établissement du caractère bien posé du problème linéaire (PL) et les
estimations de type Lipschitz utilisées dans l’argument de point fixe. En effet, ces deux étapes
sont interdépendantes dans le sens où la régularité imposée aux données non homogènes du
problème linéaire (PL) doit être appropriée pour obtenir les estimations des termes non linéaires
dans l’argument de point fixe. Cet aspect central se ramène à l’étude de la régularité spatiale
de la vitesse et de la pression du fluide dans le problème linéaire non homogène. Plus précisé-
ment, nous devons étudier la régularité de la vitesse w et la pression π du système de Stokes
stationnaire {

−div σ(w, π) = F dans Ω, div w = h dans Ω,
w = g sur Γd, σ(w, π)n = 0 sur Γn,

(1.3.28)

où F, h et g sont données et jouent le rôle de termes non linéaires. Il y a deux difficultés sous-
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jacents dans l’étude de ce problème. Tout d’abord, le domaine Ω possède des coins rentrants aux
points A et B (voir Figure 1.2). Deuxièmement, nous remarquons aussi la présence des points
de junction entre les conditions aux limites de Dirichlet et de Neumann aux sommets C et D.
En suivant la démarche de [FNR19] (voir aussi [MRR20]), il devrait être suffisant d’utiliser le
résultat de régularité (R1) déjà mentionné dans la Section 1.3.1, qui affirme que

(w, π) appartient à l’espace de Sobolev pondéré H2
δ(Ω)×H1

δ (Ω)

lorsque F ∈ L2
δ(Ω), h ∈ H1

δ (Ω) et g ∈ H
3
2
δ (Γd),

(R1)

pour tout δ ∈ (δ∗, 1), où δ∗ ∈ (0, 1/2). Cependant, du moins dans la manière dont les auteurs de
[FNR19] utilisent le résultat de régularité (R1), il n’est pas possible de le reproduire dans notre
cas. Examinons cela plus en détail. Les auteurs de [FNR19] utilisent le résultat de régularité
(R1) dans le cas où F ∈ L2(Ω), h ∈ H1(Ω) et g ∈ H

3
2 (Γi). Le fait de considérer F ∈ L2(Ω) par

les auteurs de [FNR19] est suffisant pour estimer tous les termes non linéaires encapsulés dans F
dans la norme L2(Ω). En particulier, grâce à [FNR19, Lemme 6.3], qui établit que si w ∈ H2

δ(Ω)
et η ∈ H1(−L/2, L) avec η(0) = η(`s) = 0, alors wxxη appartient à L2(Ω). Cependant, dans
notre cas nous sommes incapables d’estimer ce terme. La raison en est que le cœur de la démons-
tration du [FNR19, Lemme 6.3] repose sur le fait que η(0) = η(`s) = 0, ce qui n’est pas vérifié
dans notre situation, puisque en général, η(`s) 6= 0 (voir (1.3.22h)). C’est précisément à cause
de cet argument que les conditions aux limites libres sur une extrémité de la structure posent
des difficultés. Pour cette raisson, nous devons chercher un résultat de régularité alternatif. En
particulier, une version adaptée de (R1) est présentée dans le Théorème 2.3.2 du Chapitre 2,
mais en termes d’espaces de Sobolev hétérogènes.

Une option alternative à celle présentée et qui n’a pas été explorée dans ce travail de thèse,
consiste à travailler directement dans les espaces avec poids. Cela impliquerait, comme point
de départ, d’analyser une décomposition de Leray de l’espace avec poid L2

δ(Ω), ce qui revient à
étudier un système elliptique avec des conditions aux limites mixtes dans un domaine avec des
coins rentrants.

Le preuve du Théorème 1.3.4 repose essentiellement sur deux arguments :

2) Étude du système linéaire non homogène.

Nous considérons le système fluide-structure linearisé

∂tv− div σ(v, p) = Ff dans QT ,
div v = div Gdiv dans QT ,
v = gi sur ΣT

i , v = 0 sur ΣT
w ∪ ΣT

r , v = ζ2~e2 sur ΣT
s ,

σ(v, p)n = 0 sur ΣT
n ,

v(0) = v0 dans Ω,
∂tζ1 = ζ2 sur (0, T )× (0, `s),
∂tζ2 + α∆2

sζ1 + γ(∆2
s)

1
2 ζ2 = −γ+

s p+ γ−s p+ Fs dans (0, T )× (0, `s),
ζ1 = 0 et ∂x1ζ1 = 0 sur (0, T )× {0},
∂2
x1ζ1 = 0 et ∂3

x1ζ1 = 0 sur (0, T )× {`s},
ζ1(0) = 0 et ζ2(0) = ζ0

2 dans (0, `s).

(1.3.29)

Nous prouvons le théorème suivant :
Theorem 1.3.5. Soit 0 < T < 1. Supposons que v0 ∈ H1(Ω), ζ0

2 ∈ H1
{0}(0, `s), Ff ∈

L2(0, T ; H−
1
2 +α,0(Ω)), gi ∈ H1

{0}(0, 1; H(Γi)) et Fs ∈ L2(0, T ;L2(0, `s)). Supposons également
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que Gdiv satisfait les conditions énoncées en (3.4.9), (3.4.10), (3.4.11) et Gdiv|t=0 = 0. De plus,
supposons que les conditions de compatibilité (3.4.14) sont satisfaites. Alors, le système (1.3.29)
admet une solution unique (v, p, ζ1, ζ2) appartenant à L2(0, T ; H

3
2 +α,2
δ (Ω))∩H1(0, T ; H−

1
2 +α,0(Ω))×

L2(0, T ;H
1
2 +α,1
δ (Ω))×H4,2((0, T )× (0, `s))×H2,1((0, T )× (0, `s)).

Idée de la preuve. Les trois points essentiels de la démonstration sont les suivants :
(a) Constrution d’un relèvement pour gi et Gdiv.

La construction du relèvement z pour gi est une conséquence du résultat de régularité
donné dans le Théorème 3.3.1(ii) (voir Proposition 3.4.1). D’autre part, la construction
du relèvement w associé à Gdiv repose sur une combinaison des approches utilisées dans
[FNR19, Theorem 10.2] et [MRR20, Proposition 5.1] (voir Proposition 3.4.2).

(b) Réécriture du système (1.3.29) avec gi = 0 et Gdiv = 0 en termes d’opérateurs.

Une fois introduits les relèvements z et w, nous utilisons le Théorème 3.3.6 pour réécrire
le système (1.3.29), avec gi = 0 and Gdiv = 0, sous la forme d’une équation opératorielle.

(c) Régularité de la solution du système (1.3.29) avec gi = 0 et Gdiv = 0.

Tout d’abord, nous utilisons l’analyticité du semi-groupe associé à l’opérateur fluide-
structure défini en (3.3.27) (voir Théorème 3.3.7), afin de déduire, grâce au résultat de
régularité maximale [BDDM07, Theorem 3.1, p. 143], la régularité en temps. Ensuite, la
régularité spatiale découle du Théorème 3.3.1(ii).

3) Estimations des termes non linéaires et argument de point fixe.

Après avoir établi le caractère bien posé du système (1.3.29), la dernière étape de la démons-
tration du Théorème 1.3.4 consiste à estimer les termes non linéaires et à utiliser un argument
de point fixe. Pour cela, nous considérons l’application N : B(T,R,u0, η

0
2) −→ B(T,R,u0, η

0
2)

définie par
N (Φ, ψ, k) = (û, p̂, η) pour tout (Φ, ψ, k) ∈ B(T,R,u0, η

0
2),

où (û, p̂, η) est solution du système

∂tû− div σ(û, p̂) = F̂f (Φ, ψ, k), div û = div Ĝdiv(Φ, k) dans QT ,
û = gi sur ΣT

i , û = 0 sur ΣT
w ∪ ΣT

r , û = ηt~e2 sur ΣT
s ,

σ(û, p̂)n = 0 sur ΣT
n , û(0) = u0(Xη(·)) dans Ω,

∂2
t ηt + α∆2

sη + γ(∆2
s)

1
2 ηt = −γ+

s p̂+ γ−s p̂+ F̂s(Φ, k) dans (0, T )× (0, `s),
η = 0 et ∂x1η = 0 sur (0, T )× {0},
∂2
x1η = 0 et ∂3

x1η = 0 sur (0, T )× {`s},
η(0) = 0 et ηt(0) = η0

2 dans (0, `s).

(1.3.30)

Pour montrer que l’application N admet un unique point fixe, nous utilisons le Théorème du
point fixe de Banach. On peut en fait montrer que si T est suffisamment petit, l’application N est
bien définie, et qu’elle est une contraction stricte. Ces derniers points découlent des estimations
précises des termes non linéaires F̂f , Ĝdiv et F̂s (voir Lemmes 3.5.5, 3.5.6 et 3.5.7).

1.3.3 Chapitre 4 : Simulations numériques du système d’interaction fluide-
structure

Tout au long de cette partie, nous considérons la configuration geométrique représentée dans la
Figure 1.2, dont la description précise a été introduite dans la Section 1.2 (voir (1.2.1), (1.2.2)
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et (1.2.4)).

• Formulation du problème et littérature existante

Dans ce chapitre, nous nous intéressons à l’approximation numérique de la solution du système

∂tu + (u · ∇)u− div σ(u, p) = 0 dans QTη ,
div u = 0 dans QTη ,
u = gi sur ΣT

i , u = 0 sur ΣT
r ∪ ΣT

w,

u = ηt~e2 sur ΣT
η , σ(u, p)n = 0 sur ΣT

n ,

u(0) = u0 dans Ω,
∂2
t η + α∆2

sη + γBηt = H(u, p, η) + fs dans (0, T )× (0, `s),
η = 0 et ∂x1η = 0 sur (0, T )× {0},
∂2
x1η = 0 et ∂3

x1η = 0 sur (0, T )× {`s},
η(0) = 0 et ∂tη(0) = η0

2 dans (0, `s),

(1.3.31)

où u et p représentent respectivement la vitesse et la pression du fluide. Ici, σ(u, p) est le tenseur
de contraintes du fluide donné par

σ(u, p) = 2νε(u)− pI, ε(u) = 1
2(∇u + (∇u)>),

avec ν > 0 représentant la viscosité du fluide. La condition au bord d’entrée gi = gis + βgip,
où gis est indépendante du temps, gip est une perturbation dépendant du temps, tandis que β
représente l’amplitude de la perturbation.

L’opérateur d’amortissement B est donné par :

B = ∆2
s = ∂4

x1 , D(B) = H4
{0,`s}(0, `s).

L’expression de la force H est donnée par

H(u, p, η) = −
(
σ+(u, p)n+

η(t) + σ−(u, p)n−η(t)

)√
1 + (∂x1η)2 · ~e2. (1.3.32)

Comme dans l’étude du problème d’existence de solutions pour le système (1.3.31), une première
difficulté inhérente à ce type de système est le fait que le domaine du fluide change au cours du
temps. Cette problématique est également un obstacle lorsqu’on s’intéresse à l’approximation nu-
mérique du système. Pour faire face à cette difficulté, nous utilisons la méthode ALE (Arbitrary
Lagrangian Eulerian) (voir, par exemple, [DGH82], [QTV00], [QF04], [TH06], [FGG07], [Ric15]).

En ce qui concerne la résolution numérique du système (1.3.31), deux grande stratégies sont
utilisées dans la littérature. La première, connue sous le nom de partitionnée, consiste à résoudre
séparément les sous-problèmes du fluide et de la structure, qui sont ensuite couplés à travers des
conditions de transmission. Cette stratégie présente l’avantage de permettre l’utilisation de sol-
veurs ad hoc déjà existants. Cependant, cela se fait au prix d’une perte d’efficacité par rapport au
second groupe décrit ci-dessous. Ce second groupe, appelé approche monolithique, est caractérisé
par le fait que les sous-problèmes fluide et structure sont résolus simultanément. Comme souli-
gné dans [Ric15], "cette approche permet l’utilisation de techniques de discrétisation implicites
et de solveurs fortement couplés pour l’ensemble du système". L’un des principaux inconvénient
de cette stratégie réside dans son coût de calcul élevé. La stratégie utilisée dans ce chapitre suit
l’approche monolithique présentée dans [Mur19]. Plus précisément, un algorithme semi-implicite
est employé, où le mot semi-implicite est compris dans le sens où le domaine fluide est calculé
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explicitement.

L’approche suivie dans ce chapitre, la méthode ALE et l’algorithme semi-implicite 1, est égale-
ment la stratégie utilisée dans les simulations numériques du problème de stabilisation traité au
Chapitre 6.

• Présentation de nos résultats

Nous considérons d’abord la transformation ALE A(t, ·) : Ωref −→ Ωη(t) définie par

A(t, ·) = I +
∫ t

0
w(s, ·) ds, (1.3.33)

où w(t, ·) est solution de l’équation elliptique

∆w = 0 dans Ω, w = u|Γs sur Γs, w = 0 sur Γ \ Γs. (1.3.34)

Ici, u|Γs représente la trace de la vitesse du fluide sur Γs et w un relèvement.

La discrétisation en temps est traitée à l’aide de la méthode classique d’Euler implicite. Nous
désignons par ∆t le pas de temps et tk = k∆t, pour k ∈ N le niveau de temps k. Pour tout k ∈ N,
Ωk := A(tk,Ωref ) avec frontière Γk = Γi∪Γ0∪Γks∪Γn, où Γ0 = Γr∪Γw et Γks = Γks,top∪Γks,bot∪Γks,lat
(voir Figure 1.4). Nous désignons par uk, pk et λk les approximations de u(tk, ·), p(tk, ·) et
λ(tk, ·), respectivement. Ici, λk = (λki ,λk0,λks,top,λks,bot,λks,lat)> représentent les multiplicateurs
de Langrange associés aux conditions de bord Dirichlet. Nous notons également ηk1 et ηk2 les
approximations de η1(tk, ·) et η2(tk, ·) définies sur (0, `s), respectivement.

Figure 1.4 – Domaine physique au niveau de temps k.

Avant d’introduire l’algorithme de résolution, nous considérons le problème intermédiaire
suivant. Étant donné uk, pk, λk, wk, ηk1 et ηk2 :
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Trouver ûk+1 ∈ H1(Ωk), p̂k+1 ∈ L2(Ωk), λ̂k+1 ∈ H−
1
2 (Γk \ Γn), ηk+1

1 , ηk+1
2 ∈ H2

{0}(0, `s) tels que



∫
Ωk

ûk+1 − uk

∆t · φ = af (ûk+1,φ) + b(φ, p̂k+1) + c(ûk+1 −wk, ûk+1,φ)

+
∫

Γi
λ̂
k+1
i · φ+

∫
Γk0
λ̂
k+1
0 · φ+

∫
Γks,top

λ̂
k+1
s,top · φ

+
∫

Γk
s,bot

λ̂
k+1
s,bot · φ,+

∫
Γk
s,lat

λ̂
k+1
s,lat · φ, ∀φ ∈ H1(Ωk),

b(ûk+1, ψ) = 0, ∀ψ ∈ L2(Ωk),∫
Γi

ûk+1 · τ =
∫

Γi
gi · τ , ∀τ ∈ H−

1
2 (Γi),

∫
Γ0

ûk+1 · τ = 0, ∀τ ∈ H−
1
2 (Γ0),∫

Γks,top
ûk+1 · τ =

∫
Γks,top

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,top),∫

Γk
s,bot

ûk+1 · τ =
∫

Γk
s,bot

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,bot),∫

Γk
s,lat

ûk+1 · τ =
∫

Γk
s,lat

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,lat),∫ `s

0

ηk+1
1 − ηk1

∆t ζ =
∫ `s

0
ηk+1

2 ζ, ∀ζ ∈ H2
{0}(0, `s),∫ `s

0

ηk+1
2 − ηk2

∆t ζ = a1
s(ηk+1

1 , ζ) + a2
s(ηk+1

2 , ζ)

−
∫ `s

0
λ̂
k+1
s,top · ~e2ζ

√
1 + (ηk1,x)2

−
∫ `s

0
λ̂
k+1
bot · ~e2ζ

√
1 + (ηk1,x)2 +

∫ `s

0
fsζ, ∀ζ ∈ H2

{0}(0, `s).

(1.3.35)

où

af (v,φ) = −2ν
∫

Ωk
ε(v) : ε(φ), b(φ, q) =

∫
Ωk

(divφ)q, c(v,v,φ) =
∫

Ωk
(v · ∇)v · φ,

a1
s(η1, ζ) = −α

∫ `s

0
∆η1 ·∆ζ, a2

s(η2, ζ) = −γ
∫ `s

0
∆η2 ·∆ζ.

Algorithm 1: Semi-implicit algorithm
Pour k ≥ 1 :
1 : Résoudre le système linéaire obtenu après l’application de l’algorithme de Newton au système
(1.3.35) pour obtenir ûk+1, p̂k+1, λ̂k+1, ηk+1

1 , ηk+1
2 .

2 : Calculer la vitesse du maillage ŵk+1 : Ωk → R2 satisfaisant l’équation elliptique
∆ŵk+1 = 0 dans Ωk,

ŵk+1 = ûk+1 sur Γks ,
ŵk+1 = 0 sur Γ \ Γks .

(1.3.36)

3 : Définir Ak(x̂) := x̂ + ∆tŵk+1(x̂) et Ωk+1 := Ak(Ωk).
4 : Définir uk+1 : Ωk+1 → R2, p : Ωk+1 → R, λk+1 : Ωk+1 → R2 et wk+1 : Ωk+1 → R2 par

uk+1(x) = ûk+1(x̂), pk+1(x) = p̂k+1(x̂), λk+1(x) = λ̂
k+1(x̂)

et wk+1(x) = ŵk+1(x̂), ∀x = Ak(x̂), x̂ ∈ Ωk.
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Figure 1.5 – Module de la vitesse Us du fluide correspondant à Re = 200 (solution station-
naire).

1. Analyse spectrale avec différents paramètres physiques.

En ce qui concerne l’étude du problème de stabilisation (voir Chapitre 6), un élément impor-
tant consiste à calculer numériquement le spectre du système linéarisé autour d’une solution
stationnaire donnée (dans la Figure 1.5, nous montrons le module de la vitesse du fluide station-
naire pour un nombre de Reynolds Re = 200). Dans ce cadre, nous analysons le spectre d’un
tel système en fixant le nombre de Reynolds Re = 200 ainsi que le coefficient d’amortissement
γ = 10−6 de la structure. Par exemple, dans la Figure 1.6, nous montrons une partie du spectre
correspondante à un coefficient de rigidité α = 10−1. Dans cette figure, nous observons deux va-
leurs propres conjuguées instables, que nous désignons par µ1,2 et µ3,4, dont les valeurs précises
sont présentées dans le Tableau 1.1

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5
( )

40

30

20

10
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10

20
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40
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)

Figure 1.6 – Partie du spectre fluide-structure correspondant à Re = 200, un coefficient de
rigidité α = 10−1, et un coefficient d’amortisemment γ = 10−6.

µ1,2 µ3,4 µ5 µ6 µ7 µ8,9 µ10
3.05± 21.61i 0.50± 11.96i −0.16 −0.69 −0.79 −1.86± 27.91i −1.94

Tableau 1.1 – Premières valeurs propres du système fluide-structure (ordonnées selon la partie
réelle) correspondant à un nombre de Reynolds Re = 200, coefficient de rigidité α = 10−1, et
coefficient d’amortissement γ = 10−6.
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(a) (b)

(c) (d)

Figure 1.7 – Partie réelle de la composante horizontale de la vitesse du fluide associée aux
valeurs propres instables µ1,2 et µ3,4, pour α = 10−1. (a)-(c) Fonctions propres associées à µ1
et µ2, respectivement. (b)-(d) Fonctions propres associées à µ3 et µ4, respectivement.

2. Simulations numériques du problème direct.

En utilisant l’algorithme 1, nous présentons plusieurs simulations numériques dans le même
esprit que pour l’analyse du spectre : nous fixons le nombre de Reynolds à Re = 200 et le co-
efficient d’amortissement γ = 10−6. Par exemple, dans la Figure 1.8, nous montrons le module
de la vitesse du fluide à différents instants, correspondant à une valeur de coefficient de rigidité
α = 10−1. La Figure 1.9 montre le déplacement de la structure aux mêmes instants.

(a) t = 4[s] (b) t = 6[s]

(c) t = 8[s] (d) t = 10[s]

(e) t = 12[s] (f) t = 14[s]

Figure 1.8 – Snapshots du module de la vitesse à différents instants correspondant au coefficient
de rigidité α = 10−1 et au paramètre de perturbation β = 1.5 pour Re = 200.



1.3. Résultats de la thèse 22

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
x (m)

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008
 (m

)
Reference line ( = 0)

(a) t = 4[s]

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
x (m)

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

 (m
)

Reference line ( = 0)

(b) t = 6[s]

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
x (m)

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

 (m
)

Reference line ( = 0)

(c) t = 8[s]
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(d) t = 10[s]
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(e) t = 12[s]
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Figure 1.9 – Snapshots du déplacement de la structure (ligne rouge en pointillés) à différents
instants correspondant au coefficient de rigidité α = 10−1 et au paramètre de perturbation
β = 1.5.

1.3.4 Chapitre 5 : Stabilisation du système d’interaction fluide-structure

• Formulation du problème et littérature existante

Commençons par établir la notation qui sera utilisée tout au long de cette section.

Q∞η =
⋃

t∈(0,∞)

(
{t} × Ωη(t)

)
, Σ∞η =

⋃
t∈(0,∞)

(
{t} × Γη(t)

)
,

Q∞ = (0,∞)× Ω, Σ∞s = (0,∞)× Γs,
Σ∞i = (0,∞)× Γi, Σ∞d = (0,∞)× Γd,
Σ∞r = (0,∞)× Γr, Σ∞n = (0,∞)× Γn.

(1.3.37)

Soit (us, ps) solution du système
(us · ∇)us − div σ(us, ps) = 0, dans Ω,
div us = 0 dans Ω,
us = gs, sur Γi, us = 0 sur Γ \ Γi,
σ(us, ps)n = 0 sur Γn.

(1.3.38)
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Considérons le système d’interaction fluide-structure

∂tu + (u · ∇)u− div σ(u, p) = 0 dans Q∞η ,
div u = 0 dans Q∞η ,
u = g sur Σ∞i , u = 0 sur Σ∞w , u = 0 sur Σ∞r ,
u = ηt~e2 sur Σ∞η , σ(u, p)n = 0 sur Σ∞n ,
u(0) = u0 dans Ω,
∂2
t η + α∆2

sη + γ(∆2
s)

1
2 ηt = H(u, p, η) + fs + f dans (0,∞)× (0, `s),

η = 0 et ∂x1η = 0 sur (0,∞)× {0},
∂2
x1η = 0 et ∂3

x1η = 0 sur (0,∞)× {`s},
η(0) = 0 et ∂tη(0) = η0

2 dans (0, `s),

(1.3.39)

où
H(u, p, η) = −

(
σ+(u, p)n+

η(t) + σ−(u, p)n−η(t)

)√
1 + (∂x1η)2 · ~e2,

avec
σ±(u, p) = σ(u(t, x1, η(t, x1)± e), p(t, x1, η(t, x1)± e)).

La condition au bord en entrée g = gs + βgp, où gs est indépendante du temps et gp est une
perturbation dépendant du temps. La fonction fs est indépendante du temps et est choisie de
telle sorte que le triplet (u, η, ηt) = (us, 0, 0) constitue une solution stationnaire du système
(1.3.39). Ainsi,

fs = σ(us, ps)n+ · ~e2 + σ(us, ps)n− · ~e2, (1.3.40)

où n+ (respectivement n−) représente la normale unitaire exterièure à Γ+
s (respectivement Γ−s ).

Le but de ce chapitre est de trouver un contrôle sous la forme f =
∑Nc
j=1 fj(t)wj(z1), donné

en boucle fermée, capable de stabiliser le système (1.3.39) avec un taux de décroissance expo-
nentielle prescrit ω > 0, localement autour (u, η, ηt) = (us, 0, 0). Ici, les profils wj sont choisis
de manière appropriée afin de garantir une propriété de stabilisabilité.

Dans ce qui suit, nous présentons une liste non exhaustive de travaux portant sur la stabili-
sation de modèles fluide-structure.

À notre connaissance, un premier travail dans cette direction est l’article de Raymond [Ray10], où
il considère un système fluide-structure couplant les équations de Navier-Stokes incompressibles
dans un domaine rectangulaire 2D avec des conditions de Dirichlet, et une équation d’Euler-
Bernoulli amortie avec des conditions encastrées. Le but de ce travail est de trouver un contrôle
en boucle fermée, capable de stabiliser expontiellement le système autour de la solution station-
naire nulle, avec un taux de décroissance arbitraire. Dans la même ligne, les auteurs de [FNR19],
étudient un système similaire dans lequel, au lieu de considérer des conditions Dirichlet pour
le fluide, ils ont considéré des conditions mixtes de type Dirichlet-Neumann. Dans cet article,
les auteurs ont stabilisé le système autour d’une solution stationnaire qui n’est pas nécessai-
rement nulle, avec un contrôle de dimension finie en boucle fermée. Dans le cadre du même
modèle analysé dans [Ray10], mais dans le contexte de solutions faibles, les auteurs de [BT17]
étudient le problème de stabilisation du système autour d’une solution stationnaire qui n’est
pas nécessairement nulle, avec un contrôle donné sous la forme en boucle fermée qui agit sur le
domaine externe du fluide. Dans [MR17], les auteurs étudient un système couplant les équations
de Navier-Stokes incompressibles et une équation des ondes amortie. Ils prennent également en
compte des conditions aux limites de type periódique. La stabilisation est effectuée autour de la
solution stationnaire nulle, avec un contrôle de dimension finie en boucle fermée qui agit sur une
partie de la frontière du fluide. Dans un contexte légèrement différent en termes de dynamique
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régissant la structure, dans [Del19], l’auteur étudie un problème de stabilisation d’un modèle
fluide-structure couplant les équations de Navier-Stokes décrivant la dynamique du fluide, et une
équation différentielle ordinaire décrivant la dynamique de la structure. Dans ce cas, le contrôle
qui agit sur la structure, est de dimension finie en boucle fermée.

• Présentation de nos résultats

La principale contribution de ce chapitre est la preuve de la stabilisation exponentielle du sys-
tème (1.3.39), localement autour d’une solution stationnaire. Avant d’énoncer les résultats de ce
chapitre, nous précisons que nous utiliserons la notation déjà introduite dans la Section 1.3.2,
à la différence que, lorsqu’il est fait mention d’un certain T arbitraire, dans ce contexte nous
considérons T =∞.

La première difficulté, et qui est intrisèque à l’étude des systèmes fluide-structure, est le fait
que le domaine du fluide varie au cours du temps. Pour faire face à cette difficulté, nous défi-
nissons un difféomorphisme X entre le domaine de référence Ω et le domaine physique Ωη(t) à
l’instant t. Cette transformation, introduite dans le Chapitre 5 (voir (5.2.8)), est utilisée pour
définir le changement de variables suivant :

û(t, z) = eωt (u(t,X(t, z))− us(z)) , p̂(t, z) = eωt (p(t,X(t, z))− ps(z)) ,
η̂1(t, z1) = eωtη(t, z1), η̂2(t, z1) = eωt∂tη(t, z1), f̂(t) = eωtf(t), f̂ = eωtf,

η̂±1 (t, z1) = eωtη±(t, z1), η̂±2 (t, z1) = eωt∂tη
±(t, z1),

ĝp(t, z) = eωtgp(t, z), û0 = u0 − us,

(1.3.41)

pour tout (t, z) ∈ (0,∞) × Ω, avec ω > 0. Ainsi, nous obtenons que (û, p̂, η1, η2) satisfait le
système

∂tû− div σ(û, p) + (us · ∇)û + (û · ∇)us −A1η̂1 −A2η̂2 − ωû = e−ωtF̂f (û, p̂, η̂1, η̂2) dans Q∞,
div û = e−ωt div Ĝdiv(û, η̂1) +A3η̂1 dans Q∞,
û = ĝp sur Σ∞i , û = 0 sur Σ∞r ∪ Σ∞w ,
û = η̂2~e2 sur Σ∞s , σ(û, p̂)n = 0 sur Σ∞n ,
û(0) = û0 dans Ω,
∂tη̂1 − η̂2 − ωη̂1 = 0 dans (0,∞)× (0, `s),
∂tη̂2 + α∆2

s η̂1 + γ(∆2
s)

1
2 η̂2 −A4η̂1 − ωη̂2 = γ+

s p̂− γ−s p̂+ e−ωtF̂s(û, η̂1)
+f̂ dans (0,∞)× (0, `s),

η̂1 = 0 et ∂z1 η̂1 = 0 sur (0,∞)× {0},
∂2
z1 η̂1 = 0 et ∂3

z1 η̂1 = 0 sur (0,∞)× {`s},
η̂1(0) = 0 et η̂2(0) = η0

2 dans (0, `s),
(1.3.42)

où les opérateurs linéaires A1, A2, A3 et A4 sont définis dans (5.2.12), tandis que F̃f , G̃div et F̃s
sont définis dans l’appendice A.

Avant d’énoncer les principaux résultats de ce chapitre, nous introduirons la notation et les
espaces utilisés tout au long du cette section.
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Soit α ∈ (0, α∗) et δ ∈ (δ∗, 1). Considérons d’abord la classe

u ∈ L2(0,∞; H
3
2 +α,2
δ (Ωη(·))) ∩H1(0,∞; H−

1
2 +α,0(Ωη(·)),

p ∈ L2(0,∞;H
1
2 +α,1
δ (Ωη(·))),

η ∈ L2(0,∞;H4
{0,`s}(0, `s)) ∩H

2(0,∞;L2(0, `s)).

(1.3.43)

En partant de la Définition 1.3.2 avec T =∞, nous introduisons l’espace

Z∞ =
(
L2(0,∞; H

3
2 +α,2
δ (Ω)) ∩H1(0,∞; H−

1
2 +α,0(Ω))

)
× L2(0,∞;H

1
2 +α,1
δ (Ω))×H4,2

{0,`s}((0,∞)× (0, `s)),
(1.3.44)

que nous munissons de la norme

‖(u, p, η)‖Z∞ = ‖u‖
L2(0,∞;H

3
2 +α,2
δ

)∩H1(0,∞;H−
1
2 +α,0)

+ ‖p‖
L2(0,∞;H

1
2 +α,1
δ

)
+ ‖η‖

H4,2
{0,`s}

((0,∞)×(0,`s),
(1.3.45)

où
‖η‖

H4,2
{0,`s}

((0,∞)×(0,`s) = ‖η‖H4,2((0,∞)×(0,`s)) + ‖ηt‖H2,1((0,∞)×(0,`s)).

Pour un R > 0 donné, nous introduisons également l’ensemble

B∞(R,u0, η
0
2) :=

{
(û, p̂, η) ∈ Z∞ | ‖(û, p̂, η)‖Z∞ ≤ R, η ∈ E(0,∞)

et û(0) = u0, η(0) = 0, ηt(0) = η0
2

}
.

(1.3.46)

Nos résultats reposent sur trois hypothèses. Commençons par décrire la première hypothèse, qui
concerne la régularité des solutions du système stationnaire (1.3.38).

Hypothèse 1. Soit α ∈ (0, α∗) et δ ∈ (δ∗, 1). Supposons que gs ∈ H(Γi) et que le

système (1.3.38) admette une solution (us, ps) ∈ H
3
2 +α,2
δ (Ω)×H

1
2 +α,1
δ (Ω).

(A1)

Les deux autres hypothèses A2 et A3 sont précisées dans la Section 5.7. Dans l’hypothèse A2, on
énonce une condition concernant les spectres des opérateurs adjoints d’Oseen et de la structure.
Plus précisément, on suppose que les parties du spectre, contenues dans le demi-plan {λ ∈
C | <λ ≥ ω}, des opérateurs adjoints d’Oseen et de la structure sont disjointes. D’autre part,
l’hypothèse A3 énonce une propiété de prolongement unique.

Nous sommes maintenant en mesure d’énoncer les résultats principaux de ce chapitre.

Theorem 1.3.6. Soit α ∈ (0, α∗). Supposons que les hypothèses A1, A2 et A3 sont satisfaites.
Pour tout ω > 0, il existe une famille (wi)Nci=1 ⊂ H2

{0}(0, `s) et un opérateur

K ∈ L(L2(Ω)×H2
{0}(0, `s)× L

2(0, `s),RNc),

tels qu’il existe R > 0 et r > 0, tels que pour tout (û0, η0
2) ∈ H1(Ω) × H2

{0}(0, `s) et ĝp ∈
H1
{0}(0,∞; H(Γi)) satisfaisant

û0 = ĝp(0, ·) sur Γi, û0 = 0 sur Γr ∪ Γw,
û0 = η0

2(0, ·)~e2 sur Γs, div û0 = 0 dans Ω,
(1.3.47)



1.3. Résultats de la thèse 26

et
‖û0‖H1(Ω) + ‖η0

2‖H2
{0}(0,`s)

+ ‖ĝp‖H1(0,∞;H(Γi)) ≤ r, (1.3.48)

le système (1.3.42) muni du contrôle feedback

f̂ =
Nc∑
i=1
Ki(û, η̂, η̂t)wi, avec K = (K1, . . . ,KNc),

admet une solution (û, p̂, η̂) ∈ B∞(R,u0, η
0
2) satisfaisant

‖(û(t, ·), η̂(t, ·), η̂t(t, ·))‖H 1
2 +α(Ω)×H3(0,`s)×H1(0,`s)

≤ CR pour tout t > 0,

où C > 0 dépend de α et r.

En conséquence du résultat précédent, on obtient le théorème suivant.

Theorem 1.3.7. Soit α ∈ (0, α∗). Supposons que les hypthèses A1, A2 et A3 sont satisfaites.
Pour tout ω > 0, il existe une famille (wi)Nci=1 ⊂ H2

{0}(0, `s) et un opérateur

K ∈ L(L2(Ω)×H2
{0}(0, `s)× L

2(0, `s),RNc),

tels qu’il existe r > 0, tel que pour tout (u0, η0
2) ∈ H1(Ω)×H2

{0}(0, `s) et e
ωtgp ∈ H1

{0}(0,∞; H(Γi))
satisfaisant

u0 − us = gp(0, ·) sur Γi, u0 = 0 sur Γr ∪ Γw,
u0 − us = η0

2(0, ·)~e2 sur Γs, div u0 = 0 dans Ω,
(1.3.49)

et
‖u0 − us‖H1(Ω) + ‖η0

2‖H2(0,`s) + ‖eωtgp‖H1(0,∞;H(Γi)) ≤ r, (1.3.50)

le système (1.3.39) muni du contrôle feedback

f =
Nc∑
i=1
Ki(u ◦X−1 − us, η, ηt)wi, avec K = (K1, . . . ,KNc),

admet une solution (u, p, η) appartenant à la classe (1.3.43) satisfaisant∥∥∥(u(t,X−1(t, ·))− us, η(t, ·), ηt(t, ·))
)∥∥∥

H
1
2 +α(Ω)×H3(0,`s)×H1(0,`s)

≤ Ce−ωt pour tout t > 0,

où la transformation X : Ω −→ Ωη(t) est celle définie dans (1.3.38), et C > 0 dépend de α et r.

Avant de décrire les éléments essentiels de la preuve du Théorème 1.3.6, commençons par
présenter l’idée générale de la démonstration.

1) Description générale de la preuve.

L’approche utilisée est classique. La stratégie consiste d’abord à stabiliser le système linéarisé.
Ensuite, en utilisant le loi de contrôle en boucle fermée obtenue à cette étape, nous montrons,
à l’aide d’un argument de point fixe, qu’elle permet également de stabiliser le système non li-
néaire, à condition que certaines hypothèses appropriées sur les données initiales et aux bords
soient satisfaites. Dans le contexte des modèles d’interaction fluide-structure, cette approche a
été utilisée par Raymond dans [Ray10]. Une stratégie similaire a été adoptée, par exemple, dans
[FNR19] et [MR17].

La première chose à observer est que les difficultées rencontrées dans l’étude de l’existence
de solutions fortes persistent dans l’analyse du problème de stabilisation. Ces difficultés sont
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liées à la présence des termes non linéaires F̂f , Ĝdiv et F̂s dans le système (1.3.42), ainsi que le
fait de considérer des conditions aux limites libres sur une extrémité de la structure. Cependant,
de nouvelles difficultés apparaissent, que nous détaillons ci-dessous.
− Analyse des problèmes de valeurs propres. Puisque le système est linéarisé autour d’une

solution stationnaire non triviale, l’analyse du problème aux valeurs propres direct né-
cessite de traiter une contrainte algébrique de la forme suivante :

div v = A3η1 dans Ω, (1.3.51)

où l’opérateur linéaire A3 n’est pas nécessairement nul. Dans le problème de stabilisation
étudié dans [Ray10] (voir aussi [MR17]), on voit que cette difficulté n’est pas présente,
puisque l’opérateur A3 ≡ 0, du fait de la linéarisation effectuée autour de la solution
stationnaire nulle.

− Équivalence entre les formulations sous forme d’EDP et sous forme d’opérateur. Étroite-
ment liée à la difficulté mentionnée ci-dessus se trouve la nécessité, dans l’analyse spectrale
du système linéarisé, d’établir l’équivalence entre les formulations en équations aux déri-
vées partielles et les formulations en termes d’opérateurs, tant que pour les problèmes aux
valeurs propres directs que pour les adjoints. Cette considération a une importance parti-
culière dans le cadre de simulations numériques, car dans cette contexte nous travaillons
directement avec la formulation EDP.

La preuve du Théorème 1.3.6 peut être divisée en deux arguments principaux :

2) Étude du système linéarisé.

Nous considérons le système fluide-structure linearisé

∂tv− div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2 − ωv = Ff dans Q∞,
div v = A3η1 + div Gdiv dans Q∞,
v = gp sur Σ∞i , v = η2~e2 sur Σ∞s , v = 0 sur Σ∞r ∪ Σ∞w , σ(v, q)n = 0 sur Σ∞n ,
∂tη1 − η2 − ωη1 = 0 in (0,∞)× (0, `s),
∂tη2 + α∆2η1 + γ(∆2

s)
1
2 η2 −A4η1 − ωη2 = −γ+

s q + γ−s q + Fs + f dans (0,∞)× (0, `s),
η1 = 0, ∂x1η1 = 0 sur (0,∞)× {0} et ∂2

x1η1 = 0, ∂3
x1η1 = 0 sur (0,∞)× {`s},

η1(0) = 0 et η2(0) = η0
2 dans (0, `s).

(1.3.52)
Nous prouvons le théorème suivant :

Theorem 1.3.8. Soit α ∈ (0, α∗) et δ ∈ (δ∗, 1). Supposons que les hypothèses A1, A2 et A3
sont satisfaites. Supposons que v0 ∈ H1(Ω), η0

2 ∈ H1
{0}(0, `s), Ff ∈ L2(0,∞; H−

1
2 +α,0(Ω)),

gp ∈ H1
{0}(0,∞; H(Γi)), Fs ∈ L2(0,∞;L2(0, `s)), et que Gdiv satisfait (5.8.6), (5.8.7), (5.8.8) et

Gdiv|t=0 = 0. Nous supposons aussi les conditions de compatibilité suivantes :
v0 = 0 sur Γi, v0 = 0 sur Γr ∪ Γw,
v0 = η2(0, ·)~e2 sur Γs, div v0 = 0 dans Ω,
(Pv0, 0, η0

2) ∈ [D(A),Z]1/2, Pv0 ∈ [D(A; V0
n,Γd(Ω)),V0

n,Γd(Ω)]1/2.
(1.3.53)

Alors, le système (1.3.52) avec

f =
Nc∑
i=1

[K(v, η1, η2)>]wi,

où l’opérateur K ∈ L(H0,RNc) est défini en (5.7.14), admet une unique solution (v, p, η1, η2) ap-
partenant à L2(0,∞; H

3
2 +α,2
δ (Ω))∩H1(0,∞; H−

1
2 +α,0(Ω))×L2(0,∞;H

1
2 +α,1
δ (Ω))×H4,2((0,∞)×
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(0, `s))×H2,1((0,∞)× (0, `s)).

Idée de la preuve. La preuve de ce résultat repose sur les trois mêmes éléments déjà mention-
nés dans la preuve du Théorème 1.3.5 de la Section 1.3.2. Par conséquent, nous nous concen-
trerons sur les ingrédients de la preuve qui sont directement liés à la construction de la loi de
contrôle.

(a) Réduction de la stabilisabilité du système (1.3.52) à la stabilisabilité du système projeté.

Le point de départ de l’analyse est le fait que la résolvante de l’opérateur fluide-structure
(A,D(A)) est compacte, et par conséquent le spectre de A est ponctuel. Nous avons alors
la décomposition suivante :

Z = Zu ⊕ Zs et Z∗ = Z∗u ⊕ Z∗s,

où
Zu =

⊕
j∈Ju

GR(λj) et Z∗u =
⊕
j∈Ju

G∗R(λj),

avec Ju := {j ∈ N∗ | <λj ≥ −ω} et

GR(λj) = span{<GC(λj) ∪ =GC(λj)} et G∗R(λj) = span{<G∗C(λj) ∪ =G∗C(λj)}

désignant les espaces propres généralisés réels. Ici, les sous-espaces Zu et Z∗u sont in-
variants sous (etA)t≥0 et (etA∗)t≥0, respectivement. Ensuite, nous désignons par Πu la
projection de Z sur Zu selon Zs et par Πs la projection de Z sur Zs selon Zu.

La Proposition 5.7.2 nous permet de caractériser l’opérateur de projection Πu. Plus pré-
cisément, ce résultat montre l’existence de bases bi-orthogonales {(Pvi, η1,i, η2,i)}1≤i≤Nu
et
{
M∗(PΦi, ζ1,i, ζ2,i)>

}
1≤i≤Nu

de Zu et Z∗u respectivement, telles que

Πu(v, η1, η2)> =
Nu∑
i=1

〈
(v, η1, η2)>,M∗(PΦi, ζ1,i, ζ2,i)>

〉
Z,Z′

(Pvi, η1,i, η2,i)>,

pour tout (v, η1, η2)> ∈ Z. Ici, P désigne l’opérateur de Leray, Nu = dim(Zu) et M est
la matrice de masse définie en (5.3.37).

Considérons le système

∂tv− div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2 − ωv = 0 dans Q∞,
div v = A3η1 dans Q∞,
v = η2~e2 sur Σ∞s , v = 0 sur Σ∞d \ Σ∞s , σ(v, q)n = 0 sur Σ∞n ,
∂tη1 − η2 − ωη1 = 0 dans (0,∞)× (0, `s),
∂tη2 + α∆2η1 + γ(∆2

s)
1
2 η2 −A4η1 − ωη2 = −γ+

s q + γ−s q

+
∑Nc
i=1 fiwi dans (0,∞)× (0, `s),

η1 = 0, ∂x1η1 = 0 sur (0,∞)× {0} et ∂2
x1η1 = 0, ∂3

x1η1 = 0 sur (0,∞)× {`s}.
(1.3.54)

Nous avons que le système (1.3.54) peut être réécrit de la manière suivante :
d

dt


Pv
η1

η2

 = (A+ ωI)


Pv
η1

η2

+ Bf ,


Pv
η1

η2

 (0) =


Pv0

0
η0

2

 ,
(I − P )v = ∇NdivA3η1 −∇Nsη2,

(1.3.55)
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où Bf =
Nc∑
i=1

fi(0, 0, (I + γ+,−
s Ns)−1wi)>.

Proposition 1.3.3. Le triplet (Pv, η1, η2)> ∈ D(A) est la solution de la première équa-
tion de (1.3.55), si et seulement si,

ζu =

〈
Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0


1≤j≤Nu

et (vs, η1,s, η2,s) := Πs(Pv, η1, η2)>,

satisfont 

d

dt
ζu = (Λu + ωIRNu )ζu + Buf , ζu(0) = ζ0

u,

d

dt


vs
η1,s

η2,s

 = As,ω


vs
η1,s

η2,s

+ Bsf ,


vs
η1,s

η2,s

 (0) = Πs


v0

0
η0

2

 , (1.3.56)

où la matrice Λu est donnée par

Λu = [Λi,j ]1≤i,j≤Nu , Λi,j =
〈
A(Pvi, η1,i, η2,i)>,M∗(PΦj , ζ1,j , ζ2,j)>

〉
Z,Z′

et

ζ0
u =

〈
Pv0

0
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0


1≤j≤Nu

et Bs = ΠsB.

Étant donné que l’opérateur As,ω = Πs(A+ ωI) satisfait

‖etAs,ω‖L(Z) ≤ Ce−εst ∀t > 0, 0 < εs < dist(< spec(As,ω), 0),

on voit que la stabilisabilité du système linéarisé se réduit à la stabilisabilité du couple
(Λu + ωIRNu ,Bu).

(b) Stabilisabilité du couple (Λu + ωIRNu ,Bu).
Theorem 1.3.9. Supposons que les hypothèses A1, A2 et A3 sont satisfaites et que
les fonctions (wi)1≤i≤Nc sont donné par (5.7.3). Alors, le couple (Λu + ωIRNu ,Bu) est
stabilisable.

Idée de la preuve. Le cœur de la preuve est l’utilisation de [BDDM07, Proposition 3.3,
p.492] qui nous permet d’établir que le couple (Λu + ωIRNu ,Bu) est stabilisable, si et
seulement si,

ker(λI −A∗) ∩ ker(B∗) = {0} pour tout λ ∈ C tel que <λ ≥ −ω.

C’est précisément à ce stade que nous utilisons les hypothèses A2 et A3.
(c) Loi de contrôle feedback.

Grâce au Théorème 1.3.9 et au fait que −(Λu + ωIRNu ) est stable, il découle de [KR09,
Theorem 3] que l’équation de Riccati (de petite dimension)

Qu ∈ L(RNu), Qu = Q>u > 0,
(Λ>u + ωIRNu )Qu +Qu(Λu + ωIRNu )−QuBuB>uQu = 0

(1.3.57)

admet une unique solution. Nous introduisons maintenant l’opérateur Kp ∈ L(Z0,RNc),
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défini par

Kp

Pv
η1
η2

 =

Nu∑
j=1

Ki,j
u

〈Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0


1≤i≤Nc

. (1.3.58)

On a donc :
Theorem 1.3.10. Sous les hypothèses A1, A2 et A3, l’opérateur Kp introduit en (1.3.58)
fournit une loi de contrôle pour le couple (A+ωI,B). De plus, l’opérateur A+ωI+BKp,
avec domaine le D(A + ωI + BKp) = D(A), est le générateur infinitésimal d’un semi-
groupe analytic exponentiellement stable sur Z.

(d) Utilisation de la loi de contrôle K dans le système linéarisé non homogène (1.3.52).

La relation

Kp

Pv
η1
η2

 = K

v
η1
η2

 (1.3.59)

(voir Proposition 5.7.4) nous permet d’établir le lien entre la loi de contrôle Kp et la loi
de contrôle K. Cette relation peut être comprise comme le lien entre "la loi de contrôle
dans l’équation d’opérateurs et la loi de contrôle dans l’équation aux dérivées partielles
(EDP)", nous permet de travailler directement avec l’EDP.

3) Estimations des termes non linéaires et argument de point fixe.

La dernière étape de la preuve consiste à estimer les termes non linéaires et à utiliser un argument
de point fixe. À cette fin, nous définissons l’application N : B∞(R,u0, η

0
2) −→ B∞(R,u0, η

0
2)

par
N (Φ̂, ψ̂, k̂) = (û, p̂, η̂) pour tout (Φ̂, ψ̂, k̂) ∈ B∞(R,u0, η

0
2),

où (û, p̂, η̂) est solution du système

∂tû− div σ(û, p̂)−A1η̂ −A2η̂t = e−ωtF̂f (Φ̂, ψ̂, k̂) dans Q∞,
div û = A3η̂1 + e−ωt div Ĝdiv(Φ̂, k̂) dans Q∞,
û = ĝp sur Σ∞i , û = 0 sur Σ∞w ∪ Σ∞r , û = η̂t~e2 sur Σ∞s ,
σ(û, p̂)n = 0 sur Σ∞n , û(0) = û0 dans Ω,
∂2
t η̂ + α∆2

s η̂ + γ(∆2
s)

1
2 η̂t = −γ+,−

s p̂+ e−ωtF̂s(Φ̂, k̂) +
∑Nc
i=1Ki(û, η̂, η̂t)wi dans (0,∞)× (0, `s),

η̂ = 0 et ∂x1 η̂ = 0 sur (0,∞)× {0},
∂2
x1 η̂ = 0 et ∂3

x1 η̂ = 0 sur (0,∞)× {`s},
η̂(0) = 0 et η̂t(0) = η0

2 dans (0, `s).
(1.3.60)

En prenant r > 0 et R > 0 de manière appropriée, on peut démontrer que l’application N est
bien définie, et qu’elle est une contraction stricte. Finalement, l’existence d’un unique point fixe
de N découle du Théorème du point fixe de Banach. Ici, les estimations présentées dans les
Lemmes 5.9.2, 5.9.3 et 5.9.4 sont essentielles.

1.3.5 Chapitre 6 : Simulations numériques du problème de stabilisation du
système d’interaction fluide-structure

Tout au long de cette section, nous considérons la configuration geométrique représentée dans la
Figure 1.2, dont la description précise a été introduite dans la Section 1.2 (voir (1.2.1), (1.2.2)
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et (1.2.4)).

• Formulation du problème et littérature existante

Dans ce chapitre on s’interesse à la simulation numérique de la stabilisation du système d’inter-
action fluide-structure

∂tu + (u · ∇)u− div σ(u, p) = 0 dans Q∞η ,
div u = 0 dans Q∞η ,
u = gis + gip sur Σ∞i , u = 0 sur Σ∞w , u = 0 sur Σ∞r ,
u = ηt~e2 sur Σ∞η , σ(u, p)n = 0 sur Σ∞n ,
u(0) = u0 dans Ω,
∂2
t η + α∆2

sη + γBηt = H(u, p, η) + fs + f dans (0,∞)× (0, `s),
η = 0 et ∂x1η = 0 sur (0,∞)× {0},
∂2
x1η = 0 et ∂3

x1η = 0 sur (0,∞)× {`s},
η(0) = 0 et ∂tη(0) = η0

2 dans (0, `s),

(1.3.61)

à l’aide d’un contrôle f qui agit sur l’équation de la structure. Avant de décrire le problème plus
en détail, introduisons quelques notations.

Dans le système (1.3.61),

H(u, p, η) = −
(
σ+(u, p)n+

η(t) + σ−(u, p)n−η(t)

)√
1 + (∂x1η)2 · ~e2,

avec
σ±(u, p) = σ(u(t, x1, η(t, x1)± e), p(t, x1, η(t, x1)± e)).

L’opérateur d’amortissement B est donné par

B = ∆2
s = ∂4

x1 , D(B) = H4
{0,`s}(0, `s).

La condition au bord en entrée gis est indépendante du temps, tandis que gip est une perturbation
de gis (dépendante du temps).

Considérons le système stationnaire
(us · ∇)us − div σ(us, ps) = 0, dans Ω,
div us = 0 dans Ω,
us = gis, on Γi, us = 0 sur Γ \ Γi,
σ(us, ps)n = 0 sur Γn.

(1.3.62)

La fonction fs est indépendante du temps et est choisie de telle sorte que le triplet (u, η, ηt) =
(us, 0, 0) constitue une solution stationnaire du système (1.3.39). Ainsi,

fs = σ(us, ps)n+ · ~e2 + σ(us, ps)n− · ~e2, (1.3.63)

où n+ (respectivement n−) représente la normale unitaire exterièure à Γ+
s (respectivement Γ−s ).

Nous supposons aussi que la fonction f (qui joue le rôle de contrôle) s’écrit sous la forme

f =
Nc∑
j=1

fj(t)wj(z1), (1.3.64)
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où les fonctions wj sont choisies de manière appropriée.

L’objectif de ce chapitre est de simuler numériquement le problème de stabilisation suivant :

Trouver un contrôle f donné sous la forme de boucle fermée, capable de stabiliser le système
(1.3.61) autour de la solution stationnaire (u, η, ηt) = (us, 0, 0), à condition que gip, u0 − us et
η0

2 soient suffisamment petits dans certains espaces fonctionnels appropriés.

En plus de la difficulté liée au fait que le domaine du fluide change au cours du temps, il y
a maintenant la difficulté supplémentaire du cacul du contrôle. Un premier travail qui aborde
ces problèmes conjointement, traitant un problème de stabilisation d’un système d’interaction
fluide-structure, se trouve dans [FNR] (voir aussi [Ndi16]). Dans ces travaux, le calcul numérique
du contrôle feedback est basé sur l’utilisation d’une équation de Riccati de petite dimension,
grâce à une projection du système sur l’espace inestable. Une particularité de ces travaux est que
les simulations numériques sont menées dans un domaine fixe. Le modèle d’interaction fluide-
structure considéré dans ces travaux, est un système couplant les équations incompressible de
Navier-Stokes et une structure modélisée par une équation d’Euler-Bernoulli avec des conditions
encastrées. D’autre part, dans [Del18], une étude d’un problème de stabilisation d’un système
couplant les équations incompressible de Navier-Stokes et une équation différentielle ordinaire
modélisant la structure est effectuée. Dans ce travail, une stratégie similaire à celle utilisée dans
[FNR] est mise en œuvre pour construire le contrôle feedback. La principale différence entre les
deux travaux est que, contrairement à l’approche utilisée dans [FNR], où tous les calculs du
problème en évolution sont effectués dans un domaine de référence fixe, dans [Del18] la résolu-
tion du problème d’évolution est menée dans le domaine physique en utilisant la méthode de
domaines fictifs.

• Présentation de nos résultats

La stratégie utilisée dans ce chapitre diffère de celle utilisée dans [FNR]. Pour comprendre
les différences entre eux, commençons par mentionner les principaux éléments de [FNR] :

(1) Le premier aspect important est que, pour réécrire le système d’interaction fluide-structure
dans le domaine de référence, les auteurs utilisent une tranformation géométrique expli-
cite. Ensuite, la linéarisation du système résultant est effectuée "manuellement". Puis, le
calcul de la loi de contrôle est realisé dans le domaine de référence Ω.

(2) Le deuxième point important est qu’une fois la loi de contrôle pour le système linéarisé
est calculée dans le domaine de référence fixe Ω, elle est injectée dans le système non
linéaire, qui est alors résolu dans le domaine de référence.

Comparons maintenant la stratégie adoptée dans [FNR] avec celle utilisée dans ce chapitre.
(1b) Pour réécrire le système d’interaction fluide-structure dans le domaine de référence, nous

n’utilisons pas la transformation géométrique comme dans [FNR]. Au lieu de cela, nous
considérons une transformation définie en termes d’une extension harmonique dans Ω de
la trace du déplacement de la structure. Ensuite, une fois le système non linéaire reformulé
dans sa forme faible sur le domaine de référence fixe Ω, la linéarisation est effectuée à l’aide
d’une routine fournie par la bibliothèque GetFEM++. De manière similaire à l’approche
utilisée dans [FNR], la loi de contrôle est calculée sur le domaine de référence fixe Ω.

(2b) De manière analogue à l’approche adoptée dans [FNR], la loi de contrôle calculée sur le
domaine de référence fixe Ω est appliquée au système non linéaire, qui contrairement à
[FNR], est résolu sur le domaine physique Ωη(t) en utilisant l’algorithme 2.

En résumé, les principales différences entre les stratégies utilisées dans [FNR] et celles utilisé
dans ce chapitre sont les transformations permettant de réécrire le système dans le domaine de
référence et l’approche pour résoudre le problème direct différent dans le deux cas.
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Nous commençons par rappeler la stratégie utiilsée pour faire face au fait que le domaine peut
changer au cours du temps.

Nous considérons d’abord la transformation ALE A(t, ·) : Ωref −→ Ωη(t) définie par

A(t, ·) = I +
∫ t

0
w(s, ·) ds, (1.3.65)

où w(t, ·) est solution de l’équation elliptique

∆w = 0 dans Ω, w = u|Γs sur Γs, w = 0 sur Γ \ Γs. (1.3.66)

Ici, u|Γs représente la trace de la vitesse du fluide sur Γs.

La discrétisation en temps est traitée à l’aide de la méthode classique d’Euler implicite. Nous
désignons par ∆t le pas de temps et tk = k∆t, pour k ∈ N le niveau de temps k. Pour tout k ∈ N,
Ωk := A(tk,Ωref ) avec frontière Γk = Γi∪Γ0∪Γks∪Γn, où Γ0 = Γr∪Γw et Γks = Γks,top∪Γks,bot∪Γks,lat
(voir Figure 1.4). Nous désignons par uk, pk et λk les approximations de u(tk, ·), p(tk, ·) et
λ(tk, ·), respectivement. Ici, λk = (λki ,λk0,λks,top,λks,bot,λks,lat)> représentent les multiplicateurs
de Langrange associés aux conditions au bord de Dirichlet. Nous notons également ηk1 et ηk2
l’approximation de η1(tk, ·) et η2(tk, ·) définie sur (0, `s), respectivement.

Avant d’introduire l’algorithme de résolution, nous allons considérer le problème intermédiaire
suivant. Étant donné uk, pk, λk, wk, ηk1 et ηk2 , considérons le problème suivant :

Trouver ûk+1 ∈ H1(Ωk), p̂k+1 ∈ L2(Ωk), λ̂k+1 ∈ H−
1
2 (Γk \ Γn), ηk+1

1 , ηk+1
2 ∈ H2

{0}(0, `s) tels que

∫
Ωk

ûk+1 − uk

∆t · φ = af (ûk+1,φ) + b(φ, p̂k+1) + c(ûk+1 −wk, ûk+1,φ)

+
∫

Γi
λ̂
k+1
i · φ+

∫
Γk0
λ̂
k+1
0 · φ+

∫
Γks,top

λ̂
k+1
s,top · φ

+
∫

Γk
s,bot

λ̂
k+1
s,bot · φ,+

∫
Γk
s,lat

λ̂
k+1
s,lat · φ, ∀φ ∈ H1(Ωk),

b(ûk+1, ψ) = 0, ∀ψ ∈ L2(Ωk),∫
Γi

ûk+1 · τ =
∫

Γi
gi · τ , ∀τ ∈ H−

1
2 (Γi),

∫
Γ0

ûk+1 · τ = 0, ∀τ ∈ H−
1
2 (Γ0),∫

Γks,top
ûk+1 · τ =

∫
Γks,top

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,top),∫

Γk
s,bot

ûk+1 · τ =
∫

Γk
s,bot

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,bot),∫

Γk
s,lat

ûk+1 · τ =
∫

Γk
s,lat

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,lat),∫ `s

0

ηk+1
1 − ηk1

∆t ζ =
∫ `s

0
ηk+1

2 ζ, ∀ζ ∈ H2
{0}(0, `s),∫ `s

0

ηk+1
2 − ηk2

∆t ζ = a1
s(ηk+1

1 , ζ) + a2
s(ηk+1

2 , ζ)

−
∫ `s

0
λ̂
k+1
s,top · ~e2ζ

√
1 + (ηk1,x)2

−
∫ `s

0
λ̂
k+1
bot · ~e2ζ

√
1 + (ηk1,x)2

+
Nc∑
j=1

∫ `s

0
wj(z1)ζ(z1)fkj (t) +

∫ `s

0
fsζ, ∀ζ ∈ H2

{0}(0, `s).

(1.3.67)
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où

af (v,φ) = −2ν
∫

Ωk
ε(v) : ε(φ), b(φ, q) =

∫
Ωk

(divφ)q, c(v,v,φ) =
∫

Ωk
(v · ∇)v · φ,

a1
s(η1, ζ) = −α

∫ `s

0
∆η1 ·∆ζ, a2

s(η2, ζ) = −γ
∫ `s

0
∆η2 ·∆ζ.

Algorithm 2: Semi-implicit algorithm
Pour k ≥ 1 :
1 : Résoudre le système linéaire obtenu après avoir appliqué l’algorithme de Newton au système
(1.3.35) pour obtenir ûk+1, p̂k+1, λ̂k+1, ηk+1

1 , ηk+1
2 .

2 : Calculer la vitesse du maillage ŵk+1 : Ωk → R2 satisfaisant l’équation elliptique
∆ŵk+1 = 0 dans Ωk,

ŵk+1 = ûk+1 sur Γks ,
ŵk+1 = 0 sur Γ \ Γks .

(1.3.68)

3 : Définir Ak(x̂) := x̂ + ∆tŵk+1(x̂) et Ωk+1 := Ak(Ωk).
4 : Définir uk+1 : Ωk+1 → R2, p : Ωk+1 → R, λk+1 : Ωk+1 → R2 et wk+1 : Ωk+1 → R2 par

uk+1(x) = ûk+1(x̂), pk+1(x) = p̂k+1(x̂), λk+1(x) = λ̂
k+1(x̂)

and wk+1(x) = ŵk+1(x̂), ∀x = Ak(x̂), x̂ ∈ Ωk.

1. Comparaison entre les spectres de l’opérateur fluide-structure.

Un premier élément à analyser est de comparer les spectres des systèmes sans et avec la loi
de contrôle. Dans ce cadre, nous analysons les spectres d’un système en fixant le nombre de
Reynolds Re = 200 ainsi que le coefficient d’amortissement γ = 10−6 de la structure. Par
exemple, dans la Figure 1.10 nous montrons une partie du spectre du sytème avec et sans loi de
contrôle dans cette configuration.
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(a) Spectre de l’opérateur A.

16 14 12 10 8 6 4 2 0
( )

40

30

20

10

0

10

20

30

40

(
)

(b) Spectre de l’opérateur A−BK.

Figure 1.10 – Comparaison du spectre fluide-structure correspondante à un nombre de
ReynoldsRe = 200, coefficient de rigidité α = 10−1, et un coefficient d’amortissement γ = 10−6,
avec et sans loi de contrôle.
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2. Influence du sous-espace instable Zu.

Un deuxième élément intéressant à étudier est la façon dont le choix du sous-espace Zu af-
fecte la performance du contrôle. Dans le même esprit que pour l’analyse précédente, nous
fixons le nombre de Reynolds à Re = 200, le coefficient d’amortissement γ = 10−6 et l’ampli-
tude de la perturbation β = 1.5, et ensuite, nous faisons varier le coefficient de rigidité α. Par
exemple, dans le cas où le coefficient de rigidité α = 10−1, la Figure 1.11 présente l’évolution
des normes ‖U−Us‖L2 et des taux de décroissance en fonction de deux contrôles : l’un basé sur
le sous-espace instable Z1

u = G(µ1,2)⊕G(µ3,4) et l’autre sur Z2
u = G(µ1,2)⊕G(µ3,4)⊕G(µ5).
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(b) Évolution de log(‖U−Us‖L2)

Figure 1.11 – Comparaison entre les taux de décroissance lorsque Z1
u = G(µ1,2) ⊕ G(µ3,4) et

Z2
u = Z1

u⊕G(µ5), dans le cas où le coefficient de rigidité α = 10−1 et l’amplitude de perturbation
β = 1.5.

(a) t = 1[s] (b) t = 1[s]

(c) t = 2[s] (d) t = 2[s]

(e) t = 4[s] (f) t = 4[s]

(g) t = 11[s] (h) t = 11[s]

(i) t = 15[s] (j) t = 15[s]

Figure 1.12 – Snapshots du module de la vitesse du fluide à différents instants, correspondant
au coefficient de rigidité α = 10−1, à l’amplitude de perturbation β = 1.5, et au sous-espace
instable Z2

u = G(µ1,2) ⊕ G(µ3,4) ⊕ G(µ5). Dans la colonne de gauche (a)-(c)-(e)-(g)-(i), nous
montrons le module de la vitesse du fluide pour le cas sans contrôle, tandis que dans la colonne
de droite (b)-(d)-(f)-(h)-(j), nous montrons la vitesse du fluide lorsque le contrôle est appliqué.
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3. Influence de l’amplitude de perturbation.

Comme pour les deux expériences précédentes, en fixant Re = 200 et γ = 10−6, nous fai-
sons varier le paramètre α et l’amplitude β de la perturbation. Par exemple, pour α = 10−1,
nous montrons dans la Figure 1.13 l’évolution des normes ‖U −Us‖L2 , ‖η‖L∞ et ‖f‖L2 , pour
trois valeurs différents de l’amplitude β et les contrôles basés sur les sous-espaces instables
Z1
u = G(µ1,2)⊕G(µ3,4) et l’autre sur Z2

u = G(µ1,2)⊕G(µ3,4)⊕G(µ5).
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Figure 1.13 – Évolution de ‖U−Us‖L2 , (b) ‖η‖L∞ et (c) ‖f‖L2 , pour trois valeurs différentes
du paramètre β. Ligne (a)-(b)-(c) : Contrôle basé sur Z1

u = G(µ1,2)⊕G(µ3,4). Ligne (d)-(e)-(f) :
Contrôle basé sur Z2

u = Z1
u ⊕G(µ5).

1.4 Perspectives

Ci-dessous, nous détaillons quelques perspectives.
− Modélisation

Tout d’abord, comme expliqué dans l’annexe A, dans la modélisation de la dynamique de
la structure, nous supposons des conditions homogènes sur l’extrémité droite de la poutre,
ce qui implique une simplification du modèle. Cependant, il serait intéressant d’envisager
une condition non homogène à l’extrémité droite de la poutre qui tienne compte du terme
résultant de l’identité énergétique due à la contribution latérale sur la poutre. Étant don-
née qu’il s’agit d’une condition non standard, il est important de comprendre d’abord le
comportement de la dynamique de la structure de manière isolée.

Un autre élément intéressant à inclure dans un modèle plus réaliste consiste à permettre
à la poutre de se déplacer latéralement en plus de transverse. Cela impliquerait d’inclure
une équation supplementaire qui tienne compte de la dynamique du mouvement latéral.
Il faudrait alors préciser à la fois les conditions aux limites et les conditions cinématique
et dynamique. En principe, il n’est pas clair que les outils utilisés au chapitre 3 pour
étudier l’existence de solutions fortes soient directement adaptables à un tel contexte.
D’autre part, une mise en œvre de la strategie utilisée au chapitre 4 pour réaliser les
simulations numériques semble adaptable.
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− Simulations numériques

En ce qui concerne la stratégie utilisé tant dans la mise en œuvre numérique du problème
direct au chapitre 4 que dans le traitement du problème de stabilisation au chapitre 6, il
serait intéressant de mener une analyse numérique d’estimation d’erreur.

D’autre part, la construction de la transformation ALE utilisée pour traiter le problème
direct au chapitre 3 est basée sur l’extension harmonique de la trace de la vitesse du
fluide. Comme indiqué dans [Wic11], ce choix particulier est efficace pour les petites dé-
formations de la structure. Une première étape pour contourner cette difficulté consiste
à mettre en œvre des stratégies telles que celles proposées dans [Wic11] et [HC23], par
exemple.

− Estimations de modèles

La stratégie développée au chapitre 5 pour l’étude du problème de stabilisation au niveau
théorique, ainsi que les simulations numériques dévéloppées au chapitre 6, ont été réalisées
en partant de l’hypothèse que l’état du système est connu à chaque instant. En pratique,
cette hypothèse n’est pas réaliste. Une altérnative à cette dernière consiste à utiliser une
estimation de l’état, basée par exemple sur des mesures de pression généralement sur le
bord de la structure. Avant de s’intéresser à une telle question pour le modèle considéré
dans ce travail, une première étape pourrait consister à étudier un modèle simplifié pour
la structure.



Chapter2
Study of the stationary Stokes system with
mixed boundary conditions in non-convex
curvilinear polygonal domains

Abstract of the current chapter

In this chapter,we consider the stationary Stokes system with mixed boundary conditions,
of Dirichlet and Neumann types, in a bounded non-convex curvilinear polygonal domain of
R2. We prove, in particular, a precise regularity result in heterogeneous Sobolev spaces taking
into account the fact that the expected regularity is of different nature near the corners of the
domain and near the Dirichlet-Neumann transition points. Then, we prove the analyticity of
the semigroup generated by the Stokes operator in an appropriate functional setting. We also
give a characterization of the stationary Stokes system as an operator equation.
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2.1. Introduction 39

2.1 Introduction

2.1.1 Statement of the problem

We are interested in studying the stationary Stokes equation in a two dimensional curvilinear
polygonal and Lipschitz domain Ω with boundary Γ = Γd ∪ Γn, where Dirichlet boundary
conditions are applied on Γd and homogeneous Neumann boundary conditions are prescribed on
Γn. The precise assumptions on Ω and Γ are given in Subsection 2.2.1.

We consider the system{
−div σ(w, π) = F in Ω, div w = h in Ω,
w = g on Γd, σ(w, π)n = 0 on Γn,

(2.1.1)

where F, h and g are given data and the Cauchy stress tensor σ(w, π) is given by

σ(w, π) = 2νε(w)− πI, ε(w) = 1
2(∇w + (∇w)>),

with ν > 0 denoting the viscosity of the fluid. In order to present the main contribution of the
present paper, let us recall two regularity results concerning Stokes systems. From [MR10, The-
orem 9.4.5] we know that the solution (w, π) to the Stokes system (2.1.1) with mixed Dirichlet-
Neumann boundary conditions satisfies

(w, π) belongs to the weighted Sobolev space H2
δ(Ω)×H1

δ (Ω)

when F ∈ L2
δ(Ω), h ∈ H1

δ (Ω) and g ∈ H
3
2
δ (Γd),

(R1)

for all δ ∈ (δ∗, 1), where δ∗ ∈ (0, 1/2). The weighted Sobolev spaces H2
δ(Ω), H1

δ (Ω), and some
others are introduced in Section 2.2. Some other results concerning systems of the form (2.1.1)
may be found in [BGM10, Proposition A.1].

On the other hand, for the Stokes system with only a Dirichlet boundary condition, w = g
on Γ = Γd and Γn = ∅, under a suitable compatibility condition on h and g, we have

(w, π) belongs to the Sobolev space H
3
2 +α(Ω)×H

1
2 +α(Ω),

when F ∈ H−
1
2 +α(Ω), h ∈ H

1
2 +α(Ω), g ∈ H1+α(Γ) for all α ∈ (0, α∗),

(R2)

where the critical exponent α∗ ∈ (0, 1/2) depends on the angles at the corners of Γ.
This result is proved in [Dau89, Theorem 5.5(a)] when g = 0 and extended to g 6= 0 in [BR,

Corollary 3.3].
One of the objectives of this article is to study the existence, uniqueness and regularity of

solutions to system (2.1.1) in heterogeneous Sobolev spaces. Here, the heterogeneous spaces
introduced in (2.2.7) are used to characterize functions having different regularity in distinct
zones of the domain Ω. In particular, we would like to recover simultaneously the regularity
in weighted Sobolev spaces, as in (R1), in a neighborhood of Γn, and to recover the fractional
Sobolev regularity, as in (R2), in a neighborhood of corners of Γd corresponding to Dirichlet
boundary conditions on both sides of the corner.

The main contributions of this article are outlined below.
— In Theorem 2.3.2, we show that if F ∈ H−

1
2 +α(Ω), h ∈ H

1
2 +α(Ω), g ∈ H

3
2 (Γd) (with

α ∈ (0, α∗)), and if, in a neighborhood of Γn, F and h belong to L2 and H1, respectively,
then the solution (w, π) to system (2.1.1) belongs to H

3
2 +α(Ω)×H

1
2 +α(Ω), and in H2

δ×H1
δ

in a neighborhood of Γn (with δ ∈ (δ∗, 1)). The precise result is stated in Theorem 2.3.2
in terms of the heterogeneous Sobolev spaces introduced in Section 2.2, see (2.2.7). The
main idea of the proof is to combine the regularity results (R1) and (R2) employing a
truncation argument.
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— One motivation for studying system (2.1.1) is to provide results needed to study a fluid-
structure interaction system investigated by the authors in Chapter 3. In that respect,
the study of the linear parabolic system

∂w
∂t
− div σ(w, π) = F in (0, T )× Ω, div w = h in (0, T )× Ω,

w = g on (0, T )× Γd, σ(w, π)n = 0 on (0, T )× Γn,
w(0) = w0 in Ω,

(2.1.2)

with optimal regularity of the solutions is a crucial step. For this analysis, in addition
to the regularity in the heterogeneous spaces mentionned above, we need the analyticity
of the semigroup generated by the Stokes operator V−

1
2 +α

n,Γd (Ω). The precise result is
stated in Theorem 2.4.2. The proof of this result relies on Proposition 2.4.7, which in
turn relies on the existence of an extension operator E : Ω −→ Ω̃, preserving both the
divergence-free condition and the trace on Γn. Here, Ω̃ is the orthogonal symmetrization
of the domain Ω with respect to Γn.
With this property in hand, we are able to split the system (2.1.1) (or (2.1.2)) into three
parts: an operator equation for Pw (where P is the Leray projector in this functional
framework), an algebraic equation for (I − P )w, and a precise characterization of the
pressure π. This is given in Theorem 2.4.3.
We have to emphasize here that the existence and the regularity of π, obtained in Theorem
2.3.2, is not sufficient to deal with fluid-structure-interaction systems as those studied in
Chapter 3. Indeed, the splitting of π introduced in Theorem 2.4.3 plays a crucial role to
characterize the so-called added mass operator of the fluid-structure-interaction system
that we consider.

— The starting point for proving the two aforementioned results is the characterization
of the space V−sn,Γd(Ω) (the dual of the space Vs

n,Γd(Ω) introduced in (2.4.24)) when
0 < s < 1/2. To the best of our knowledge, the result established in Lemma 2.4.5 has
not been previously reported in the literature. We emphasize that this characterization
is based on regularity results for the solution of a suitable elliptic equation with mixed
boundary conditions, see Subsection 2.4.1.

2.1.2 Motivation

Let us now explain why, in the fluid-structure interaction system investigated in Chapter 3,
we need to introduce the functional framework of heterogeneous Sobolev spaces.

The fluid-structure system considered in Chapter 3 models the interaction between the in-
compressible Navier-Stokes equations in a 2D rectangular domain with mixed boundary condi-
tions, and an elastic structure governed by the Euler-Bernoulli equation with a clamped bound-
ary condition at one extremity of the elastic beam and a Neumann boundary condition (a type of
free boundary condition) at the other extremity. Figure 2.1 shows the corresponding geometric
configuration.

A similar fluid-structure interaction system has been studied in [FNR19], but with clamped
boundary conditions at the extremities of the elastic beam. In that case the nonlinear problem
can be studied in the framework of the weighted Sobolev spaces H2

δ(Ω) and H1
δ (Ω), introduced

above.
In the case where a Neumann boundary condition is prescribed at one extremity of the elastic

beam, the linearized fluid-structure interaction system can still be studied in the framework of
the weighted Sobolev spaces H2

δ(Ω) and H1
δ (Ω). But this approach is not sufficient to deal with

the nonlinear fluid-structure interaction system with a Neumann boundary condition prescribed
at one extremity of the elastic beam. This is due to a mismatch between the regularity results,
obtained in the weighted Sobolev spaces, for solutions to nonhomogeneous linear models and
the corresponding regularity of some nonlinear terms of the model (which will play the role
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of the nonhomogeneous terms in a fixed point procedure). This is why the results presented
in the work are novel and essential contributions to deal with certain nonlinear fluid-structure
interaction systems.

Figure 2.1 – Geometrical configuration used in the fluid-structure problem studied in Chapter 3.

2.1.3 Outline

The chapter is organized as follows. In Section 2.2, we introduce the classes of domains
and the notation used throughout the paper. In Section 2.3, we establish a regularity result
of system (2.1.1) in heterogeneous Sobolev spaces. Section 2.4 is divided in four subsections.
In Subsection 2.4.1, we present results concerning the Leray projector (see Corollary 2.4.1),
which are based on a careful analysis of a certain elliptic equation. Then, in Subsection 2.4.2,
we prove, the analyticity of the underlying semigroup associated to the Stokes operator on
V−

1
2 +α

n,Γd (Ω). Next, in Subsection 2.4.3, we present a useful representation of the pressure π of
system (2.1.1). Finally, in Subsection 2.4.4, we provide a characterization of system (2.1.1) as
an operator equation.

2.2 Classes of domains and functional setting

2.2.1 Classes of domains

We assume that Ω is a Lipschitz curvilinear polygonal domain in R2. More precisely, it
satisfies the following geometric hypotheses:
(H1) Ω is bounded and connected.
(H2) The boundary Γ of Ω is given by Γ =

⋃N
i=1 Γi, where each arc Γi is assumed to be smooth.

We also assume that for all i, j ∈ {1, . . . , N}, with i 6= j, we have either Γi ∩ Γj = ∅ or
Γi ∩Γj = {Ji,j}, where Ji,j denotes the vertex joining the arcs Γi and Γj . We will denote
by J the set of vertices of Γ.

(H3) At the neighborhood of any vertex Ji,j ∈ J , Ω is locally diffeomorphic to a neighborhood
of zero in a plane sector of angle θi,j in (0, 2π).

We now state assumptions on Γd and Γn, where Dirichlet boundary conditions are applied
on Γd and homogeneous Neumann boundary conditions on Γn. See Figure 2.2.

(H4) We assume that there exists j0 ∈ {1, . . . , N} such that Γn = Γj0 , where Γn is a segment
with extremities A and E. We also assume that there exist two lines `1 and `2 passing
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through A and E, respectively, such that `1 ∩Ω = {A} and `2 ∩Ω = {E}. In particular,
if Dn denotes the line containing Γn, then the domain Ω is contained in one of the
half-planes supported by Dn.

Remark 1. Since Γn = Γj0 , we notice that we have Γd =
⋃
i∈{1,...,N}, i 6=j0 Γi. The results of the

paper can be generalized without difficulty to the case where Γn is a union of several segments
Γi with i ∈ {1, . . . , N}, without junction between two Neumann boundary conditions.

We use the fact that Γn is a segment only to simplify the analysis of the Poisson equation
with mixed boundary conditions (see Proposition 2.4.2 and Lemma 2.4.1), but the results can
be easily extended to the case where Γn is a smooth curve, as in [MRR20, Proof of Theorem
4.2].

Notice that regularity results similar to those of Lemma 2.4.1 are stated in [Dau88, Chapter 8,
Corollary 23.5, and Remark 23.6, page 197] in the case where Γn is a regular curve and the
angle condition stated in (H4) is satisfied. The assumption (H4) is also used in the proof of
Lemma 2.4.7.
Remark 2. The last constraint imposed in (H4) simplifies the analysis we develop in Section 2.4
which involves deducing the regularity of solution to the Poisson equation with mixed Dirichlet-
Neumann boundary conditions from the regularity of the solution to the Poisson equation with
only Neumann boundary conditions, but in a larger domain obtained by symmetry.

When this geometric constraint is not satisfied, it is necessary to use an additional truncation
argument in order to avoid the self-intersection of Ω with its symmetric. We do not explicit this
technical step in this work.

Figure 2.2 – Example symmetrization.

2.2.2 Functional setting

Usual and weighted Sobolev spaces

We first set L2(Ω) = L2(Ω;R2) and, for s > 0, Hs(Ω) = Hs(Ω;R2). We also introduce the
following functional spaces:

H1
Γd(Ω) = {u ∈ H1(Ω) | u = 0 on Γd},

V0
n,Γd(Ω) = {u ∈ L2(Ω) | div u = 0 in Ω, u · n = 0 on Γd},

V1
Γd(Ω) = H1

Γd(Ω) ∩V0
n,Γd(Ω).
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The dual of H1
Γd(Ω), with L2(Ω) as a pivot space, is denoted by H−1

Γd (Ω). We denote by V−1
Γd (Ω)

the dual of V1
Γd(Ω) with V0

n,Γd(Ω) as pivot space. We have

V1
Γd(Ω) ↪→ V0

n,Γd(Ω) ↪→ V−1
Γd (Ω)

with dense and continuous embeddings. For 0 < s < 1/2, we introduce the spaces

Hs
Γd(Ω) = [L2(Ω),H1

Γd(Ω)]s,

equipped with the classical Sobolev norm ‖·‖Hs . The dual of Hs
Γd(Ω) is denoted by H−sΓd (Ω).

For the definition of interpolation spaces using the complex method we refer to [Tar07], [Tri78].

For s > 0, Hs(Ω) = Hs(Ω) ∩ L2
0(Ω), where L2

0(Ω) = {f ∈ L2(Ω) |
∫

Ω f = 0}. The dual of
Hs(Ω), with L2

0(Ω) as a pivot, is denoted by H−s(Ω).

We now introduce weighted Sobolev spaces as in [MR10]. For β > 0, we introduce the norms

‖w‖H2
β

:=

 2∑
|k|=0

2∑
i=1

∫
Ω

( ∏
J∈J

r2β
J

)
|∂kwi|2dx

1/2

, w ∈ C∞(Ω;R2)

‖p‖H1
β

:=

 1∑
|k|=0

∫
Ω

( ∏
J∈J

r2β
J

)
|∂kp|2dx

1/2

, p ∈ C∞(Ω;R)

(2.2.1)

where rJ stands for the distance to the junction point J ∈ J , k = (k1, k2) ∈ N2 denotes a
two-index with length |k| = k1 + k2, ∂k denotes the corresponding partial differential operator
and w = (w1, w2). We denote by H2

β(Ω;R2) (respectively, H1
β(Ω)) the closure of C∞(Ω;R2)

(respectively, C∞(Ω)) in the norm ‖·‖H2
β
(respectively, ‖·‖H1

β
).

Exponent of weighted Sobolev spaces

We need to introduce an exponent δ∗ ∈ (0, 1/2) related to the presence of mixed Dirichlet-
Neumann boundary conditions for the Stokes problem.
• Due to [MR10, Theorem 9.4.5], there exists δ∗ ∈ (0, 1/2) associated to the Stokes system

in Ω with mixed Dirichlet/Neumann boundary conditions
−div σ(u, p) = F in Ω,
div u = h in Ω,
u = g on Γd, σ(u, p)n = 0 on Γn,

(2.2.2)

such that (u, p) obeys

‖u‖H2
δ

+ ‖p‖H1
δ
≤ Cδ

(
‖F‖L2 + ‖h‖H1 + ‖g‖

H
3
2 (Γd)

)
, (2.2.3)

for all δ ∈ (δ∗, 1).
Remark 3. Notice that the result from [MR10] that we mention above is stated for a polygonal
domain and not for a curvilinear polygonal domain. However using a diffeomorphism and a
localization argument as in [MRR20, Proof of Theorem 4.2], the results from [MR10], that we
need here, can be extended to the case of curvilinear polygonal domains.
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Regularity exponents

We now need to introduce a regularity index α∗ ∈ (0, 1/2), which will be used throughout
the article. This index depends on the angles at the corners of Γ and on the type of boundary
conditions prescribed on both sides of the corners. It allows us to state regularity results for the
Stokes and Poisson problems in Ω and in Ω̃ defined by

Ω̃ = Ω ∪ Γn ∪ SnΩ, (2.2.4)

where Sn is the orthogonal symmetry with respect to Dn, where Dn is the straight line in R2

containing Γn (see Figure 2.2).
We set

α∗ := min{αSD, αSM , αPN}, (2.2.5)

where the parameters αSD, αSM , and αPN are defined below:
• From [Dau89, Theorem 5.5(a)] we know that there exists αSD ∈ (0, 1/2) associated to the

Stokes equation in Ω with homogeneous Dirichlet boundary conditions

−div σ(u, p) = F in Ω, div u = h in Ω, u = 0 on Γ,

such that (u, p) satisfies

‖u‖
H

3
2 +α + ‖p‖

H
1
2 +α ≤ Cα

(
‖F‖

H
− 1

2 +α
Γd

+ ‖h‖
H

1
2 +α

)
,

for all α ∈ (0, αSD).
• We denote by αSM ∈ (0, 1/2) the regularity index associated to the Stokes system in Ω

with mixed Dirichlet/Neumann boundary conditions (2.2.2). For all δ ∈ (δ∗, 1), from [MR10,
Lemma 6.2.1] we have the continuous embeddings H2

δ(Ω) ↪→ H2−δ(Ω) and H1
δ (Ω) ↪→ H1−δ(Ω).

Thus, we set αSM := 1/2− δ∗.
• We denote by αPN ∈ (0, 1/2) the regularity index associated to the Poisson problem in Ω̃

with homogeneous Neumann boundary conditions

−∆ϕ = ζ in Ω̃, ∂ϕ

∂n = 0 on Γ̃ = ∂Ω̃.

The parameter αPN is introduced in [Dau88, Chapter 8, Corollary 23.5, page 197] and is such
that for all α ∈ (0, αPN ), we have

‖ϕ‖
H

3
2 +α(Ω̃)

≤ Cα‖ζ‖H− 1
2 +α(Ω̃)

.

(H−
1
2 +α(Ω̃) is defined similarly to H−

1
2 +α(Ω).)

Heterogeneous Sobolev spaces

Let us denote by Jdd ⊂ J the set of corner vertices corresponding to a junction between
two Dirichlet boundary conditions. Let U and V be two disjoint open subsets of R2 such that
Jd,d ⊂ U and Γn ⊂ V. In particular, V does not countain any corner with a Dirichlet-Dirichlet
junction. Let us now introduce any cut-off function Ψ ∈ C∞(R2) satisfying 0 ≤ Ψ ≤ 1 and

Ψ = 1 in U and Ψ = 0 in V. (2.2.6)



2.3. Existence, uniqueness and regularity 45

Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). We introduce the following heterogeneous Sobolev spaces

H−
1
2 +α,0(Ω) =

{
F ∈ H−

1
2 +α

Γd (Ω)|(1−Ψ)F ∈ L2(Ω)
}
,

H
1
2 +α,1(Ω) =

{
p ∈ H

1
2 +α(Ω)|(1−Ψ)p ∈ H1(Ω)

}
,

H
1
2 +α,1
δ (Ω) =

{
p ∈ H

1
2 +α(Ω)|(1−Ψ)p ∈ H1

δ (Ω)
}
,

H
3
2 +α,2
δ (Ω) =

{
v ∈ H

3
2 +α(Ω)|(1−Ψ)v ∈ H2

δ(Ω)
}
,

(2.2.7)

which are respectively endowed with the norms

‖F‖
H−

1
2 +α,0 :=

(
‖F‖2

H
− 1

2 +α
Γd

+ ‖(1−Ψ)F‖2L2

)1/2
,

‖p‖
H

1
2 +α,1 :=

(
‖p‖2

H
1
2 +α + ‖(1−Ψ)p‖2H1

)1/2
,

‖p‖
H

1
2 +α,1
δ

:=
(
‖p‖2

H
1
2 +α + ‖(1−Ψ)p‖2H1

δ

)1/2
,

‖u‖
H

3
2 +α,2
δ

:=
(
‖u‖2

H
3
2 +α + ‖(1−Ψ)u‖2H2

δ

)1/2
.

Notice that those spaces actually depend on the choice of the cut-off function Ψ, but this
choice will be fixed all along this chapter. That is the reason why, for simplicity, we do not
explicitly mention Ψ in the notation we propose for those spaces.

2.3 Existence, uniqueness and regularity

Let us assume that F ∈ H−1
Γd (Ω), h ∈ L2(Ω) and g ∈ H

1
2 (Γd). We will say that the pair

(w, π) ∈ H1(Ω) × L2(Ω) is a variational solution of the system (2.1.1) if and only if it satisfies
the following mixed variational formulation:

a(w,φ)− b(φ, π) = 〈F,φ〉H−1
Γd
,H1

Γd
for all φ ∈ H1

Γd(Ω),

b(w, ψ) =
∫

Ω
hψ for all ψ ∈ L2(Ω),

w = g on Γd,

(2.3.1)

where
a(w, φ) = 2ν

∫
Ω
ε(w) : ε(φ) and b(w, ψ) =

∫
Ω

(div w) ψ.

Such a solution exists and is unique as stated in the following result.

Theorem 2.3.1. Let us assume that (F, h) ∈ H−1
Γd (Ω)×L2(Ω) and g ∈ H

1
2 (Γd). System (2.1.1)

admits a unique variational solution (w, π) ∈ H1(Ω)× L2(Ω).

Proof. Since g ∈ H
1
2 (Γd), there exists a lifting v ∈ H1(Ω) such that v = g on Γd, satisfying the

estimate ‖v‖H1 ≤ C‖g‖H1/2 . Then, we look for the solution w to (2.1.1) in the form w = w̃+v.
We notice that the couple (w̃, π) satisfies

a(w̃,φ)− b(φ, π) = 〈F,φ〉H−1
Γd
,H1

Γd
− a(v,φ) for all φ ∈ H1

Γd(Ω),

b(w̃, ψ) =
∫

Ω
hψ − b(v, ψ) for all ψ ∈ L2(Ω),

w̃ = 0 on Γd.

(2.3.2)
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The existence of a unique solution (w̃, π) ∈ H1(Ω) × L2(Ω) to the system (2.3.2) follows from
the Babuška-Brezzi Theorem [GR86, Theorem 4.1, Chapter I]. For the proof of the surjectivity
of the operator div(·) ∈ L(H1

Γd(Ω), L2(Ω)) we refer the reader to [EG21, Lemma 53.9, p. 409].
�

We now establish a regularity result in heterogeneous Sobolev spaces for the solution of
system (2.1.1).

Theorem 2.3.2. Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). Assume that F ∈ H−
1
2 +α,0(Ω), h ∈ H

1
2 +α,1(Ω)

and g ∈ H
3
2 (Γd). Then, the variational solution (w, π) of system (2.1.1) belongs to H

3
2 +α,2
δ (Ω)×

H
1
2 +α,1
δ (Ω). Moreover, there exists a constant Cα,δ > 0 such that

‖w‖
H

3
2 +α,2
δ

(Ω)
+ ‖π‖

H
1
2 +α,1
δ

(Ω)
≤ Cα,δ

(
‖F‖

H−
1
2 +α,0(Ω)

+ ‖h‖
H

1
2 +α,1(Ω)

+ ‖g‖
H

3
2 (Γd)

)
. (2.3.3)

Proof. Let (w, π) ∈ H1
Γ(Ω) × L2(Ω) be the solution to (2.1.1) whose existence is shown

in Theorem 2.3.1. Let us consider the cut-off function Ψ defined in (2.2.6). Then, the pair
(w1, π1) = (Ψw,Ψπ) satisfies

−div σ(w1, π1) = F1 in Ω,
div w1 = h1 in Ω,
w1 = Ψg on Γd, w1 = 0 on Γn,

(2.3.4)

where
F1 = ΨF + π∇Ψ− ν (w∆Ψ + 2(∇Ψ · ∇)w)− ν(div w∇Ψ +∇(w · ∇Ψ))

and
h1 = Ψh+∇Ψ ·w.

Since (w, π) ∈ H1
Γ(Ω)×L2(Ω), we have that F1 ∈ H−

1
2 +α(Ω) and h1 ∈ H

1
2 +α(Ω), with 0 < α <

α∗. Then, it follows from [Dau89, Theorem 5.5(a)] and [BR, Theorem 3.2 and Corollary 3.3]
that

‖w1‖H 3
2 +α + ‖π1‖

H
1
2 +α ≤ Cα

(
‖F‖

H
− 1

2 +α
Γd

+ ‖h‖
H

1
2 +α + ‖g‖

H
3
2

)
. (2.3.5)

On the other hand, we notice that the pair (w2, π2) = ((1−Ψ)w, (1−Ψ)π) satisfies:
−div σ(w2, π2) = F2, in Ω,
div w2 = h2 in Ω,
w2 = (1−Ψ)g on Γd,
σ(w2, π2)n = 0 on Γn,

(2.3.6)

where

F2 = (1−Ψ)F− π∇Ψ + ν (w∆Ψ + 2(∇Ψ · ∇)w) + ν(div w∇Ψ +∇(w · ∇Ψ))

and
h2 = (1−Ψ)h−w · ∇Ψ.

Since (1 − Ψ)F ∈ L2(Ω) and (1 − Ψ)h ∈ H1(Ω), we deduce that F2 ∈ L2(Ω) and h2 ∈ H1(Ω).
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Then, from [MR10, Theorem 9.4.5], we deduce that (w2, π2) ∈ H2
δ(Ω)×H1

δ (Ω) and

‖w2‖H2
δ

+ ‖π2‖H1
δ

≤ C
(
‖F‖

H
− 1

2 +α
Γd

+ ‖h‖
H

1
2 +α + ‖g‖

H
3
2

+ ‖(1−Ψ)F‖L2 + ‖(1−Ψ)h‖H1

)
.

(2.3.7)

Moreover, thanks to [MR10, Lemma 6.2.1], we have the estimate

‖w2‖H 3
2 +α + ‖π2‖

H
1
2 +α

≤ C
(
‖F‖

H
− 1

2 +α
Γd

+ ‖h‖
H

1
2 +α + ‖g‖

H
3
2

+ ‖(1−Ψ)F‖L2 + ‖(1−Ψ)h‖H1

)
.

(2.3.8)

Finally, combining (2.3.5), (2.3.7) and (2.3.8) we obtain (2.3.3). This completes the proof. �

2.4 Rewriting the Stokes system as an operator equation

The goal of this section is to rewrite the system (2.1.1) as an operator equation. First, in
Subsection 2.4.1, we begin by presenting some results concerning the Leray projector, which
involve a careful analysis of a specific elliptic equation. In Subsection 2.4.2, we introduce the
Stokes operator and prove the analyticity of its underlying semigroup. In Subsection 2.4.3, an
expression of the pressure π is determined in terms of w, F and g when h = 0. In Subsection
2.4.4, the operator equation characterizing (2.1.1) is introduced.

2.4.1 The Leray projector

Let us recall the following result established in [NR15, Lemma 2.2].

Proposition 2.4.1. We have the following orthogonal decomposition

L2(Ω) = V0
n,Γd(Ω)

⊥
⊕∇H1

Γn(Ω), (2.4.1)

where H1
Γn(Ω) = {p ∈ H1(Ω) | p = 0 on Γn}. Moreover, the orthogonal projection P ∈ L(L2(Ω))

from L2(Ω) onto V0
n,Γ0

(Ω) is characterized by

PF = F−∇q1 −∇q2, (2.4.2)

where q1 and q2 are solutions of the following elliptic problems:

q1 ∈ H1
0 (Ω), ∆q1 = div F in Ω,

q2 ∈ H1
Γn(Ω), ∆q2 = 0 in Ω, ∂q2

∂n = (F−∇q1) · n on Γd.
(2.4.3)

The variational problem satisfied by q = q1 + q2 is
Find q ∈ H1

Γn(Ω) such that∫
Ω
∇q · ∇φdx =

∫
Ω

F · ∇φdx, ∀φ ∈ H1
Γn(Ω).

(2.4.4)

For all F ∈ L2(Ω), Problem (2.4.4) admits a unique solution and

‖q‖H1
Γn
≤ C ‖F‖L2 . (2.4.5)

We would like to obtain other stability estimates when F ∈ Hs(Ω) for −1
2 < s < 1

2 + α∗.



2.4. Rewriting the Stokes system as an operator equation 48

Because of the presence of mixed boundary conditions involved in Problem (2.4.4), it is
convenient to associate to (2.4.4) a variational problem in the larger domain Ω̃ involving only
Neumann boundary conditions. For a given q ∈ L2(Ω), we denote by q̃ = Eoq the extension of q
to Ω̃ defined by

q̃(x) = (Eoq)(x) =
{

q(x) if x ∈ Ω,
−q(Snx) if x ∈ SnΩ.

(2.4.6)

For a given F ∈ L2(Ω), with F = F1~e1 + F2~e2 = Fn~n + Fτ~τ where ~n is the unit normal to Γn
outward Ω and ~τ is such that (~n, ~τ ) is an orthonormal basis of R2, we denote by F̃ = EF the
extension of F to Ω̃ defined by

F̃(x) = (EF)(x) =
{

F(x) if x ∈ Ω,
Fn(Snx)~n− Fτ (Snx)~τ if x ∈ SnΩ.

(2.4.7)

The following proposition is a consequence of definitions (2.4.6) and (2.4.7).
Proposition 2.4.2. Let F belong to L2(Ω) and let F̃ ∈ L2(Ω̃) be the extension of F defined by
(2.4.7).

A function q ∈ H1
Γn(Ω) is solution to (2.4.4) if and only if q̃ defined in (2.4.6) is solution to

Find q̃ ∈ H1(Ω̃) such that∫
Ω̃
∇q̃ · ∇Ψ dx =

∫
Ω̃

F̃ · ∇Ψ dx, ∀Ψ ∈ H1(Ω̃).
(2.4.8)

Proposition 2.4.3. Let F belong to L2(Ω) and let F̃ ∈ L2(Ω̃) be the extension of F defined by
(2.4.7).

Problem (2.4.8) admits a unique solution q̃ ∈ H1(Ω̃) which satisfies the following estimates:

‖q̃‖H1(Ω̃) ≤ C ‖F̃‖L2(Ω̃), (2.4.9)

‖q̃‖
H

3
2 +α(Ω̃)

≤ Cα ‖F̃‖H 1
2 +α(Ω̃)

, ∀α ∈ (0, α∗), (2.4.10)

‖q̃‖Hs+1(Ω̃) ≤ Cs ‖F̃‖Hs(Ω̃), ∀s ∈ (−1/2, 1/2 + α∗). (2.4.11)

Before proving that proposition, to show (2.4.11) when s ∈ (−1/2, 0), we are going to use
the transposition method. For that, we introduce the adjoint problem

∆χ = ζ in Ω̃, ∂χ

∂n = 0 on Γ̃ = ∂Ω̃, (2.4.12)

with ζ ∈ L2
0(Ω̃).

Lemma 2.4.1. The variational solution to (2.4.12) satisfies

‖χ‖
H

3
2 +α(Ω̃)

≤ Cα ‖ζ‖H− 1
2 +α(Ω̃)

, ∀α ∈ (0, α∗),

‖χ‖H1(Ω̃) ≤ Cα ‖ζ‖(H1(Ω̃))′ ,

and

‖χ‖H1+s(Ω̃) ≤ Cs ‖ζ‖Hs−1(Ω̃), ∀s ∈ [0, 1/2 + α∗).

(2.4.13)

Proof. Estimate (2.4.13)1 is a consequence of [Dau88, Chapter 8, Corollary 23.5, page 197].
Estimate (2.4.13)2 is a consequence of the Lax-Milgram Lemma. Estimate (2.4.13)3 can be
obtained by interpolation from (2.4.13)1 and (2.4.13)2. �
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When F̃ ∈ L2(Ω̃), it is possible to check that q̃ is solution to (2.4.8) if and only if, for all
s ∈ (−1/2, 0], q̃ is solution to

Find q̃ ∈ Hs+1(Ω̃) such that

〈q̃, ζ〉Hs+1(Ω̃),H−s−1(Ω̃) = −〈F̃,∇χ〉Hs(Ω̃),H−s(Ω̃), ∀ζ ∈ H−s−1(Ω̃),
(2.4.14)

where χ is the solution to (2.4.12).

Lemma 2.4.2. For all s ∈ (−1/2, 0], Problem (2.4.14) admits a unique solution and

‖q̃‖Hs+1(Ω̃) ≤ Cs ‖F̃‖Hs(Ω̃). (2.4.15)

Proof. When F̃ ∈ L2(Ω̃), for any s ∈ (−1/2, 0] (2.4.22) follows from (2.4.14) and (2.4.13).
Indeed, since −s− 1 ∈ (−1,−1/2), Lemma 2.4.1 implies that the solution χ of system (2.4.12)
belongs to H−s+1(Ω̃). Furthermore, ‖χ‖H−s+1(Ω̃) ≤ Cs‖ζ‖H−s−1(Ω̃). Then, this estimate together
with (2.4.14) allows us to obtain

‖q̃‖Hs+1(Ω̃) = sup
ζ∈H−s−1(Ω̃)
‖ζ‖
H−s−1(Ω̃)

=1

∣∣∣〈q̃, ζ〉Hs+1(Ω̃),H−s−1(Ω̃)

∣∣∣
= sup

ζ∈H−s−1(Ω̃)
‖ζ‖
H−s−1(Ω̃)

=1

∣∣∣〈F̃,∇χ〉Hs(Ω̃),H−s(Ω̃)

∣∣∣
≤ sup

ζ∈H−s−1(Ω̃)
‖ζ‖
H−s−1(Ω̃)

=1

‖F̃‖Hs(Ω̃)‖∇χ‖H−s(Ω̃)

≤ sup
ζ∈H−s−1(Ω̃)
‖ζ‖
H−s−1(Ω̃)

=1

‖F̃‖Hs(Ω̃)‖χ‖H−s+1(Ω̃)

≤ sup
ζ∈H−s−1(Ω̃)
‖ζ‖
H−s−1(Ω̃)

=1

‖F̃‖Hs(Ω̃)‖ζ‖H−s−1(Ω̃)

≤ Cs‖F‖Hs(Ω̃).

(2.4.16)

This proves the estimate (2.4.22) when F̃ ∈ L2(Ω̃). From (2.4.22) when F̃ ∈ L2(Ω̃), it follows
that if Problem (2.4.14) admits a solution, this solution is necessarily unique. To prove the
existence of solution to Problem (2.4.14) for a given F̃ ∈ Hs(Ω̃), with s ∈ (−1/2, 0), we use a
density argument. We approximate F̃ in Hs(Ω̃) by a sequence (F̃k)k in L2(Ω̃) converging to F̃
in Hs(Ω̃). We denote by q̃k the solution to (2.4.14) or to (2.4.8) corresponding to F̃k. Since
q̃k − q̃m satisfies

‖q̃k − q̃m‖Hs+1(Ω̃) ≤ Cs ‖F̃k − F̃m‖Hs(Ω̃),

the sequence (q̃k)k is a Cauchy sequence in Hs+1(Ω̃). Its limit q̃ in Hs+1(Ω̃) is solution to (2.4.14)
and it satisfies (2.4.22). �

We are now in position to prove Proposition 2.4.3.

Proof of Proposition 2.4.3. The existence and uniqueness of q̃ ∈ H1(Ω̃) solution to (2.4.8)
together with estimate (2.4.9) follow from the Lax-Milgram Lemma.

Estimate (2.4.10) follows from [Dau88, Chapter 8, Corollary 23.5, page 197].
For s ∈ [0, 1/2+α∗), Estimate (2.4.11) can be obtained by interpolation between (2.4.9) and
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(2.4.10).
Estimate (2.4.11) for s ∈ (−1/2, 0) follows from Lemma 2.4.2. This completes the proof of

Proposition 2.4.3.

The following proposition is a direct consequence of Propositions 2.4.2 and 2.4.3.

Proposition 2.4.4. Let F belong to L2(Ω). In addition to (2.4.5), the solution q ∈ H1
Γn(Ω) to

Problem (2.4.4) satisfies

‖q‖
H

3
2 +α(Ω)

≤ Cα ‖F‖H 1
2 +α(Ω)

, ∀α ∈ (0, α∗), (2.4.17)

‖q‖Hs+1(Ω) ≤ Cs ‖F‖Hs(Ω), ∀s ∈ (−1/2, 1/2 + α∗). (2.4.18)

We can also use the transposition method to extend the notion of solution to the variational
problem (2.4.4) when F ∈ Hs(Ω) with s ∈ (−1/2, 0). For that, we introduce the adjoint problem

∆χ = ζ in Ω, ∂χ

∂n = 0 on Γd, χ = 0 on Γn, (2.4.19)

with ζ ∈ L2(Ω).

Lemma 2.4.3. The variational solution to (2.4.19) satisfies

‖χ‖
H

3
2 +α(Ω)

≤ Cα ‖ζ‖
H−

1
2 +α(Ω)

, ∀α ∈ (0, α∗),

‖χ‖H1(Ω) ≤ Cα ‖ζ‖(H1
Γn (Ω))′ ,

and

‖χ‖H1+s(Ω) ≤ Cs ‖ζ‖Hs−1(Ω), ∀s ∈ [0, 1/2 + α∗).

(2.4.20)

Proof. The result follows from Lemma 2.4.1 and a symmetry argument as in Proposition 2.4.2.
�

When F ∈ L2(Ω), it is possible to check that q is solution to (2.4.4) if and only if q is solution
to

Find q ∈ Hs+1(Ω) such that

〈q, ζ〉Hs+1,H−s−1 = −〈F,∇χ〉Hs,H−s , ∀ζ ∈ H−s−1(Ω),
(2.4.21)

where χ is the solution to (2.4.19), and s ∈ (−1/2, 0].

Lemma 2.4.4. For all s ∈ (−1/2, 0], Problem (2.4.21) admits a unique solution and

‖q‖Hs+1(Ω) ≤ Cs ‖F‖Hs(Ω), ∀s ∈ (−1/2, 0]. (2.4.22)

Proof. The proof is similar to that of Lemma 2.4.2. �

The following corollary is a direct consequence of Proposition 2.4.4.

Corollary 2.4.1. The operator P ∈ L(L2(Ω)) defined by

PF = F−∇q, (2.4.23)

where q is the solution to (2.4.4) or to (2.4.21), is also continuous from Hs(Ω) into itself for all
s ∈ [0, 1/2 + α∗). It can also be extended by continuity to a bounded operator in Hs(Ω) for all
s ∈ (−1/2, 0).
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2.4.2 Stokes operator and the analyticity of its underlying semigroup

For 0 < s < 1/2, we introduce the space

Vs
n,Γd(Ω) = Hs

Γd(Ω) ∩V0
n,Γd(Ω), (2.4.24)

equipped with the Hs
Γd Sobolev norm, and we define V−sn,Γd(Ω) as the dual of Vs

n,Γd(Ω) with
V0
n,Γd(Ω) as pivot space, equipped with the dual norm of Vs

n,Γd(Ω).

Lemma 2.4.5. Let s ∈ (0, 1/2). The following assertions hold:

(i) P
(
Hs

Γd(Ω)
)

= Vs
n,Γd(Ω).

(ii) There exists an isomorphism between the spaces V0
n,Γd(Ω)

‖·‖H−sΓd
(Ω) and V−sn,Γd(Ω). Thus,

the space V−sn,Γd(Ω) can be identified with a closed subspace of H−sΓd (Ω).

Proof.
(i) The inclusion ⊃ follows directly from the definition of the space Vs

n,Γd(Ω) (see (2.4.24)).
The other inclusion is a consequence of Corollary 2.4.1.

(ii) It suffices to prove that the norms ‖·‖H−sΓd
and ‖·‖V−sn,Γd

are equivalent in V0
n,Γd(Ω). In-

deed, if the two norms are equivalents in V0
n,Γd(Ω), the result follows from the fact that

the space V0
n,Γd(Ω) is dense in V−sn,Γd(Ω). Let us now show the equivalence of the norms

in V0
n,Γd(Ω). We follow the approach used in [GS11, p. 246]. We split the proof into two

steps.

Step 1: Let us assume that v ∈ V0
n,Γd(Ω). Then, using assertion (i), we obtain

‖v‖V−sn,Γd
= sup

w∈Vs
n,Γd

(Ω)

|〈v,w〉L2 |
‖w‖Hs

Γd

≤ sup
w∈Hs

Γd
(Ω)

|〈v,w〉L2 |
‖w‖Hs

Γd

= ‖v‖H−sΓd
.

Step 2: Let α ∈ (0, α∗). Let us assume that v ∈ V0
n,Γd(Ω). Then, using continuity of the

Leray projector P from Hs
Γd(Ω) into Hs

Γd(Ω) (see Corollary 2.4.1), we obtain

‖v‖H−sΓd
= sup

w∈Hs
Γd

(Ω)

|〈v,w〉L2 |
‖w‖Hs

Γd

= sup
w∈Hs

Γd
(Ω)

|〈v, Pw〉L2 |
‖w‖Hs

Γd

≤ C sup
w∈Hs

Γd
(Ω)

|〈v, Pw〉L2 |
‖Pw‖Hs

Γd

≤ C sup
z∈Vs

n,Γd
(Ω)

|〈v, z〉L2 |
‖z‖Hs

Γd

= C‖v‖V−sn,Γd
.

This completes the proof.
�

The Stokes operator (A0,D(A0; V0
n,Γd(Ω))) in V0

n,Γd(Ω) that we will consider is defined by

D(A0; V0
n,Γd(Ω)) =

{
w ∈ H

3
2 +α(Ω) ∩V1

Γd(Ω) | ∃π ∈ H
1
2 +α(Ω) such that div σ(w, π) ∈ L2(Ω)

and σ(w, π)n = 0 on Γn
}
,

A0w = P div σ(w, π).
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For all θ ∈ (π/2, π), let us define the sector Σθ by

Σθ = {λ ∈ C | | arg(λ)| < θ} .

Theorem 2.4.1. There exist θ0 ∈ (π/2, π) and C > 0 such that

‖(λI −A0)−1‖L(V0
n,Γd

(Ω)) ≤
C

|λ|
, for all λ ∈ Σθ0 \ {0}.

In particular, the unbounded operator (A0,D(A0; V0
n,Γd(Ω))) is the infinitesimal generator of an

analytic semigroup on V0
n,Γd(Ω).

Proof. According to [DL99, Proposition 3, p. 380], it suffices to show that there exist λ0 ≥ 0
and C0 > 0 such that

aλ0(v,v) = ((λ0I −A0)v,v)L2(Ω) ≥ C0‖v‖2V1
Γd

(Ω) for all v ∈ D(A0; V0
n,Γd(Ω)).

The previous inequality is verified with λ0 = 1 and C0 = C0(ν) > 0. �

For all α ∈ (0, α∗), we introduce the heterogeneous space

V−
1
2 +α,0

n,Γd (Ω) :=
{

v ∈ V−
1
2 +α

n,Γd (Ω) | (1−Ψ)v ∈ L2(Ω)
}

(2.4.25)

equipped with the norm

‖v‖
V
− 1

2 +α,0
n,Γd

:=
(
‖v‖2

H
− 1

2 +α
Γd

+ ‖(1−Ψ)v‖2L2

) 1
2
, (2.4.26)

for all v ∈ V−
1
2 +α,0

n,Γd (Ω). Here, Ψ is the cut-off function introduced in (2.2.6).

Proposition 2.4.5. Let α ∈ (0, α∗). The space V−
1
2 +α,0

n,Γd (Ω), equipped with the norm ‖·‖
V
− 1

2 +α,0
n,Γd

defined in (2.4.26), is a Hilbert space.

Proof. Let (vk)k be a Cauchy sequence in V−
1
2 +α,0

n,Γd (Ω). Next, since the spaces V−
1
2 +α

n,Γd (Ω) and

L2(Ω) are complete, using Lemma 2.4.5, there exist v ∈ V−
1
2 +α

n,Γd (Ω) and u ∈ L2(Ω) such that

vk −−−−−→
k→+∞

v in H−
1
2 +α

Γd (Ω) (2.4.27)

and
(1−Ψ)vk −−−−−→

k→+∞
u in L2(Ω). (2.4.28)

From (2.4.27) we deduce that

(1−Ψ)vk −−−−−→
k→+∞

(1−Ψ)v in H−
1
2 +α

Γd (Ω). (2.4.29)

Then, from (2.4.28) and (2.4.29) and the uniqueness of the limit we deduce that u = (1−Ψ)v.
This completes the proof. �

According to Corollary 2.4.1, the Leray projector defined by (2.4.23) belongs to
L(H−

1
2 +α(Ω)) for all α ∈ (0, α∗).
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Proposition 2.4.6. For all α ∈ (0, α∗), the Leray projector P ∈ L(H−
1
2 +α(Ω)) also belongs to

L(H−
1
2 +α,0(Ω)).

Proof. We will show that there exists a constant C > 0 such that

‖PF‖
H−

1
2 +α + ‖(1−Ψ)PF‖L2 ≤ C

(
‖F‖

H−
1
2 +α + ‖(1−Ψ)F‖L2

)
, (2.4.30)

for all F ∈ H−
1
2 +α,0(Ω). Since P ∈ L(H−

1
2 +α(Ω)), in order to obtain (2.4.30) it is sufficient to

prove that
‖(1−Ψ)PF‖L2 ≤ C

(
‖(1−Ψ)F‖L2 + ‖F‖

H−
1
2 +α

)
. (2.4.31)

We notice that
(1−Ψ)PF = (1−Ψ)F−∇((1−Ψ)q)−∇Ψq, (2.4.32)

where q is solution to (2.4.21) with s = −1
2 +α. Next, from Lemma 2.4.6 below, we obtain that

q ∈ H
1
2 +α,1(Ω) and then, thanks to (2.4.32) we deduce the estimate (2.4.31). �

Lemma 2.4.6. If F belongs to H−
1
2 +α,0(Ω) with α ∈ (0, α∗), then the solution q to (2.4.21)

with s = −1
2 + α belongs to H

1
2 +α,1(Ω) and satisfies

‖q‖
H

1
2 +α,1(Ω)

≤ Cα ‖F‖H− 1
2 +α,0(Ω)

, ∀α ∈ (0, α∗). (2.4.33)

Proof. Firstly, since ‖q‖
H

1
2 +α(Ω)

≤ Cα‖F‖H− 1
2 +α,0(Ω)

for all α ∈ (0, 1/2) (see Proposition 2.4.4),
it suffices to show that

‖(1−Ψ)q‖H1 ≤ Cα ‖F‖H− 1
2 +α,0 , ∀α ∈ (0, α∗). (2.4.34)

The function p = (1−Ψ)q is solution to the equation

∆p = div((1−Ψ)F) + q∆(1−Ψ)− 2∇q · ∇Ψ + F · ∇Ψ in Ω,
∂p

∂n = (1−Ψ)F · n− q∂Ψ
∂n on Γd, p = 0 on Γn.

We write p = p1 + p2, where p1 is the solution to

∆p1 = div((1−Ψ)F) in Ω, ∂p1
∂n = (1−Ψ)F · n on Γd, p1 = 0 on Γn,

and by p2 the solution to

∆p2 = −q∆Ψ− 2∇q · ∇Ψ− F · ∇Ψ in Ω, ∂p2
∂n = −q∂Ψ

∂n on Γd, p2 = 0 on Γn.

Since
‖(1−Ψ)F‖L2(Ω) ≤ ‖F‖H− 1

2 +α,0(Ω)
,

the needed estimate for p1 in H1(Ω) follows from (2.4.5). Next from

‖q∆(1−Ψ)− 2∇q · ∇Ψ− F · ∇Ψ‖
H−

1
2 +α(Ω)

≤ C ‖F‖
H−

1
2 +α,0(Ω)

,

Lemma 2.4.3 and Lax-Milgram Lemma we deduce that ‖p2‖H1(Ω) ≤ C ‖F‖H− 1
2 +α,0(Ω)

. The proof
is complete. �

In Lemma 2.4.7 below, we show that [V0
n,Γd(Ω),V−1

Γd (Ω)]s = V−sn,Γd(Ω) for all s ∈ (0, 1/2). The
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proof of this lemma relies on an interpolation result in the Dirichlet case proved in [MM08,
Theorem 2.12]. More precisely, by using an extension and symmetry argument, we reduce the
problem to the Dirichlet case.

Let Ω̃ defined by
Ω̃ = Ω ∪ Γn ∪ Ω̂. (2.4.35)

The construction of Ω̂ (see Figure 2.3) is given below.
1. We first construct the symmetric domain SnΩ of Ω with respect to the line Dn containing

the segment Γn.
2. From assumption (H4) we know that there exist in particular two half-lines `1 and `2

passing through the endpoints A and E of the segment Γn, such that `1 ∩ Ω = {A} and
`2 ∩ Ω = {E}. The choice of these half-lines is not unique. We denote by `′1 and `′2 the
symmetric half-lines of `1 and `2, respectively, with respect to Dn.

3. We now select an arbitrary point B 6= A on the half-line `′1, and then define the point
C such that AC ⊥ BC. We denote by D the midpoint of the segment BC. Similarly,
we select a point F 6= E on the half-line `′2 and define G such that EG ⊥ FG. We then
denote by H the midpoint of the segment FG.

4. We define the segments AI and EJ , passing through D and H, respectively, in such a
way that the segment IJ does not intersect the domain Ω.

5. Finally, we define Ω̂ as the polygon Ω̂ = AIJE (see Figure 2.3).

Figure 2.3 – Construction of Ω̂.

Remark 4. We highlight that the particular construction of Ω̂ is motivated by the definition of
the extension operator Es (see (2.4.37)). Specifically, thanks to the step 4, where the segments
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AI and EJ are constructed in a such way that they pass for the midpoints of the segments BC
and FG, respectively, allows us to preserve a desired trace property. See proof of Lemma 2.4.7
below.
We first introduce the following spaces:

V0
n(Ω̃) =

{
ṽ ∈ L2(Ω̃) | div ṽ = 0 in Ω̃, ṽ · n = 0 on ∂Ω̃

}
,

V1
0(Ω̃) = H1

0(Ω̃) ∩V0
n(Ω̃) and Vs

n(Ω̃) = Hs(Ω̃) ∩V0
n(Ω̃).

Lemma 2.4.7. Let s ∈ (0, 1/2). The following assertions hold.
(i) There exists an extension operator E satisfying

E ∈ L(V0
n,Γd(Ω),V0

n(Ω̃)) ∩ L(V1
Γd(Ω),V1

0(Ω̃)),
E ∈ L(Vs

n,Γd(Ω),Vs
n(Ω̃)),

(2.4.36)

where Ω̃ is defined in (2.4.35).
(ii) [V0

n,Γd(Ω),V1
Γd(Ω)]s = Vs

n,Γd(Ω) and [V0
n,Γd(Ω),V−1

Γd (Ω)]s = V−sn,Γd(Ω).

Proof.
(i) After a possible rotation of the domain Ω, we assume that the origin of the coordinate

system is located at Γn. We denote by CΩ the half-plane containing Ω (this is possible
thanks to assumption (H4) stated in Subsection 2.2.1). We also denote by Ez : L2(Ω) −→
L2(CΩ) the zero extension operator. We now introduce the operator Es : L2(CΩ) −→
L2(Ω̃) defined by

(Esu)(z1, z2) =
{

u(z1, z2) if (z1, z2) ∈ CΩ,

ũ(z1, z2) if (z1, z2) ∈ Ω̃ \ Ω,
(2.4.37)

where ũ(z1, z2) = (ũ1, ũ2) with

ũ1(z1, z2) = 3u1(−z1, z2)− 2u1(−2z1, z2),
ũ2(z1, z2) = −3u2(−z1, z2) + 4u2(−2z1, z2).

(2.4.38)

We then define the operator E : L2(Ω) −→ L2(Ω̃) by E = Es ◦ Ez. Let us notice that the
following equality holds in the sense of distributions:

div ũ(z1, z2) = −3 (div u) (−z1, z2) + 4 (div u) (−2z1, z2).

Thus, in particular, if div u = 0, then div ũ = 0. On the other hand, if u ∈ H1(Ω)
and u

∣∣
Γd

= 0, then ũ
∣∣
∂Ω̂\Γn

= 0. We remark that, at this point, we use the particular
construction of Ω̂.
Thanks to this construction of the operator E, we can verify (2.4.36).

(ii) Let us first observe that [V0
n,Γd(Ω),V−1

Γd (Ω)]s = V−sn,Γd(Ω) is a consequence of the equality
[V0

n,Γd(Ω),V1
Γd(Ω)]s = Vs

n,Γd(Ω) and [Tar07, Lemma 41.3, p. 196], since

V−sn,Γd(Ω) = (Vs
n,Γd(Ω))′ = [V0

n,Γd(Ω),V−1
Γd (Ω)]s for all s ∈ (0, 1/2).

Let us show that [V0
n,Γd(Ω),V1

Γd(Ω)]s = Vs
n,Γd(Ω) for all s ∈ (0, 1/2).

Let us first consider the restriction operator R satisfying

R ∈ L(V0
n(Ω̃),V0

n,Γd(Ω)) ∩ L(V1
0(Ω̃),V1

Γd(Ω)). (2.4.39)
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• [V0
n,Γd(Ω),V1

Γd(Ω)]s ⊂ Vs
n,Γd(Ω).

Let v ∈ [V0
n,Γd(Ω),V1

Γd(Ω)]s. Thanks to (2.4.36) we obtain that Ev ∈ [V0
n(Ω̃),V1

0(Ω̃)]s.
But, from [MM08, Theorem 2.12] we know that [V0

n(Ω̃),V1
0(Ω̃)]s = Vs

n(Ω̃). Thus,
Ev ∈ Vs

n(Ω̃) and then in particular v ∈ Vs
n,Γd(Ω).

• Vs
n,Γd(Ω) ⊂ [V0

n,Γd(Ω),V1
Γd(Ω)]s.

Let v ∈ Vs
n,Γd(Ω). Then from (2.4.36) it follows that Ev ∈ Vs

n(Ω̃). Once again,
by invoking [MM08, Theorem 2.12], we deduce that Ev ∈ [V0

n(Ω̃),V1
0(Ω̃)]s. Then,

v = R(Ev) ∈ [V0
n,Γd(Ω),V1

Γd(Ω)]s.
�

Let us now introduce the Stokes operator on V−
1
2 +α

n,Γd (Ω).

Using Lemma 2.4.7 and the fact that A0 is an isomorphism from D(A0; V0
n,Γd(Ω)) into V0

n,Γd(Ω)
and from D(A0; V−1

Γd (Ω)) into V−1
Γd (Ω) (this follows from the Lax-Milgram theorem), we deduce

that A0 is also an isomorphism from

D(A0; V−
1
2 +α

n,Γd (Ω)) := [D(A0; V0
n,Γd(Ω)),D(A0; V−1

Γd (Ω))] 1
2−α

into [V0
n,Γd(Ω),V−1

Γd (Ω)] 1
2−α

= V−
1
2 +α

n,Γd (Ω).
(2.4.40)

But, since D(A0; V−1
Γd (Ω)) = V1

Γd(Ω),

D(A0; V−
1
2 +α

n,Γd (Ω)) = [D(A0; V0
n,Γd(Ω)),V1

Γd(Ω)] 1
2−α

.

We now establish the sectoriality of the Stokes operator (A0,D(A0; V−
1
2 +α

n,Γd (Ω))) in V−
1
2 +α

n,Γd (Ω).

Proposition 2.4.7. Let α ∈ (0, α∗). There exist θ0 ∈ (π/2, π) and C > 0 such that

‖(λI −A0)−1‖
L(V

− 1
2 +α

n,Γd
(Ω))
≤ C

|λ|
, for all λ ∈ Σθ0 \ {0}. (2.4.41)

Proof. We split the proof into three steps.

Step 1: (Estimate in V0
n,Γd(Ω)−norm). Since (A0,D(A0; V0

n,Γd(Ω))) is the infinitesimal gen-
erator of an analytic semigroup on V0

n,Γd(Ω) (see Theorem 2.4.1), there exist C0 > 0 and
θ0 ∈ (π/2, π) such that

‖(λI −A0)−1F‖V0
n,Γd
≤ C0
|λ|
‖F‖V0

n,Γd
, (2.4.42)

for all λ ∈ Σ \ {0} and for all F ∈ V0
n,Γd(Ω).

Step 2: (Estimate in V−1
Γd (Ω)−norm). We claim that there exists C1 > 0 such that

‖(λI −A0)−1F‖V−1
Γd
≤ C1
|λ|
‖F‖V−1

Γd
(2.4.43)
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for all λ ∈ Σθ0 \ {0} and for all F ∈ V0
n,Γd(Ω). Indeed, let u := (λI −A0)−1F. Then,

λu− div σ(u, q) = F in Ω,
div u = 0 in Ω,
u = 0 on Γd, σ(u, q)n = 0 on Γn.

(2.4.44)

Thus, u satisfies in particular

λ

∫
Ω

u ·ϕ = −2ν
∫

Ω
ε(u) : ε(ϕ) + 〈F,ϕ〉V−1

Γd
,V1

Γd
for all ϕ ∈ V1

Γd(Ω). (2.4.45)

Using the same idea employed to prove coercivity in Therorem 2.4.4, it is possible to show that
there exists a constant C > 0, independent of λ, such that

‖u‖V1
Γd
≤ C‖F‖V−1

Γd
. (2.4.46)

We now introduce the set

D :=
{
ϕ ∈ V1

Γd(Ω) | ‖ϕ‖V1
Γd
≤ 1

}
.

By applying Cauchy-Schwarz inequality on the first term on the right-hand side of (2.4.45), and
then using estimate (2.4.46), we obtain

|λ|‖u‖V−1
Γd

= |λ| sup
ϕ∈D

∣∣∣∣〈u,ϕ〉V−1
Γd
,V1

Γd

∣∣∣∣
≤ 2ν sup

ϕ∈D

∫
Ω
|ε(u)||ε(ϕ)|+ sup

ϕ∈D

∣∣∣∣〈F,ϕ〉V−1
Γd
,V1

Γd

∣∣∣∣
≤ C‖F‖V−1

Γd
,

(2.4.47)

from where we deduce the estimate (2.4.43).

Step 3. (Conclusion). From Lemma 2.4.7 and the interpolation between (2.4.42) and (2.4.43)
we deduce that for any ε ∈ (0, 1/2)

‖(λI −A0)−1F‖V−εΓn,Γd

≤ C0

(
C1
C0

)ε 1
|λ|
‖F‖V−εΓn,Γd

for all λ ∈ Σθ0 \ {0} and for all F ∈ V0
n,Γd(Ω).

(2.4.48)
Now, taking ε = 1/2 − α ∈ (0, 1/2) in (2.4.48) and using the fact that V0

n,Γd(Ω) is dense in

V−
1
2 +α

n,Γd (Ω) we deduce that

‖(λI −A0)−1‖
L(V

− 1
2 +α

Γn,Γd
)
≤ C

|λ|
for all λ ∈ Σθ0 \ {0}. (2.4.49)

�

Proposition 2.4.8. The domain D(A0; V−
1
2 +α

Γn,Γd
(Ω)) of the Stokes operator A0 is dense in

V−
1
2 +α

n,Γd (Ω).

Proof. Since V−
1
2 +α

n,Γd (Ω) is a Hilbert space, according to Proposition 2.4.9 presented in the

Appendix B at the end of this chapter, in order to show that D(A0; V−
1
2 +α

Γn,Γd
(Ω)) is dense in
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V−
1
2 +α

n,Γd (Ω), it suffices to prove that there exists C̃ > 0 such that

‖(λI −A0)v‖
V
− 1

2 +α
n,Γd

(Ω)
≥ λC̃‖v‖

V
− 1

2 +α
n,Γd

(Ω)
for all v ∈ D(A0; V−

1
2 +α

Γn,Γd
(Ω)) and for all λ > 0,

(2.4.50)
and that the operator I −A0 is onto.

Let θ0 ∈ (π/2, π) be the angle determined in Proposition 2.4.7. Then, since (0,∞) ⊂ Σθ0 ,
Proposition 2.4.7 implies that

‖(λI−A0)−1F‖
V
− 1

2 +α
n,Γd

(Ω)
≤ C

λ
‖F‖

V
− 1

2 +α
n,Γd

(Ω)
for all F ∈ V−

1
2 +α

n,Γd (Ω) and for all λ > 0, (2.4.51)

where C > 0 is the constant appearing in (2.4.41). Then, using this estimate with F = (λI −
A0)v, where v ∈ D(A0; V−

1
2 +α

Γn,Γd
(Ω)), we obtain that

‖v‖
V
− 1

2 +α
n,Γd

(Ω)
= ‖(λI −A0)−1(λI −A0)v‖

V
− 1

2 +α
n,Γd

(Ω)
≤ C

λ
‖(λI −A0)v‖

V
− 1

2 +α
n,Γd

(Ω)
, (2.4.52)

from where we deduce estimate (2.4.50), that is,

‖(λI −A0)v‖
V
− 1

2 +α
n,Γd

(Ω)
≥ C̃λ‖v‖

V
− 1

2 +α
n,Γd

(Ω)
,

with C̃ = 1/C. On the other hand, the surjectivity of the operator I − A0 follows from the
fact that I − A0 is an isomorphism from D(A0; V0

n,Γd(Ω)) into V0
n,Γd(Ω) and from V1

Γd(Ω) into
V−1

Γd (Ω) (this follows from the Lax-Milgram theorem). This completes the proof. �

In the following theorem we establish the analyticity of the underlying semigroup associated to
the Stokes operator (A0,D(A0; V−

1
2 +α

n,Γd (Ω))).

Theorem 2.4.2. The unbounded operator (A0,D(A0; V−
1
2 +α

n,Γd (Ω))) is the infinitesimal generator

of an analytic semigroup on V−
1
2 +α

n,Γd (Ω).

Proof. Thanks to [EN06, Theorem 4.6, p. 95], it suffices to show that A0 is sectorial and
densely defined in V−

1
2 +α

n,Γd (Ω). These two properties are established in Propositions 2.4.7 and
2.4.8, respectively. �

2.4.3 Expression of the pressure

In this subsection, when h = 0, we rewrite the pressure π in (2.1.1) in terms of w, F and g.

Let us first observe that, formally, the pressure π in system (2.1.1) is the solution of the el-
liptic equation

∆π = div F in Ω, ∂π

∂n = F · n + ν∆w · n on Γd, π = 2νε(w)n · n on Γn. (2.4.53)

We write π in the form π = q + ρ, where q is the solution to (2.4.21) with s = −1
2 + α and ρ

formally satisfies the elliptic equation

∆ρ = 0 in Ω, ∂ρ

∂n = ν∆w · n on Γd, ρ = 2νε(w)n · n on Γn. (2.4.54)
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From Lemma 2.4.6 it follows that the solution q of system (2.4.21) belongs to H
1
2 +α,1(Ω)

when F ∈ H−
1
2 +α,0(Ω).

Following [FNR19], in order to define the variational problem satisfied by ρ = π − q, we
introduce the problem

Find ρ ∈ L2(Ω) such that∫
Ω
ρζ dx = 2ν〈ε(w),∇2χ〉

H
1
2−α,H−

1
2 +α − 2ν

∫
Γd
ε(w)n · ∇χdx,

(2.4.55)

for all ζ ∈ L2(Ω), where χ is solution to (2.4.19). In this definition we use the fact that
w ∈ H

3
2 +α(Ω) and that the solution χ to (2.4.19) belongs to H

3
2 +α(Ω), for all α ∈ (0, α∗) if

ζ ∈ L2(Ω). Since ∇ is linear and continuous from L2(Ω) into H−1(Ω) and from H1(Ω) into
L2(Ω), it is also continuous from H

1
2 +α(Ω) into H−1/2+α(Ω). Thus, if ∇χ belongs to H

1
2 +α(Ω),

∇2χ is well defined as a function belonging to (H−
1
2 +α(Ω))2, and problem (2.4.55) is meaningful.

Lemma 2.4.8. The variational problem (2.4.55) admits a unique solution ρ ∈ L2(Ω).

Proof. Let us introduce the linear functional L : L2(Ω)→ R given by

L(ξ) = 2ν〈ε(w),∇2χ〉
H

1
2−α,H−

1
2 +α − 2ν

∫
Γd
ε(w)n · ∇χ,

where χ is solution to (2.4.19) with source term ζ ∈ L2(Ω). Let us notice that

2ν〈ε(w),∇2χ〉
H

1
2−α,H−

1
2 +α ≤ C‖ε(w)‖

H
1
2−α
‖∇2χ‖

H−
1
2 +α

≤ C‖w‖
H

3
2 +α‖ζ‖L2

and
−2ν

∫
Γd
ε(w)n · ∇χ ≤ C‖ε(w)‖L2(Γd)‖∇χ‖L2(Γd)

≤ C‖w‖
H

3
2 +α‖ζ‖L2 .

Thus, L ∈ L(L2(Ω),R). Then, the result follows from the Riesz representation Theorem. �

Remark 5. By taking the supremum over all ζ such that ‖ζ‖
H−

1
2 +α(Ω)

= 1 in (2.4.55), we can

prove that ρ belongs to H
1
2−α(Ω). But we cannot prove that ρ belongs to H

1
2 +α(Ω). This result

will be obtained as a consequence of the first statement in Lemma 2.4.9.
Let us introduce the operator Nv defined by

Nv ∈ L(H
3
2 +α(Ω), L2(Ω)), Nvw = ρ, (2.4.56)

where ρ is the solution to system (2.4.55), and the operator Np defined by

Np ∈ L(H−
1
2 +α,0(Ω), H

1
2 +α,1(Ω)), NpF = q, (2.4.57)

where q is the solution to system (2.4.21).

Lemma 2.4.9. Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). Let us assume that F ∈ H−
1
2 +α,0(Ω), h = 0 and

g ∈ H
3
2 (Γd). Let (w, π) ∈ H

3
2 +α,2
δ (Ω)×H

1
2 +α,1
δ (Ω) be the variational solution to system (2.1.1).

Then,
π = q + ρ,
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where q is the solution to (2.4.21) with s = −1
2 + α and ρ is the solution to the variational

problem (2.4.55). As a consequence, ρ belongs to H
1
2 +α,1
δ (Ω) and

‖ρ‖
H

1
2 +α,1
δ

(Ω)
≤ C

(
‖F‖

H−
1
2 +α,0(Ω)

+ ‖g‖
H

3
2 (Γd)

)
.

Proof. We first prove the following identity

− 〈div σ(w, π),∇χ〉
H−

1
2 +α,H

1
2−α

= −
∫

Ω
πζ +

∫
Ω
ρ ζ dx, (2.4.58)

for all ζ ∈ L2(Ω), where χ is the solution of (2.4.19). Let (wk)k be a sequence in H2(Ω)
converging to w in H

3
2 +α(Ω) and let (πk)k be a sequence in H1(Ω) converging to π in H

1
2 +α(Ω).

Since div, the divergence operator, belongs to L(L2(Ω), H−1(Ω)) and to L(H1(Ω), L2(Ω)), by
interpolation it also belongs to L(H

1
2 +α(Ω), H−

1
2 +α(Ω)). Thus we have

− 〈div σ(wk, πk),∇χ〉H− 1
2 +α,H

1
2−α

−−−−−→
k→+∞

−〈div σ(w, π),∇χ〉
H−

1
2 +α,H

1
2−α

.
(2.4.59)

Using that σ(w, π)n = 0 on Γn, we have

− 〈div σ(wk, πk),∇χ〉H− 1
2 +α,H

1
2−α

= −
∫

Ω
div σ(wk, πk) · ∇χ

= 〈∇2χ, σ(wk, πk)〉H− 1
2 +α,H

1
2−α
−
∫

Γ
σ(wk, πk)n · ∇χ

= −
∫

Ω
πk∆χ+ 2ν〈∇2χ, ε(wk)〉H− 1

2 +α,H
1
2−α

− 2ν
∫

Γd
ε(wk)n · ∇χ−

∫
Γn
σ(wk, πk)n · ∇χ

= −
∫

Ω
πkζ +

∫
Ω
Nvwkζ −

∫
Γn
σ(wk, πk)n · ∇χ

−−−−→
k→+∞

−
∫

Ω
πζ +

∫
Ω
Nvwζ −

∫
Γn
σ(w, π)n · ∇χ = −

∫
Ω
πζ +

∫
Ω
Nvwζ.

(2.4.60)

The identity (2.4.58) follows from (2.4.60) and (2.4.59).
On the other hand, we recall that the solution q to (2.4.21) with s = −1

2 + α satisfies

〈F,∇χ〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

= −
∫

Ω
q ζ (2.4.61)

together with the estimate (see Lemma 2.4.6)

‖q‖
H

1
2 +α,1(Ω)

≤ C‖F‖
H−

1
2 +α,0(Ω)

. (2.4.62)

Finally, since

− 〈div σ(w, π),∇χ〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

= 〈F,∇χ〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

, (2.4.63)

substituting (2.4.58) and (2.4.61) into (2.4.63) yields

−
∫

Ω
πζ +

∫
Ω
Nvwζ = −

∫
Ω
NpFζ.
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Thus, π = ρ+ q.
The regularity of ρ follows from those of π and q (see estimate (2.4.62)). �

2.4.4 System reformulated as an operator equation

Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). Let us introduce the lifting operatorsD ∈ L
(
H

3
2 (Γd),H

3
2 +α,2
δ (Ω)

)
and Dp ∈ L

(
H

3
2 (Γd), H

1
2 +α,1
δ (Ω)

)
defined by:

(Dg, Dpg) = (w, π), (2.4.64)

where (w, π) is the solution of (2.1.1) when F = 0 and h = 0.

Theorem 2.4.3. Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). Assume that F ∈ H−
1
2 +α,0(Ω), g ∈ H

3
2 (Γd)

and h = 0. A pair (w, π) ∈ H
3
2 +α,2
δ (Ω) ×H

1
2 +α,1
δ (Ω) is a variational solution of (2.1.1) if and

only if Pw, (I − P )w, and π are solutions to the following system{
−A0Pw +A0PDg = PF,
(I − P )w = (I − P )Dg, π = Nvw +NpF,

(2.4.65)

where the operators Nv and Np are introduced in (2.4.56) and (2.4.57), respectively.

Proof. Let (w, π) ∈ H
3
2 +α,2
δ (Ω)×H

1
2 +α,1
δ (Ω) be the solution of (2.1.1) given by Theorem 2.3.2.

We set w = ŵ +Dg and π = π̂ +Dpg, where the couple (ŵ, π̂) satisfies{
−div σ(ŵ, π̂) = F, div ŵ = 0 in Ω,
ŵ = 0 on Γd, σ(ŵ, π̂)n = 0 on Γn.

(2.4.66)

Then, we have ŵ ∈ D(A0), −A0ŵ = PF, and (I −P )w = (I −P )ŵ + (I −P )Dg = (I −P )Dg,
because P ŵ = ŵ. Since ŵ = w − Dg, we obtain −A0ŵ = −A0P ŵ = −A0P (w − Dg), from
which we deduce (2.4.65)1. The expression of the pressure π is obtained in Lemma 2.4.9.

Let us now prove the converse of the statement. Since the solution of system (2.1.1) is
also a solution for the operator equation (2.4.65), it only remains to show the uniqueness to
(2.4.65). Let us first notice that (A0w,w)L2 = 0 implies that w = 0. Then, if −A0Pw = 0 and
(I − P )w = 0, we deduce that w = 0. This completes the proof. �
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Appendix A: Study of the Stokes resolvent system

Given λ in the sector Σθ0 \{0}, with θ0 ∈ (π/2, π) as in Theorem ??, we consider the system
λu− div σ(u, p) = F in Ω,
div u = 0 in Ω,
u = 0 on Γd, σ(u, p)n = 0 on Γn.

(2.4.67)

Theorem 2.4.4. Let λ ∈ Σθ0 \ {0}. For all F ∈ H−1
Γd (Ω;C)2, system (2.4.67) admits a unique

solution (u, p) ∈ H1(Ω;C)2 × L2(Ω;C). Moreover, there exists C > 0 such that

‖u‖H1(Ω) + ‖p‖L2(Ω) ≤ C‖F‖H−1
Γd

(Ω). (2.4.68)

Proof. We first introduce the Hilbert spaces

VC =
{
v ∈ H1

Γd(Ω;C)2 | div v = 0 in Ω
}

and VR =
{
v ∈ H1

Γd(Ω;R)2 | div v = 0 in Ω
}
.

We then associate the following variational formulation to the problem (2.4.67) in the space VC:
Find v ∈ VC such that

a(v,ϕ) = 〈f ,ϕ〉H−1
Γd
,H1

Γd
for all ϕ ∈ VC, (2.4.69)

where
a(v,ϕ) = λ

∫
Ω

v ·ϕ+ 2ν
∫

Ω
ε(v) : ε(ϕ). (2.4.70)

To show that there is a unique v ∈ VC satisfying (2.4.69), we will use the complex version of
the Lax-Milgram Lemma (see [EG21, Lemma 25.2, p. 15]). For the continuous sesqulinear form
a over VC ×VC, let us verify the coercivity on VC. Let v ∈ VC. We distinguish two cases for
λ ∈ Σθ0 \ {0}:

• <λ ≥ 0. If <λ ≥ 0, then

< (a(v,v)) = <λ
∫

Ω
|v|2 + 2ν

∫
Ω
|ε(v)|2 ≥ C‖v‖2H1

Γd
,

and therefore the coercivity is verified.

• <λ < 0. Assume that <λ < 0. In this case, after taking ζ = −i sgn(=λ) λ
|λ|

in [EG21,

Lemma 25.2, p. 15], we get

<(ζa(v,v)) = |=λ|
|λ|

∫
Ω
|ε(v)|2 ≥ sin (π − θ0) ‖v‖2H1

Γd
.

Then, the variational problem (2.4.69) admits a unique solution v ∈ VC.

Let us now recover the pressure. We first introduce the Hilbert space

UR = {v ∈ H1
0(Ω;R)2 | div v = 0 in Ω}.

Since UR ⊂ VR, taking ϕ ∈ UR as test functions in (2.4.69), we get

〈λv− ν∆v− F,ϕ〉H−1,H1
0

= 0 for all ϕ ∈ UR. (2.4.71)
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After taking the real and imaginary parts in identity (2.4.71) we deduce from De Rham Theorem
that there exist qr, qi ∈ L2(Ω;R) such that

< (λv− ν∆v− F) = −∇qr

and
= (λv− ν∆v− F) = −∇qi.

We finally define q = qr + iqi ∈ L2(Ω;C). �
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Appendix B: Technical result adapted from Pazy’s book

In this appendix, we show the following result:

Proposition 2.4.9. Let (X, ‖·‖X) be a reflexive space. Assume that the unbounded linear op-
erator A of domain D(A), is such that there exists C > 0, satisfying

‖(λI −A)x‖X ≥ Cλ‖x‖X for all x ∈ D(A) and for all λ > 0, (2.4.72)

and the operator I −A is onto. Then, the following assertions hold:
(i) A is closed.

(ii) λI −A is onto for all λ > 0, i.e., R(λI −A) = X for all λ > 0.
(iii) The domain D(A) is dense in X.

The three assertions stated in the proposition are established in [Paz83] in the case C = 1 in
(2.4.72). Assertions (i) and (ii) are shown in [Paz83, Theorem 4.3 (a), p. 14-15], while assertion
(iii) is proved in [Paz83, Theorem 4.6, p.16]. In the proof of the Proposition 2.4.9 presented
below, we revisit the arguments presented in [Paz83].

Proof of Proposition 2.4.9.
(i) Using the fact that I − A is onto together with estimate (2.4.72) for λ = 1, we deduce

that (I −A)−1 is bounded and thus closed. Then, I −A is closed an therefore also A is
closed.

(ii) Let us consider the set

Λ = {λ | 0 < λ <∞ and R(λI −A) = X}.

Let λ ∈ Λ. By (2.4.72), λ belongs to the resolvent set ρ(A). Then, since ρ(A) is open,
a neighborhood of λ is in ρ(A). The intersection of this neighborhood with the real line
is in Λ and therefore Λ is open. On the other hand, let λn ∈ Λ such that λn −→ λ > 0.
For every y ∈ X, there exists xn ∈ D(A) such that

λnxn −Axn = y. (2.4.73)

From estimate (2.4.72) it follows that ‖xn‖X ≤ λ−1
n ‖y‖X ≤ K for some K > 0. Now,

λm‖xn − xm‖X ≤ ‖λm(xn − xm)−A(xn − xm)‖X
≤ |λn − λm|‖xn‖X ≤ K|λn − λm|.

Therefore (xn)n is a Cauchy sequence. Let xn −→ x. Then, by (2.4.73), Axn −→ λx− y.
From (i), A is closed, and then, x ∈ D(A) and λx−Ax = y. Therefore, R(λI −A) = X
and λ ∈ Λ. Thus, Λ is also closed in ]0,∞[. Finally, since 1 ∈ Λ and ]0,∞[ is connected,
Λ =]0,∞[.

(iii) Let x∗ ∈ X ′ be such that 〈x∗, x〉X′ ,X = 0 for every x ∈ D(A). We will prove that x∗ = 0
onX. Since I−A is onto, it suffices to show that 〈x∗, x−Ax〉X′ ,X = 0 for every x ∈ D(A),
which is equivalent to 〈x∗, Ax〉X′ ,X = 0 for every x ∈ D(A). Let x ∈ D(A). Then, by (ii)
there exists xn ∈ D(A) such that x = xn − (1/n)Axn. Since Axn = n(xn − x) ∈ D(A),
xn ∈ D(A2) and Ax = Axn − (1/n)A2xn or Axn = (I − (1/n)A)−1Ax. From (2.4.72), it
follows that ‖(I − (1/n)A)−1‖X ≤ 1/C and therefore ‖Axn‖X ≤ (1/C)‖Ax‖X . We also
have that ‖xn − x‖X ≤ (1/n)‖Axn‖X ≤ (1/Cn)‖Ax‖X and therefore xn −→ x. Then,
since ‖Axn‖ ≤ K and X is reflexive, there exists a subsequence (Axnk)k of (Axn)n such
that Axnk −→ y weakly. On the other hand, since by (i) A is closed, then y = Ax.
Finally, we have

〈x∗,Axnk〉X′ ,X = nk〈x∗, xnk − x〉X′ ,X = 0. (2.4.74)
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Letting nk −→ +∞ in (2.4.74), we obtain 〈x∗, Ax〉X′ ,X = 0. This holds for every x ∈
D(A) and therefore x∗ = 0 and thus, D(A) is dense in X. This completes the proof.

Appendix C: Justification of the identity (2.4.55) (formal compu-
tations)

We consider the system

∆ρ = 0 in Ω, ∂ρ

∂n = ν∆w · n on Γd, ρ = 2νε(w)n · n on Γn, (2.4.75)

where (w, π) is the solution of the system (2.1.1).

The aim of this appendix is to present the formal computations to get the identity (2.4.55)
in the definition of the very weak notion of solution for (2.4.75), as introduced in (2.4.55).

Let us consider auxiliar the system

∆χ = ζ in Ω, ∂χ

∂n
= 0 on Γd, χ = 0 on Γn. (2.4.76)

We claim that ∫
Ω
ρζ = 2ν

∫
Ω
ε(w) : ∇2χ− 2ν

∫
Γd
ε(w)n · ∇χ. (2.4.77)

After multiplying the first equation in (2.4.75) by ∇χ, and then performing some integration by
parts, we get ∫

Ω
ρζ = −

∫
Γ

∂ρ

∂nχ+
∫

Γ
ρ
∂χ

∂n

= −ν
∫

Γd
∆w · nχ+ 2ν

∫
Γn
ε(w)n · n∂χ

∂n

= −ν
∫

Γd
∆w · nχ+ 2ν

∫
Γn
ε(w)n · ∇χ,

(2.4.78)

from where we deduce that∫
Ω
ρζ = −ν

∫
Γd

∆w · nχ+ 2ν
∫

Γn
ε(w)n · ∇χ. (2.4.79)

In the chain of equalities (2.4.78), to go from the second line to the third, we use the fact that
χ = 0 on Γn, which allows us to deduce that ∇χ = ∂χ

∂nn on Γn.

After multiplying by ∇χ the first equation in (2.1.1), we get∫
Ω

F · ∇χ−
∫

Ω
∇π · ∇χ = −

∫
Ω

div (2νε(w)) · ∇χ. (2.4.80)

Let us first notice that after performing some integration by parts on the second term of the
identity (2.4.80), we obtain

−
∫

Ω
div (2νε(w)) · ∇χ = 2ν

∫
Ω
ε(w) : ∇2χ− 2ν

∫
Γ
ε(w)n · ∇χ

= 2ν
∫

Ω
ε(w) : ∇2χ− 2ν

∫
Γd
ε(w)n · ∇χ− 2ν

∫
Γn
ε(w)n · ∇χ.

(2.4.81)
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On the other hand, since div w = 0 in Ω, we can rewrite the second term of the identity (2.4.80)
as follows:

−
∫

Ω
div (2νε(w)) · ∇χ = −ν

∫
Ω

∆w · ∇χ

= ν

∫
Ω

div (∆w) · χ− ν
∫

Γ
∆wχ · n

= −ν
∫

Γd
∆wχ · n.

(2.4.82)

After combining identities (2.4.81) and (2.4.82), we get

− ν
∫

Γd
∆w · nχ = 2ν

∫
Ω
ε(w) : ∇2χ− 2ν

∫
Γd
ε(w)n · ∇χ− 2ν

∫
Γn
ε(w)n · ∇χ. (2.4.83)

Finally, replacing (2.4.83) in (2.4.79), we obtain the identity (2.4.77).



Chapter3
Existence of a local-in-time strong solution of
the fluid-structure system

Abstract of the current chapter

In this chapter, we analyse a system modeling the interaction between the incompressible
Navier-Stokes equations in a 2D rectangular domain with mixed boundary conditions, and a
structure governed by a damped Euler-Bernoulli beam equation. The structure, which is as-
sumed to be clamped at one end and free at the other one, is immersed in the domain occupied
by the fluid. We prove the existence of a local in time strong solution.
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3.1 Introduction

3.1.1 Description of the model

In this paper, we study a fluid-structure interaction problem coupling an incompressible and
viscous Newtonian fluid modeled by the incompressible Navier-Stokes equations, and an elastic
solid Se obeying a damped Euler-Bernoulli beam equation. The elastic solid, which is immersed
within the fluid, is clamped at one end to a rigid cylinder Sr and free at the other end. See
Figure 3.1.

Figure 3.1 – Reference configuration.

The reference configuration Ω of the fluid domain is given by

Ω = ([−L/2, L]× [−`, `]) \ S,

where S = Sr ∪ Se. The boundary Γ of Ω is divided into

Γ = Γi ∪ Γr ∪ Γs ∪ Γw ∪ Γn,

where

Γi = {−L/2} × [−`, `],
Γr =

{
(r(cos(θ)− cos(θ0)), r sin(θ)) | θ ∈ [θ0, 2π − θ0]

}
, r > 0, θ0 ∈ (0, π/2),

Γs = Γ−s ∪ Γ+
s ∪ Γ`s,

Γw = [−L/2, L]× {−`} ∪ [−L/2, L]× {`},
Γn = {L} × [−`, `],

with Γ−s = [0, `s] × {−e}, Γ+
s = [0, `s] × {e} and Γ`s = {`s} × [−e, e]. We also set Γd = Γ \ Γn.

See Figure 3.1.
When the dynamic is active, the interaction between the fluid and the structure involves a

deformation of the geometry as is illustrated in Figure 3.2.
Let T > 0. For a given function η defined from (0, T ) × (0, `s) to R that describes the

displacement of the centerline of the beam, we denote by Ωη(t) the fluid domain at time t and
by Γη(t) = Γ−η(t) ∪ Γ+

η(t) ∪ Γ`η(t) the fluid-structure interface, where Γ−η(t) and Γ+
η(t) represent the

bottom and the top of the structure respectively, and Γ`η(t) the lateral part, see Figure 3.2. Here,
we assume that the elastic part Se of the structure is completely described by the displacement
η of the centerline. More precisely, Γ−η(t), Γ+

η(t) and Γ`η(t) are given by

Γ−η(t) = {(x1, η(t, x1)− e)| x1 ∈ [0, `s]}, Γ+
η(t) = {(x1, η(t, x1) + e)| x1 ∈ [0, `s]}
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Figure 3.2 – Physical domain. The green-dashed lines denotes the reference centerline.

and
Γ`η(t) = {(`s, x2) | x2 = (1− λ)(−e+ η(t, `s)) + λ(e+ η(t, `s))), λ ∈ [0, 1]}.

For 0 < T ≤ ∞, we set

QTη =
⋃

t∈(0,T )

(
{t} × Ωη(t)

)
, ΣT

η =
⋃

t∈(0,T )

(
{t} × Γη(t)

)
,

QT = (0, T )× Ω, ΣT
s = (0, T )× Γs,

ΣT
i = (0, T )× Γi, ΣT

w = (0, T )× Γw,
ΣT
r = (0, T )× Γr, ΣT

n = (0, T )× Γn.

In the model, the fluid velocity u and the pressure p satisfy the incompressible Navier-Stokes
equations

∂tu + (u · ∇)u− div σ(u, p) = 0 in QTη , (3.1.1a)
div u = 0 in QTη , (3.1.1b)
u = gi on ΣT

i , u = 0 on ΣT
w, u = 0 on ΣT

r , (3.1.1c)
u = ηt~e2 on ΣT

η , σ(u, p)n = 0 on ΣT
n , (3.1.1d)

u(0) = u0 in Ω, (3.1.1e)

where the fluid stress tensor σ(u, p) is given by

σ(u, p) = 2νε(u)− pI, ε(u) = 1
2(∇u + (∇u)>),

with ν > 0 denoting the fluid viscosity.
We assume that the displacement of the centerline η is modeled by the damped Euler-

Bernoulli beam equation

∂2
t η + α∆2

sη + γBηt = H(u, p, η) in (0, T )× (0, `s), (3.1.2a)
η = 0 and ∂x1η = 0 on (0, T )× {0}, (3.1.2b)
∂2
x1η = 0 and ∂3

x1η = 0 on (0, T )× {`s}, (3.1.2c)
η(0) = 0 and ∂tη(0) = η0

2 in (0, `s), (3.1.2d)

where the parameters α > 0 and γ > 0 are constants relative to the nature of the structure.
Throughout the paper, we assume that ∆2

s = ∂4

∂x4 with domain D(∆2
s) = H4

{0,`s}(0, `s) stands for
the bi-Laplace operator on (0, `s) and we set B = (∆2

s)
1
2 with domain D(B) = H2

{0}(0, `s) (see
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Section 3.2.1). With this choice of B, system (3.1.2) is known as a damped Euler-Bernoulli beam
equation with a structural type damping (see [CR82]). The source term H on the right-hand
side of the structure equation is given by

H(u, p, η) = −
(
σ+(u, p)n+

η(t) + σ−(u, p)n−η(t)

)√
1 + (∂x1η)2 · ~e2, (3.1.3)

where
σ±(u, p) = σ(u(t, x1, η(t, x1)± e), p(t, x1, η(t, x1)± e)),

and n+
η(t) (resp. n−η(t)) is the unit normal to Γ+

η(t) (resp. Γ−η(t)) exterior to Ωη(t). This expression
for H is derived from the system’s energy identity. See Appendix A.

The equations (3.1.1) and (3.1.2) have to be completed by the so-called kinematic-dynamic
interface coupling conditions. The matching kinematic condition has already been included in
system (3.1.1) and is given by

u = ηt~e2 on ΣT
η .

The dynamic coupling condition is encapsulated in the functionH defined in (5.1.2) that appears
on the right-hand side of equation (3.1.2). This term describes the force exerted by the fluid on
Γ+
η(t) ∪ Γ−η(t).

3.1.2 Discussion

Following the article of Quarteroni et al. [QTV00], there have been many works studying
the coupling between the incompressible Navier-Stokes equations with beam or plate equations.
Let us present a non-exhaustive brief review below.

Concerning the study of the existence of weak solutions, to the best of our knowledge, the first
result in this direction was done by Chambolle et al. [CDEG05], where they studied a system
coupling the 3D incompressible Navier-Stokes equations and a 2D damped plate equation. This
result was later extended by Grandmont [Gra08] to the undamped case. In both works, which
are also valid in the 2D/1D setting, the existence of weak solutions holds as long as the structure
does not touch the fixed part of the fluid boundary. Recently, Casanova et al. [CGH21], show
in the 2D/1D undamped setting, the existence of global in time weak solutions regardless of a
possible contact between the structure and the fixed part of the fluid domain.

Regarding the study of strong solutions, to the best of our knowledge, the first result was
obtained by Da Veiga [Bei04] in the case where the dynamic of the structure is governed by a
damped Euler-Bernoulli beam equation. There, the author shows a local-in-time existence result
under the assumption of a smallness condition on the data. Later, this result was improved by
Lequeurre [Leq11], who proves the same local in time existence result showed by da Veiga, but
without the assumption of smallness condition on the data. The study of the undamped case
is done in Badra et al. [BT19], where the authors show the existence of a local in time strong
solution.

The model studied in the present paper considers a structure immersed in a fluid, with one
end free, but with the restriction that its displacement is only tranversal. The main contribution
of this work is the proof of the existence of a local-in-time strong solution to system (3.1.1)-
(3.1.2), see Theorem 3.2.1. Let us now describe the strategy used in the proof, along with the
main difficulties encountered in the analysis.

Since the fluid domain evolves over time, we rewrite the system in a fixed reference domain
by introducing an appropriate change of variables. After performing the change of variables, we
must deal with the presence of additional nonlinearities in the new system written in the refer-
ence configuration. To address the nonlinear problem in this framework, we employ a classical
approach. First, we associate to the nonlinear problem a linear one involving nonhomogeneous
source terms, where the latter represent the nonlinearities. Then, after solving the linear prob-
lem, we use the Banach fixed point theorem to treat the nonlinear problem. The crucial points
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are the establishement of the well-posedness of the linear problem and the Lipschitz estimates
used in the fixed point argument. Indeed, both steps are interconnected in the sense that the
regularity imposed on the inhomogeneous data of the linear problem must be appropriate to ob-
tain the estimates of the nonlinear terms in the fixed point argument. This key aspect reduces
to studying the spatial regularity of the fluid velocity and pressure in the linear inhomogeneous
problem. More precisely, we have to study the regularity of w and pressure π of the stationary
Stokes system {

−div σ(w, π) = F in Ω, div w = h in Ω,
w = g on Γd, σ(w, π)n = 0 on Γn,

(3.1.4)

where F, h and g are stationary data. Here, F and h play the role of the nonlinear terms obtained
after rewriting the system in the reference configuration. We first highlight that the domain Ω
has reentrant corners at A and B (see Figure 3.1). Secondly, we emphasize the presence of
the junctions points between Dirichlet and Neumann boundary conditions at vertices C and
D. To the best of our knowledge, a first regularity result that take into account the two issues
mentioned above is the one stated by Maz’ya and Rossmann in [MR10, Theorem 9.4.5]. This
result allows us to deduce that the solution (w, π) of the system (3.1.4) satisfies the following
regularity:

(w, π) belongs to the weighted Sobolev space H2
δ(Ω)×H1

δ (Ω)

when F ∈ L2(Ω), h ∈ H1(Ω) and g ∈ H
3
2 (Γd),

(3.1.5)

for all δ ∈ (δ∗, 1), where δ∗ ∈ (0, 1/2). The weighted Sobolev spaces H2
δ(Ω), H1

δ (Ω) are intro-
duced in (3.2.2).

Next, the crucial question to answer is determine whether all the nonlinear terms encoded in
F and h belong to L2(Ω) and H1(Ω), respectively. In this regard, based on [FNR19, Lemma 6.3],
the answer to this question is negative. In fact, there are certain terms in F for which we are
unable to establish the L2-estimate, for instance, the term wxxη. Indeed, the cited lemma above
states that if w ∈ H2

δ(Ω) and η ∈ H1(−L/2, L) with η(0) = η(`s) = 0, then wxxη belongs to
L2(Ω). The core argument of the proof of this result relies on the assumption η(0) = η(`s) = 0.
However, in our setting, this is not generally the case, as η(`s) 6= 0. For this reason, we must
seek an alternative regularity result. In particular, an adapted version of (3.1.5) is provided
by the authors in Section 2.3 of Chapter 2, in terms of heterogeneous Sobolev spaces. The
heterogeneous Sobolev spaces are introduced in 3.2.1.

3.1.3 Outline

The remainder of this paper is organized as follows. In Section 3.2, after introducing the
notation of the different functional spaces, we perform a change of variable to rewrite system
(3.1.1)-(3.1.2) in the reference configuration and state the main result of the paper. Section 3.3
is devoted to rewrite the nonhomogeneous linear system as an operator equation. We rewrite the
stationary Stokes system in Subsection 3.3.1 and the structure equation in Subsection 3.3.2. The
coupled linear fluid-structure system is rewritten as an evolution equation in Subsection 3.3.3.
In Subsection 3.3.4 is studied the analyticity of the underlying semigroup. An existence and
uniqueness result for the nonhomogeneous linear system is presented in section 3.4. In Section
3.5, we estimate the nonlinear terms. In Section 3.6, we show the main result of the paper by
using a fixed point argument. Finally, some technical results are collected in Appendix.

3.2 Notation and statement of the main result

Throughout this paper, the letter C will denote a constant (independent of T ) which may
vary from line to line.
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3.2.1 Notation

Usual and weighted Sobolev spaces

We set L2(Ω) = L2(Ω;R2) and Hs(Ω) = Hs(Ω;R2) for s > 0. We also introduce the following
functional spaces:

Hs
Γd(Ω) = {u ∈ Hs(Ω) | u = 0 on Γd} for s > 1/2,

V0
n,Γd(Ω) = {u ∈ L2(Ω) | div u = 0 in Ω, u · n = 0 on Γd},

V1
Γd(Ω) = H1

Γd(Ω) ∩V0
n,Γd(Ω),

H1
{0}(0, `s) = {µ ∈ H1(0, `s) | µ(0) = 0},

H2
{0}(0, `s) = {µ ∈ H2(0, `s) | µ(0) = ∂x1µ(0) = 0},

H3
{0,`s}(0, `s) = {µ ∈ H3(0, `s) ∩H2

{0}(0, `s) | ∂
2
x1µ(`s) = 0},

H4
{0,`s}(0, `s) = {µ ∈ H4(0, `s) ∩H2

{0}(0, `s) | ∂
2
x1µ(`s) = ∂3

x1µ(`s) = 0},

H2,1
{0}((0, T )× (0, `s)) = L2(0, T ;H2

{0}(0, `s)) ∩H
1(0, T ;L2(0, `s)),

H4,2
{0,`s}((0, T )× (0, `s)) = L2(0, T ;H4

{0,`s}(0, `s)) ∩H
2(0, T ;L2(0, `s)).

All of the previous spaces are endowed with the natural norms.

We introduce the space of the inflow conditions

H(Γi) =
{
g = (g1, g2) | g2 = 0 and g1 ∈ H

3
2 (Γi) ∩H1

0 (Γi)
}
, (3.2.1)

equipped with the norm (g1, g2) 7→ ‖g1‖
H

3
2 (Γi)

.

If we identify V0
n,Γd(Ω) with its dual and, if V−1

Γd (Ω) denotes the dual of V1
Γd(Ω), we have

V1
Γd(Ω) ↪→ V0

n,Γd(Ω) ↪→ V−1
Γd (Ω)

with dense and continuous embeddings. For 0 < s < 1/2, we introduce the intermediate spaces

Hs
Γd(Ω) = [L2(Ω),H1

Γd(Ω)]s.

For the definition of interpolation spaces by using the complex interpolation method see e.g.
[Tar07] or [Tri78]. The dual of Hs

Γd(Ω) is denoted by H−sΓd (Ω).

Let us denote by J the set of vertices of Γ. For β > 0, we introduce the norms

‖w‖H2
β

:=

 2∑
|k|=0

2∑
i=1

∫
Ω

( ∏
J∈J

r2β
J

)
|∂kwi|2dx

1/2

, w ∈ C∞(Ω;R2)

‖p‖H1
β

:=

 1∑
|k|=0

∫
Ω

( ∏
J∈J

r2β
J

)
|∂kp|2dx

1/2

, p ∈ C∞(Ω;R)

(3.2.2)

where rJ stands for the distance to a junction point J ∈ J , k = (k1, k2) ∈ N2 denotes a
two-index with length |k| = k1 + k2, ∂k denotes the corresponding partial differential operator
and w = (w1, w2). We denote by H2

β(Ω;R2) (respectively, H1
β(Ω)) the closure of C∞(Ω;R2)

(respectively, C∞(Ω)) in the norm ‖·‖H2
β

(Ω) (respectively, ‖·‖H1
β

(Ω)).
Throughout this chapter, we will use the following regularity exponents introduced in Sub-
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section 2.2.2 of Chapter 2:

α∗ ∈ (0, 1/2) and δ∗ ∈ (0, 1/2). (3.2.3)

Heterogeneous Sobolev spaces

Let ε > 0. We introduce the cut-off function Ψ ∈ C∞(R2) satisfying 0 ≤ Ψ ≤ 1,

Ψ = 1 on (−L/2, `s + ε/2)× (−`, `) and Ψ = 0 on (`s + ε, L)× (−`, `). (3.2.4)

Figure 3.3 – Decomposition of the domain Ω.

We also define Ω2 = (`s + ε/2, L) × (−`, `). We now introduce the heterogeneous Sobolev
spaces

H−
1
2 +α,0(Ω) =

{
F ∈ H−

1
2 +α(Ω)|(1−Ψ)F ∈ L2(Ω)

}
,

H
1
2 +α,1(Ω) =

{
p ∈ H

1
2 +α(Ω)|(1−Ψ)p ∈ H1(Ω)

}
,

H
1
2 +α,1
δ (Ω) =

{
p ∈ H

1
2 +α(Ω)|(1−Ψ)p ∈ H1

δ (Ω)
}
,

H
3
2 +α,2
δ (Ω) =

{
v ∈ H

3
2 +α(Ω)|(1−Ψ)v ∈ H2

δ(Ω)
}
,

(3.2.5)

which are respectively endowed with the norms

‖F‖
H−

1
2 +α,0 :=

(
‖F‖2

H−
1
2 +α + ‖(1−Ψ)F‖2L2

)1/2
,

‖p‖
H

1
2 +α,1 :=

(
‖p‖2

H
1
2 +α + ‖(1−Ψ)p‖2H1

)1/2
,

‖p‖
H

1
2 +α,1
δ

:=
(
‖p‖2

H
1
2 +α + ‖(1−Ψ)p‖2H1

δ

)1/2
,

‖u‖
H

3
2 +α,2
δ

:=
(
‖u‖2

H
3
2 +α + ‖(1−Ψ)u‖2H2

δ

)1/2
.

3.2.2 System in the reference configuration

This subsection is devoted to rewriting the system (3.1.1)-(3.1.2) in the reference configura-
tion. The spatial variable in the physical domain is denoted by x = (x1, x2), while the spatial
variable in the reference configuration will be denoted by z = (z1, z2).
For r > 1/2, we denote by γ±s the trace operators belonging to L(Hr(Ω), Hr− 1

2 (Γ±s )), which are



3.2. Notation and statement of the main result 75

defined by

(γ+
s q)(x1) = q(x1, e) and (γ−s q)(x1) = q(x1,−e) for all x1 ∈ (0, `s). (3.2.6)

Let us now introduce an appropriate extension of any function defined on [0, `s] to [−L/2, L].
We set η 7→ Eη, where

Eη(x1) =


0 if x1 ∈ [−L/2, 0],
η(x1) if x1 ∈ [0, `s],
(3η(2`s − x1)− 2η(3`s − 2x1)) θ(x1) if x1 ∈ [`s, L],

(3.2.7)

where θ ∈ C∞([`s, L]) is a nonnegative function with values in [0, 1], which is equal to 1 in
[`s, `s + ε/4] and to 0 in [`s + ε/2, L], for some 0 < ε < (L− `s)/2. The following proposition is
a direct consequence of definition of E .

Proposition 3.2.1. For all T > 0 and η ∈ H4,2
{0,`s}((0, T )× (0, `s)), the following assertions are

satisfied.
(i) For all 0 < a0 < 1/2,

Eη ∈ L2(0, T ;H2+a0(−L/2, L)) ∩H2(0, T ;L2(−L/2, L)).

and
Eη ∈ H

1+2a0−2τ
2+aa (0, T ;H

3
2 +τ (−L/2, L)), for all τ ∈ (0, 3a0/4).

In particular, (Eη)(t, ·) is a map of class C1.
(ii) For all 0 < ε0 < L,

(Eη)|(ε0,L) ∈ L2(0, T ;H4(ε0, L)).

(iii) (Eη)|[`s+ε/2,L] ≡ 0.

For a given η ∈ H4,2
{0,`s}((0, T )× (0, `s)), we set

η+(t, ·, e) := (Eη)(t, ·) on [−L/2, L] and η−(t, ·,−e) := (Eη)(t, ·) on [−L/2, L].

We now introduce two C∞ functions χ+ and χ−, with values in [0, 1], such that χ+(z2) = 1 in
[ e2 , `] and χ

+(z2) = 0 in [−`, e3 ], χ−(z2) = 1 in [−`,− e
2 ] and χ−(z2) = 0 in [− e

3 , `].

For T > 0, we introduce the set

E(0, T ) =
{
η ∈H4,2

{0,`s}((0, T )× (0, `s)) such that

min{`− e+ η±χ (t, z) | (t, z) ∈ [0, T ]× Ω} ≥ (`− e)/2
}
.

(3.2.8)

where
η±χ (t, z) :=

(
∓χ± + (`∓ z2)∂z2χ±

)
η±(t, z1), with (t, z) ∈ [0, T ]× Ω.

For η belonging to E(0, T ), we consider the map X(t, ·) : Ω → Ωη(t) defined by X(t, z) = x =
(x1, x2), where

x1 = z1,

x2 = χ±(z2)z2(`− e∓ η±(t, z1)) + `η±(t, z1)
`− e

+ (1− χ±(z2))z2,
(3.2.9)
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for all z = (z1, z2) ∈ Ω. Given 0 < ε0 < L introduced in Proposition 3.2.1, let us set

OR := ([ε0, `s]× ([−`,−e] ∪ [e, `])) ∪ ([`s, L]× [−`, `]) ,
OL := (Ω \ OR) ∪ ([ε0, ε1]× ([−`,−e] ∪ [e, `])) .

(3.2.10)

See Figure 3.4.

Figure 3.4 – Decomposition of the domain Ω.

The following Proposition is a consequence of the definition of the mapping X given in (3.2.9)
and Proposition 3.2.1.

Proposition 3.2.2. Let T > 0. For all η ∈ E(0, T ), the mapping X defined in (3.2.9) satisfies:
(i) X(0,Ω) = Ω.

(ii) For all t ∈ [0, T ], we have that X(t,Γi) = Γi, X(t,Γw) = Γw, X(t,Γr) = Γr, X(t,Γs) =
Γη(t) and X(t,Γn) = Γn.

(iii) X ∈ L2(0, T ; H2+a0(OL)) for all 0 < a0 < 1/2, and X ∈ L2(0, T ; H4(OR)).
(iv) X ∈ H2(0, T ; L2(Ω)).
(v) X(t, ·) is a C1−diffeomorphism from Ω onto Ωη(t).

We will denote by Y the inverse of X. We also set J(t, z) = (J i,j)1≤i,j≤2 = (∇X)−1(t, z) for
all (t, z) ∈ (0, T )× Ω. Let us notice that for X defined in (3.2.9)

det(J) = `− e
`− e+ η±χ (t, z)

. (3.2.11)

In order to transform the system (3.1.1)-(3.1.2) in the reference configuration, we introduce the
change of unknowns

û(t, z) = u(t,X(t, z)) and p̂(t, z) = p(t,X(t, z)), (3.2.12)

for all (t, z) ∈ (0, T )× Ω. We get that (û, p̂, η) satisfies the system

∂tû− div σ(û, p̂) = F̂f (û, p̂, η) in QT , (3.2.13a)
div û = div Ĝdiv(û, η) in QT , (3.2.13b)
û = gi on ΣT

i , û = 0 on ΣT
w, û = 0 on ΣT

r , (3.2.13c)
û = ηt~e2 on ΣT

s , σ(û, p̂)n = 0 on ΣT
n , (3.2.13d)

û(0) = u0 in Ω, (3.2.13e)

∂2
t η + α∆2

sη + γ(∆2
s)

1
2∂tη = −γ+

s p̂+ γ−s p̂+ F̂s(û, p̂, η) in (0, T )× (0, `s), (3.2.13f)
η = 0 and ∂z1η = 0 on (0, T )× {0}, (3.2.13g)
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∂2
z1η = 0 and ∂3

z1η = 0 on (0, T )× {`s}, (3.2.13h)
η(0) = 0 and ηt(0) = η0

2 in (0, `s), (3.2.13i)

where the nonlinear terms F̂f , Ĝdiv and F̂s are given by

F̂f,i(û, p̂, η) = −(û− ∂tX) · J>∇ûi + ν
∑
j,k,`

∂2ûi
∂zk∂z`

(Jk,jJ l,j − δk,jδ`,j)

+ ν
∑
j,k,`

∂ûi
∂zk

∂

∂z`
(Jk,j)J `,j +

(
(IR2 − J>)∇q

)
i
− ν (∇ (∇û : (IR2 − cof(∇X))))i ,

(3.2.14)

i = 1, 2,
Ĝdiv(û, η) = (IR2 − cof(∇X)>)û (3.2.15)

and

F̂s(û, η) =− νγ+
s

(
ηx

[∑
k

∂û1
∂zk

∂Yk
∂x2

+
∑
k

∂û2
∂zk

∂Yk
∂x1

])
+ 2νγ+

s

∑
k

∂û2
∂zk

∂Yk
∂x2

+ νγ−s

(
ηx

[∑
k

∂û1
∂zk

∂Yk
∂x2

+
∑
k

∂û2
∂zk

∂Yk
∂x1

])
− 2νγ−s

∑
k

∂û2
∂zk

∂Yk
∂x2

.

(3.2.16)

The explicit change of variable for the map X(t, ·) given in (3.2.9), is presented in the Appendix
B.

3.2.3 Statement of the main result

Following [MRR20], we introduce the definition of Sobolev spaces in the time-dependent
domain Ωη(t).

Definition 3.2.1. Let α ∈ (0, α∗), δ ∈ (δ∗, 1) and T > 0. For any η ∈ E(0, T ), we say that u
belongs to L2(0, T ; H

3
2 +α,1
δ (Ωη(·))) (resp. H1(0, T ; H−

1
2 +α,0(Ωη(·))) if there exists X belonging to

L2(0, T ; H2+a0(OL)) ∩ L2(0, T ; H4(OR)) ∩H2(0, T ; L2(Ω)), with 0 < a0 < 1/2, such that for all
t ∈ [0, T ], X(t, ·) is a C1−diffeomorphism from Ω onto Ωη(t), and when û defined by

û(t, z) = u(t,X(t, z)), for all (t, z) ∈ [0, T ]× Ω,

belongs to L2(0, T ; H
3
2 +α,2
δ (Ω)) (resp. H1(0, T ; H−

1
2 +α,0(Ω))). Similarly, we will say that p

belongs to L2(0, T ;H
1
2 +α,1
δ (Ωη(·))) when p̂, defined by

p̂(t, z) = p(t,X(t, z)), for all (t, z) ∈ [0, T ]× Ω,

belongs to L2(0, T ;H
1
2 +α,1
δ (Ω)).

We are interested in solutions (u, p, η) to system (3.1.1)-(3.1.2) satisfying

u ∈ L2(0, T ; H
3
2 +α,2
δ (Ωη(·))) ∩H1(0, T ; H−

1
2 +α,0(Ωη(·)),

p ∈ L2(0, T ;H
1
2 +α,1
δ (Ωη(·))),

η ∈ L2(0, T ;H4
{0,`s}(0, `s)) ∩H

2(0, T ;L2(0, `s)).

(3.2.17)

Definition 3.2.2. We say that the triple (u, p, η) is a strong solution to system (3.1.1)-(3.1.2)
over the time interval (0, T ), when it satisfies (3.2.17), equations (3.1.1a)-(3.1.1b) in the sense
of distributions in QTη , equation (3.1.2a) in the sense of distributions in (0, T ) × (0, `s), equa-
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tions (3.1.1c)-(3.1.1d)-(3.1.2b)-(3.1.2c) in the sense of traces, and the initial conditions stated
in (3.1.1e) and (3.1.2d).

Before presenting the main result of the paper, let us introduce some additional notation.
Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). We introduce the space

ZT =
(
L2(0, T ; H

3
2 +α,2
δ (Ω)) ∩H1(0, T ; H−

1
2 +α,0(Ω))

)
× L2(0, T ;H

1
2 +α,1
δ (Ω))×H4,2

{0,`s}((0, T )× (0, `s)),
(3.2.18)

equipped with the norm

‖(u, p, η)‖ZT = ‖u‖
L2(0,T ;H

3
2 +α,2
δ

(Ω))∩H1(0,T ;H−
1
2 +α,0(Ω))

+ ‖p‖
L2(0,T ;H

1
2 +α,1
δ

(Ω))
+ ‖η‖

H4,2
{0,`s}

((0,T )×(0,`s)).
(3.2.19)

We also introduce the set

B(T,R,u0, η
0
2) :=

{
(û, p̂, η) ∈ ZT | ‖(û, p̂, η)‖ZT ≤ R, η ∈ E(0, T )

and û(0) = u0, η(0) = 0, ηt(0) = η0
2

}
.

(3.2.20)

Let us now state the main results of the paper.

Theorem 3.2.1. For all u0 ∈ H1(Ω), η0
2 ∈ H1

{0}(0, `s) and gi ∈ H1
{0}(0, 1; H(Γi)) satisfying

u0 = 0 on Γi, u0 = 0 on Γr ∪ Γw,
u0 = η0

2(0, ·)~e2 on Γs, div u0 = 0 in Ω,
(3.2.21)

there exist T ∈ (0, 1) and R > 0 such that the system (3.2.13) admits a unique solution (û, p̂, η)
in B(T,R,u0, η

0
2). In addition, if we set

u(t, x) = û(t,X−1(t, x)) and p(t, x) = p̂(t,X−1(t, x)), for all x ∈ Ωη(t), t ∈ [0, T ],

where the map X(t, ·) : Ω −→ Ωη(t) is the one introduced in (3.2.9), then (u, p, η) is a solution
to system (3.1.1)-(3.1.2).

Remark 6. Theorem 3.2.1 can be extended to the case in which the damping operator B in equa-
tion (3.1.2a) is given by B = (∆2

s)r, with domain D(B) = D((∆2
s)r), for 1/2 < r ≤ 1. Through-

out the proof developed in this paper, the damping operator B only plays a role in proving the
analyticity of the semigroup generated by it. However, thanks to [CT89, Proposition 3.1], the
analyticity of the semigroup associated to B = (∆2

s)r, with domain D(B) = D((∆2
s)r), is valid

for all r ∈ [1/2, 1]. We emphasize that the case r = 1/2 of structural-type damping considered
in this work is primarly motivated by an ongoing study on a stabilization problem, where this
specific choice enables the application of the approach used in [FNR19].
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3.3 System rewritten using the semigroup formulation

Let us consider the non-homogeneous linear system given by

∂tv− div σ(v, p) = Ff in QT ,
div v = div Gdiv in QT ,
v = gi on ΣT

i , v = 0 on ΣT
w ∪ ΣT

r , v = ζ2~e2 on ΣT
s ,

σ(v, p)n = 0 on ΣT
n ,

v(0) = v0 in Ω,
∂tζ1 = ζ2 on (0, T )× (0, `s),
∂tζ2 + α∆2

sζ1 + γ(∆2
s)

1
2 ζ2 = −γ+

s p+ γ−s p+ Fs in (0, T )× (0, `s),
ζ1 = 0 and ∂x1ζ1 = 0 on (0, T )× {0},
∂2
x1ζ1 = 0 and ∂3

x1ζ1 = 0 on (0, T )× {`s},
ζ1(0) = 0 and ζ2(0) = ζ0

2 in (0, `s).

(3.3.1)

In this section, we shall rewrite system (3.3.1) as an operator equation when Ff = 0,
Gdiv = 0 and Fs = 0 (see Proposition 3.3.4). First, in Subsection 3.3.1 we recall some results of
the steady stationary Stokes system presented in Chapter 2. Next, in Subsection 3.3.2 we study
the structure equation. The analysis of the coupled linear fluid-structure interaction system
(3.3.1) is presented in Subsection 3.3.3.

3.3.1 Steady Stokes system

We consider the stationary Stokes system{
−div σ(w, π) = F in Ω, div w = h in Ω,
w = g on Γd, σ(w, π)n = 0 on Γn.

(3.3.2)

Let us first start recalling some useful properties stated in Chapter 2.

• Regularity result. In Theorems 2.3.1 and 2.3.2 of Chapter 2, we show the following ex-
istence, uniqueness and regularity results for system (3.3.2).

Theorem 3.3.1. Let assume that α ∈ (0, α∗) and δ ∈ (δ∗, 1).

(i) For all (F, h,g) ∈ H−1
Γd (Ω)×L2(Ω)×H

1
2 (Γd), system (3.3.2) admits a unique variational

solution (w, π) ∈ H1(Ω)× L2(Ω).

(ii) For all (F, h,g) ∈ H−
1
2 +α,0(Ω) × H

1
2 +α,1(Ω) ×H

3
2 (Γd), the variational solution (w, π)

of system (3.3.2) belongs to H
3
2 +α,2
δ (Ω) ×H

1
2 +α,1
δ (Ω). Moreover, there exists a constant

Cα > 0, such that

‖w‖
H

3
2 +α,2
δ

(Ω)
+ ‖π‖

H
1
2 +α,1
δ

(Ω)

≤ Cα
(
‖F‖

H−
1
2 +α,0(Ω)

+ ‖h‖
H

1
2 +α,1(Ω)

+ ‖g‖
H

3
2 (Γi)

)
.

(3.3.3)

Remark 7. The case when h = div Gdiv, with Gdiv irregular, which will be used later in the
proof of Proposition 3.4.2, is treated in Appendix C.1.

We now introduce the lifting operators D and Dp defined by

D ∈ L(H
3
2 (Γd),H

3
2 +α,2
δ (Ω)), Dp ∈ L(H

3
2 (Γd), H

1
2 +α,1
δ (Ω)),
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such that
(Dg, Dpg) = (w, π), (3.3.4)

where (w, π) is the solution of (3.3.2) when F = 0, h = 0 and g = 0.

• Stokes operator. We begin recalling the following result stated in [NR15, Lemma 2.2].
Proposition 3.3.1. We have that

L2(Ω) = V0
n,Γ0(Ω)

⊥
⊕∇H1

Γn(Ω), (3.3.5)

where H1
Γn(Ω) = {p ∈ H1(Ω) | p = 0 on Γn}. Moreover, the orthogonal projection P from L2(Ω)

onto V0
n,Γ0

(Ω) is defined by PF = F−∇q, where q is solution of the variational problem

Find q ∈ H1
Γn(Ω) such that∫

Ω
∇q · ∇φdx =

∫
Ω

F · ∇φdx, ∀φ ∈ H1
Γn(Ω).

(3.3.6)

The following proposition is proved Corollary 2.4.1.
Proposition 3.3.2. The operator P ∈ L(L2(Ω)) defined by

PF = F−∇q, (3.3.7)

where q is the solution to (3.3.6), is also continuous from Hs(Ω) into itself for all s ∈ [0, 1/2+α∗).
Furthermore, P ∈ L(H−

1
2 +α(Ω)) and P ∈ L(H−

1
2 +α,0(Ω)).

For 0 < s < 1/2, we introduce the space

Vs
n,Γd(Ω) = Hs

Γd(Ω) ∩V0
n,Γd(Ω), (3.3.8)

which is equipped with the Sobolev Hs
Γd−norm, and we define V−sn,Γd(Ω) as the dual of Vs

n,Γd(Ω)
with V0

n,Γd(Ω) as pivot space, equipped with the dual norm of Vs
n,Γd(Ω).

Remark 8. Let s ∈ (0, 1/2). Thanks to Lemma 2.4.5 of Chapter 2, we can identify the dual

space of Vs
n,Γd(Ω), denoted by V−sn,Γd(Ω), with the closed subspace V0

n,Γd(Ω)
‖·‖H−sΓd of H−sΓd (Ω).

We will use this identification throughout this chapter.
The Stokes operator (A0,D(A0; V0

n,Γd(Ω))) in V0
n,Γd(Ω) is defined by

D(A0; V0
n,Γd(Ω)) =

{
w ∈ H

3
2 +α(Ω) ∩V1

Γd(Ω) | ∃π ∈ H
1
2 +α(Ω) such that div σ(w, π) ∈ L2(Ω)

and σ(w, π)n = 0 on Γn
}
,

A0w = P div σ(w, π).

For all θ ∈ (π/2, π), we define the sector Σθ by

Σθ = {λ ∈ C | | arg(λ)| < θ} .

The following theorem is proved in Theorem 2.4.1 of Chapter 2.
Theorem 3.3.2. There exist θ0 ∈ (π/2, π) and C > 0 such that

‖(λI −A0)−1‖L(V0
n,Γd

(Ω)) ≤
C

|λ|
, for all λ ∈ Σθ0 \ {0}.

In particular, the unbounded operator (A0,D(A0; V0
n,Γd(Ω)) is the infinitesimal generator of an

analytic semigroup on V0
n,Γd(Ω).
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Since the domain Ω satisfies the assumption (H1) − (H4) stated in Subsection 2.2.1 of
Chapter 2, the same proof of Lemma 2.4.7 (ii) can be used to show the following result.

Lemma 3.3.1. For all s ∈ (0, 1/2),

[V0
n,Γd(Ω),V1

Γd(Ω)]s = Vs
n,Γd(Ω) and [V0

n,Γd(Ω),V−1
Γd (Ω)]s = V−sn,Γd(Ω).

Let us now introduce the Stokes operator A0 on V−
1
2 +α,0

n,Γd (Ω). In the same way as in Chapter
2, using the preceding lemma and the fact that A0 is an isomorphism from D(A0; V0

n,Γd(Ω)) into
V0
n,Γd(Ω) and from D(A0; V−1

Γd (Ω)) into V−1
Γd (Ω) (this follows from the Lax-Milgram theorem),

we deduce that A0 is also an isomorphism from

D(A0; V−
1
2 +α

n,Γd (Ω)) := [D(A0; V0
n,Γd(Ω)),D(A0; V−1

Γd (Ω))] 1
2−α

into [V0
n,Γd(Ω),V−1

Γd (Ω)] 1
2−α

= V−
1
2 +α

n,Γd (Ω).
(3.3.9)

But, since D(A0; V−1
Γd (Ω)) = V1

Γd(Ω),

D(A0; V−
1
2 +α

n,Γd (Ω)) = [D(A0; V0
n,Γd(Ω)),V1

Γd(Ω)] 1
2−α

.

We now recall the analyticity of the underlying semigroup associated to the Stokes operator
(A0,D(A0; V−

1
2 +α

n,Γd (Ω))) on V−
1
2 +α,0

n,Γd (Ω) established in Theorem 2.4.2 of Chapter 2.

Theorem 3.3.3. The unbounded operator (A0,D(A0; V−
1
2 +α

n,Γd (Ω))) is the infinitesimal generator

of an analytic semigroup on V−
1
2 +α

n,Γd (Ω).

• Expression of the pressure. Let us assume that h = 0. Formally, the pressure π in
system (3.3.2) is the solution of the elliptic equation

∆π = div F in Ω, ∂π

∂n = F · n + ν∆w · n on Γd, π = 2νε(w)n · n on Γn. (3.3.10)

We write π in the form π = q + ρ, where q is the formal solution of the elliptic equation

∆q = div F in Ω, ∂q

∂n = F · n on Γd, q = 0 on Γn, (3.3.11)

and ρ satisfies the elliptic equation

∆ρ = 0 in Ω, ∂ρ

∂n = ν∆w · n on Γd, ρ = 2νε(w)n · n on Γn. (3.3.12)

Let us now introduce the operator Np ∈ L(H−
1
2 +α,0(Ω), H

1
2 +α,1(Ω)) defined by

NpF = q, (3.3.13)

where q is the solution to system (3.3.11). Let us also introduce the operator
Nv ∈ L(H

3
2 +α(Ω), L2(Ω)) defined by

Nvw = ρ, (3.3.14)

where ρ is the solution to system (3.3.12). These operators are well-defined (see Subsection 2.4.3
in Chapter 2)

We recall the following result established in Theorem 2.4.3 of Chapter 2:
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Theorem 3.3.4. Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). Assume that F ∈ H−
1
2 +α,0(Ω), g ∈ H

3
2 (Γd)

and h = 0. A pair (w, π) ∈ H
3
2 +α,2
δ (Ω)×H

1
2 +α,1
δ (Ω) is solution to (3.3.2) if and only if

−A0Pw +A0PDg = PF,
(I − P )w = (I − P )Dg,
π = Nvw +NpF.

(3.3.15)

3.3.2 Euler-Bernoulli beam equation

In this subsection, we consider the structure equation

∂tη1 = η2 in (0, T )× (0, `s),
∂tη2 + α∆2

sη1 + γ(∆2
s)

1
2 η2 = 0 in (0, T )× (0, `s),

η1 = 0 and ∂x1η1 = 0 on (0, T )× {0},
∂2
x1η1 = 0 and ∂3

x1η1 = 0 on (0, T )× {`s},
η(0) = 0 and η2(0) = η0

2 in (0, `s).

(3.3.16)

In order to rewrite system (3.3.16) as an operator equation, we introduce the state space

Hs = H2
{0}(0, `s)× L

2(0, `s), (3.3.17)

where we recall that H2
{0}(0, `s) = {µ ∈ H2(0, `s) | µ(0) = ∂x1µ(0) = 0}. The space Hs is

equipped with the inner product

〈(η1, η2), (ζ1, ζ2)〉Hs =
∫ `s

0

(
α∂2

x1η1∂
2
x1ζ1 + η2ζ2

)
dx1. (3.3.18)

Let us now consider the unbounded operator ∆2
s = ∂4

∂x4 with domain D(∆2
s) = H4

{0,`s}(0, `s).
Since (∆2

s,D(∆2
s)) is self-adjoint and positive in L2(0, `s), we can define the operator (∆2

s)
1
2 as

in [Paz83, Section 2.6].

We now define the unbounded operator (As,D(As)) in Hs by

D(As) = D(∆2
s)×H2

{0}(0, `s), As =
(

0 I

−α∆2
s −γ(∆2

s)
1
2 .

)
(3.3.19)

Theorem 3.3.5. The unbounded operator (As,D(As)) is the infinitesimal generator of an an-
alytic semigroup on Hs.

Proof. Since the unbounded operator (∆2
s,D(∆2

s)) in L2(0, `s) is self-adjoint, positive, with
dense domain in L2(0, `s) and compact resolvent, by taking B = (∆2

s)1/2 with D(B) = H2
{0}(0, `s)

in [CT89, Proposition 3.1], we conclude the result. �

Proposition 3.3.3. Let us assume that η0
2 ∈ H1

{0}(0, `s). Then, system (3.3.16) admits a unique
solution (η1, η2) ∈ H4,2

{0,`s}((0, T )× (0, `s))×H2,1((0, T )× (0, `s)).

Proof. Since (As,D(As)) is the infinitesimal generator of an analytic semigroup on Hs and
(0, η0

2) ∈ [D(As), Hs]1/2 = H3
{0,`s}(0, `s)×H

1
{0}(0, `s), from [BDDM07, Theorem 3.1, Chapter 1],

we deduce that the pair (η1, η2) belongs to L2(0, T ;D(As)) ∩H1(0, T ;Hs). Thus,

η1 ∈ L2(0, T ;H4
{0,`s}(0, `s)) ∩H

1(0, T ;H2
{0}(0, `s))
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and
η2 ∈ L2(0, T ;H2

{0}(0, `s)) ∩H
1(0, T ;L2(0, `s)).

This completes the proof. �

3.3.3 Coupled linear fluid-structure system

In this subsection, we are going to rewrite system (3.3.1) as an evolution equation when
h = 0 and gi = 0. We start by introducing the lifting operators Dv

s and Dp
s defined by

(Dv
sη2, D

p
sη2) = (w, π), (3.3.20)

where (w, π) is solution of system (3.3.2). We also introduce the operatorNs ∈ L(L2(0, `s), H1(Ω))
which is defined by Nsκ = q, where q is solution of

∆q = 0 in Ω, ∂q
∂n = κ on Γ+

s ,
∂q

∂n = −κ on Γ−s ,
∂q

∂n = 0 on Γd \
(
Γ−s ∪ Γ+

s

)
,

q = 0 on Γn.

(3.3.21)

Proposition 3.3.4. Let α ∈ (0, α∗), δ ∈ (δ∗, 1) and T > 0. Assume that η2 ∈ H2,1((0, T ) ×
(0, `s)). Then, v ∈ L2(0, T ; H

3
2 +α,2
δ (Ω)) ∩H1(0, T ; H−

1
2 +α,0(Ω)) and q ∈ L2(0, T ;H

1
2 +α,1
δ (Ω)) is

a solution of the system
∂tv− div σ(v, q) = 0, div v = 0 in QT ,
v = 0 on ΣT

i , v = 0 on ΣT
r ∪ ΣT

w, v = η2~e2 on ΣT
s ,

σ(v, q)n = 0 on ΣT
n ,

v(0) = v0 in Ω,

(3.3.22)

if and only if, {
Pv′ = A0Pv−A0PD

v
sη2, Pv(0) = Pv0,

(I − P )v = (I − P )Dv
sη2, q = Nvv +Nsη2,t.

(3.3.23)

Remark 9. The solution of the operator equation (3.3.23) has to be understood in the sense of
[BDDM07, Definition 3.1(v), p. 129].

Proof. From Theorem 3.3.4 we know that the pair (v, q) belonging to(
L2(0, T ; H

3
2 +α,2
δ (Ω) ∩H1(0, T ; H−

1
2 +α,0(Ω)

)
× L2(0, T ;H

1
2 +α,1
δ (Ω)) is the solution to system

(3.3.22), if and only if,{
Pv′ = A0Pv−A0PD

v
sη2, Pv(0) = Pv0,

(I − P )v = (I − P )Dv
sη2, q = Nvv +Np(−vt).

Then, according to the definition of the operator Ns (see (3.3.21)) we deduce that Np(−∂tv) =
Ns∂tη2. �

We now proceed to rewrite the structure equation. Let us assume that Ff = 0, gi = 0 and
Fs = 0. Since the pressure is given by q = Nvv +Nsη2,t, we have

∂tη2 + α∆2
sη1 + γ(∆2

s)
1
2 η2 = −γ+

s q + γ−s q

= −γ+
s Nvv− γ+

s Ns∂tη2 + γ−s Nvv + γ−s Ns∂tη2.



3.3. System rewritten using the semigroup formulation 84

Thus, (
I + [γ+

s − γ−s ]Ns

)
∂tη2 + α∆2

sη1 + γ(∆2
s)

1
2 η2 = −γ+

s Nvv + γ−s Nvv. (3.3.24)

Then, thanks to the identity v = Pv + (I − P )v and the relation (I − P )v = (I − P )Dv
sζ2, we

deduce that equation (3.3.24) can be rewritten as follows:(
I + [γ+

s − γ−s ]Ns

)
∂tη2 + α∆2

sη1 + γ(∆2
s)

1
2 η2 =− γ+

s Nv(Pv +Dv
sη2 − PDv

sη2)

+ γ−s Nv(Pv +Dv
sη2 − PDv

sη2).
(3.3.25)

Lemma 3.3.2. Let α ∈ (0, α∗). The operator Ks = I + (γ+
s − γ−s )Ns is an automorphism in

L2(0, `s). Moreover, Ks is an automorphism in Hα(0, `s).

Proof. We set Ls = (γ+
s − γ−s )Ns. We observe that since γ+

s Ns and γ−s Ns belong to
L(L2(0, `s), H

1
2 (0, `s)), the operator Ls is a compact operator in L2(0, `s). Thus, to conclude is

enough to show that Ls is positive. Let us consider q = Nsκ. After integrating by parts we get

0 =
∫

Ω
∆q q = −

∫
Ω
|∇q|2 +

∫
∂Ω
q
∂q

∂n
= −

∫
Ω
|∇q|2 +

∫ `s

0
[(γ+

s − γ−s )Nsκ]κ,

from where we deduce that the operator Ls is non-negative. Moreover, if Lsκ = 0, then q = 0
in Ω, because q = 0 on Γn. Therefore, Ls is positive. On the other hand, given q ∈ Hα(0, `s),
we know that there exists a unique ζ ∈ L2(0, `s) such that q = Ksζ = ζ + (γ+

s − γ−s )Nsζ. Since
Nsζ ∈ H1(Ω), we have that (γ+

s − γ−s )Nsζ ∈ H
1
2 (0, `s). Finally, since α ∈ (0, α∗), we deduce

that ζ ∈ Hα(0, `s). This completes the proof. �

Now, we will proceed to write the system satisfied by the triple (Pv, ζ1, ζ2). We consider the
Hilbert space

Z = V−
1
2 +α

n,Γd (Ω)×Hs, (3.3.26)

equipped with the inner product

〈(u, η1, η2), (v, ζ1, ζ2)〉Z = 〈u,v〉
H−

1
2 +α(Ω)

+ +〈(η1, η2), (ζ1, ζ2)〉Hs ,

where 〈·, ·〉Hs is defined in (3.3.18). We recall that the cut-off function Ψ is introduced in (3.2.4).

We set V
1
2 +α
n,Γd (Ω) = H

1
2 +α
Γd (Ω)∩V0

n,Γd(Ω). We now define the unbounded operator (A,D(A)) in
Z by

D(A) =
{

(Pv, ζ1, ζ2) ∈ V
1
2 +α
n,Γd (Ω)×D(As) | Pv− PDv

sζ2 ∈ D(A0; V−
1
2 +α

n,Γd (Ω))
}
,

and
A = A1 +B+

1 +B−1 +B2 +B3, (3.3.27)

where

A1 =

A0 0 (−A0)PDv
s

0 0 I

0 −α∆2
s −γ(∆2

s)1/2

 , D(A1) = D(A), (3.3.28)

B±1

Pv
ζ1
ζ2

 =

 0
0

K−1
s γ±s Nv(Pv− PDv

sζ2 +Dv
sζ2)

 , D(B±1 ) = D(A), (3.3.29)
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B2

Pv
ζ1
ζ2

 =

 0
0

−(K−1
s − I)α∆2

sζ1

 , D(B2) = D(A), (3.3.30)

B3

Pv
ζ1
ζ2

 =

 0
0

−(K−1
s − I)γ(∆2

s)
1
2 ζ2

 , D(B3) = D(A). (3.3.31)

Remark 10. Concerning the operator (B±1 ,D(B±1 )), we remark that, at least formally,

B+
1

Pv
ζ1
ζ2

 =

 0
0

K−1
s γ+

s Nv(Pv− PDv
sζ2 +Dv

sζ2)

 =

 0
0

K−1
s γ+

s [ΨNv(Pv− PDv
sζ2 +Dv

sζ2)]

 ,
where Ψ is the cut-off function introduced in (3.2.4). The precise definition of the trace of
ΨNv(Pv + PDsη2 −Dsη2) is established later in (3.3.38).

The following result is a consequence of Proposition 3.3.4:

Theorem 3.3.6. Let α ∈ (0, α∗), δ ∈ (δ∗, 1) and 0 < T < 1. Assume that ζ1 ∈ H4,2((0, T ) ×
(0, `s)), ζ2 ∈ H2,1((0, T ) × (0, `s)), v ∈ L2(0, T ; H

3
2 +α,2
δ (Ω)) ∩ H1(0, T ; H−

1
2 +α,0(Ω)) and p ∈

L2(0, T ;H
1
2 +α,1
δ (Ω)). Suppose that Ff = 0, Gdiv = 0, gi = 0 and Fs = 0 in (3.3.1). Then

(v, p, ζ1, ζ2) is a solution of (3.3.1), if and only if,

d

dt


Pv
ζ1

ζ2

 = A


Pv
ζ1

ζ2

 ,

Pv(0)
ζ1(0)
ζ2(0)

 =


Pv0

0
ζ0

2

 ,
(I − P )v = (I − P )Dv

sζ2,

p = Nv(Pv− PDv
sζ2 +Dv

sζ2) +Ns∂tζ2.

(3.3.32)

3.3.4 Analyticity of the semigroup generated by (A,D(A)) on Z

The main result of this section is the following theorem:

Theorem 3.3.7. The operator (A,D(A)) is the infinitesimal generator of an analytic semigroup
on Z.

In order to show the theorem, we will first to prove that the operator (A1,D(A1)), with
D(A1) = D(A), is the infinitesimal generator of an analytic semigroup on Z. Then, thanks to
a perturbation result of generators of analytic semigroups is enough to show that the operators
(B+

1 ,D(A)), (B−1 ,D(A)), (B2,D(A)) and (B3,D(A)) are A1−bounded with relative bound zero
(cf. A. Pazy [Paz83, Chapter 3, Theorem 2.1] or K-J. Engel and R. Nagel [EN06, Chapter III,
Theorem 2]).

For a ∈ R and θ ∈ (0, π), we define the sector Σa,θ by

Σa,θ = {λ ∈ C | | arg(λ− a)| < θ}.

Theorem 3.3.8. The following assertions hold:
(i) There exists a ∈ R and θ ∈ (π/2, π) such that the sector Σa,θ is contained in the resol-

vent set ρ(A1) of the unbounded operator (A1,D(A1)). Moreover, there exists a positive
constant C such that

‖(λI −A1)−1‖L(Z) ≤
C

|λ− a|
, for all λ ∈ Σa,θ \ {0}. (3.3.33)
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(ii) The domain D(A) of the fluid-structure operator defined in (3.3.27) is dense in Z.
(iii) The unbounded operator (A1,D(A1)) is the infinitesimal generator of an analytic semi-

group on Z.

Proof.
(i) The proof is divided into two parts.

• Study of the resolvent set ρ(A1). Thanks to Theorem 3.3.3, we know that there
exists θf ∈ (π/2, π) such that the sector Σ0,θf is contained in ρ(A0). On the other hand,
[CT89, Proposition 3.1] implies the existence of as ∈ R and θs ∈ (π/2, π) such that the
sector Σas,θs is contained in ρ(As).

We now set the sector Σa,θ, where a = max{0, as} and θ = min{θf , θs}. Given λ ∈ Σa,θ

and (F, g, h) ∈ Z, we consider the operator equation (λI −A1)(Pv, η1, η2)> = (F, g, h)>.
Following the proof given in [Ray10, Theorem 3.6, p. 5411], we have thatPv

η1
η2

 =
(

(λI −A0)−1 0
(
(λI −A0)−1(−A0)PDv

s

)
(λI −As)−1

0 (λI −As)−1

)F
g
h

 ∈ D(A).

• Estimate of the resolvent of (A1,D(A)). The proof is similar to the one presented
in [Ray10, Theorem 3.6, p. 5411].

(ii) The proof makes use of Proposition 2.4.9 presented in the Appendix B at the end of
Chapter 2. We consider two cases.

• Suppose that a = 0. Then, since (0,∞) ⊂ Σa,θ, from estimate (3.3.33) we deduce
that

‖(λI −A1)v‖Z ≥ λC̃‖v‖Z for all v ∈ D(A) and for all λ > 0. (3.3.34)

On the other hand, the surjectivity of I − A1 follows from the first part of the proof of
assertion (i). Thus, from Proposition 2.4.9 we conclude that D(A) is dense in Z.

• Suppose that a = as. In this case, from (3.3.33) we deduce that

‖(λ̃I − Ã1)v‖Z ≥ λ̃C̃‖v‖Z for all v ∈ D(A) and for all λ̃ > 0, (3.3.35)

where Ã1 := A1 − aI, with D(A1) = D(A). Once again, the surjectivity of the operator
I− Ã1 follows from the first part of the proof of assertion (i). Thus, the densitiy of D(A)
in Z follows from Proposition 2.4.9.

(iii) According to [EN06, Theorem 4.6, p. 95], it suffices to show that the operator (A1,D(A))
is sectorial and densely defined. These two properties are established in the assertions
(i) and (ii), respectively.

�

Theorem 3.3.9. The operators (B+
1 ,D(A)) and (B−1 ,D(A)) are A1−bounded with relative

bound zero, i.e., for all a > 0, there exists Ca > 0 such that

‖B±1 (Pv, η1, η2)>‖Z ≤ a‖A1(Pv, η1, η2)>‖Z + Ca‖(Pv, η1, η2)>‖Z,

for all (Pv, η1, η2) ∈ D(A).

Proof. We will only consider the operator (B+
1 ,D(A)). Thanks to [EN06, Lemma 2.13, p. 132]

and [EN06, 2.15(i), p. 134], it is suffices to show that B+
1 ∈ L(D(A),Z) is a compact operator.
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Let us first notice that

B+
1

Pv
ζ1
ζ2

 =

 0
0

K−1
s γ+

s Nv(Pv− PDv
sζ2 +Dv

sζ2)

 =

 0
0

K−1
s γ+

s [ΨNv(Pv− PDv
sζ2 +Dv

sζ2)]

 ,
(3.3.36)

where Ψ is the cut-off function introduced in (3.2.4). From Theorem 3.3.8 (i), we know that for
all λ ∈ R satisfiying λ > a, where a is the parameter appearing in the cited theorem, and for all
(F, g, h)> ∈ V−

1
2 +α

n,Γd (Ω), there exists (Pv, η1, η2)> ∈ D(A) such that

(λI −A1)

Pv
η1
η2

 =

F
g
h

 . (3.3.37)

Assume that (I − P )v = (I − P )Dv
sη2. We will show that there exists C > 0 such that

‖ΨNv(Pv− PDv
sζ2 +Dv

sζ2)‖
H

1
2 +α(Ω)

≤ C‖F‖
V
− 1

2 +α
n,Γd

(Ω)
. (3.3.38)

We proceed by density. We assume that F ∈ V0
n,Γd(Ω). Then, (v, p, η1, η2) satisfies

λv− div σ(v, p) = F, div v = 0 in Ω,
v = η2~e2 on Γs, v = 0 on Γd \ Γs, σ(v, p)n = 0 on Γn,
λη1 − η2 = g in (0, `s),
λη2 + α∆2

sη1 + γ(∆2
s)

1
2 η2 = h in (0, `s),

η1(0) = η1,x(0) = 0 and η1,xx(`s) = η1,xxx(`s) = 0.

(3.3.39)

We solve the above system by first solving the structure equation. It is possible to check that
(η1, η2) ∈ H4

{0,`s}(0, `s)×H
2
{0}(0, `s). Moreover, there exists C1 > 0 such that

‖η1‖H4
{0,`s}

(0,`s) + ‖η2‖H2
{0}(0,`s)

≤ C1

(
‖g‖H2

{0}(0,`s)
+ ‖h‖L2(0,`s)

)
.

In particular, we can choose C2 > 0 large enough such that

‖η2‖H2
{0}(0,`s)

≤ C1

(
‖g‖H2

{0}(0,`s)
+ ‖h‖L2(0,`s)

)
≤ C2‖F‖

V
− 1

2 +α
n,Γd

(Ω)
. (3.3.40)

Then, using Theorem 3.3.1, we obtain that v ∈ H
3
2 +α(Ω) and p ∈ H

1
2 +α(Ω). In addition, by

using the same argument as in Proposition 3.3.4, we can express the pressure p as

p = Nv(Pv− PDv
sζ2 +Dv

sζ2) + λNsη2. (3.3.41)

We now set v1 = Ψv and p1 = Ψp. We notice that the couple (v1, p1) solves{
λv1 − div σ(v1, p) = F1, div v1 = κ in Ω,
v1 = Ψη2~e2 on Γs, v = 0 on (Γd \ Γs) ∪ Γn,

(3.3.42)

where
F1 = ΨF + p∇Ψ− ν (v∆Ψ + 2(∇Ψ · ∇)v +∇(v · ∇Ψ)) and κ = ∇Ψ · v.
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Since ΨF ∈ H−
1
2 +α

Γd (Ω), p ∈ L2(Ω) and v ∈ H1(Ω), we deduce that

F1 ∈ H−
1
2 +α

Γd (Ω), Ψη2~e2 ∈ H
3
2 (Γd) and κ ∈ H

1
2 +α(Ω).

Next, from [Dau89, Theorem 5.5(a)] and [BR, Theorem 3.2 and Corollary 3.3], we deduce in
particular that there exists C3 > 0 such that

‖p1‖
H

1
2 +α(Ω)

≤ C3‖F‖
V
− 1

2 +α
n,Γd

(Ω)
(3.3.43)

Thus, using (3.3.40) and (3.3.43) to estimate the terms appearing in the equality (3.3.41), we
get

‖ΨNv(Pv− PDv
sζ2 +Dv

sζ2)‖
H

1
2 +α(Ω)

≤ ‖λΨNsη2‖
H

1
2 +α(Ω)

+ ‖Ψp‖
H

1
2 +α ≤ C‖F‖

V
− 1

2 +α
n,Γd

(Ω)
.

The last estimate, together with the density of V0
n,Γd(Ω) in V−

1
2 +α

n,Γd (Ω), allows us to conclude
estimate (3.3.38). Now, since γ+

s [ΨNv(Pv − PDv
sζ2 + Dv

sζ2)] ∈ Hα(0, `s), from the fact that
K−1
s ∈ L(Hα(0, `s)) and that the embedding Hα(0, `s) ↪→ L2(0, `s) is compact, we deduce that

B+
1 ∈ L(D(A),Z) is a compact operator. This completes the proof. �

The proof of the following theorem may be adapted from [Ray10, Lemma 3.9].

Theorem 3.3.10. There exists θ1, θ2 ∈ (0, 1) such that B2 ∈ L(D((−A)θ1),Z) and B3 ∈
L(D((−A)θ2),Z).

Proof of Theorem 3.3.7. From assertion (iii) of Theorem 3.3.8 we know that the operator
(A1,D(A)) generates an analytic semigroup on Z. Then, using Theorems 3.3.9, 3.3.10 and
[Paz83, Chapter 3, Theorem 2.1] (see also [EN06, Chapter III, Theorem 2]), we deduce that the
fluid-structure operator (A,D(A)) generates an analytic semigroup on Z. This completes the
proof of Theorem 3.3.7.

3.4 Existence and regularity results for the non-homogeneous
linear system

Before presenting the result of the well-posedness for system (3.3.1), we will start by intro-
ducing an appropriate lifting associated to the inflow data gi on Γi, and another one associated
to the data Gdiv that appears in the divergence condition in system (3.3.1).

• Lifting of the inflow data gi on Γi. Let us consider the following system:
−div σ(z(t), π(t)) = 0 in Ω,
div z(t) = 0 in Ω,
z(t) = gi(t) on Γi, z(t) = 0 on Γr ∪ Γs ∪ Γw,
σ(z(t), π(t))n = 0 on Γn.

(3.4.1)

The following proposition is a direct consequence of Theorem 3.3.1 (ii).

Proposition 3.4.1. Let α ∈ (0, α∗), δ ∈ (δ∗, 1) and 0 < T < 1. For all gi ∈ H1
{0}(0, T ; H(Γi)),

system (3.4.1) admits unique solution (z, π) ∈ H1(0, T ; H
3
2 +α,2
δ (Ω)) × H1(0, T ;H

1
2 +α,1
δ (Ω)).

Moreover, there exists a positive constant Cα,δ, independent of T , such that

‖z‖
H1(0,T ;H

3
2 +α,2
δ

(Ω))
+ ‖π‖

H1(0,T ;H
1
2 +α,1
δ

(Ω))
≤ Cα,δ‖gi‖H1

{0}(0,T ;H(Γi)). (3.4.2)
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• Lifting of the divergence data Gdiv in Ω. We seek a lifting w of the data Gdiv appearing
in the divergence condition in (3.3.1) satisfying

w ∈ L2(0, T ; H
3
2 +α,2
δ (Ω)) ∩H1(0, T ; H−

1
2 +α,0(Ω)). (3.4.3)

First, we explain why the approaches used in [FNR19, Theorem 10.2] and [MRR20, Proposi-
tion 5.1] cannot be directly applied separetely to our setting. Then, we show how these two
strategies can be combined to define the desired lifting.

First, unlike the lifting introduced in [FNR19, Theorem 10.2], where direct conditions on Gdiv
are imposed, it is not possible to apply this idea to our setting. Indeed, if we follow this approach,
we should assume that

Gdiv ∈ L2(0, T ; H
3
2 +α
δ (Ω)) ∩H1(0, T ; H−

1
2 +α,0

Γd (Ω)).

However, in the fixed point argument we cannot estimate all of the terms involved in Gdiv in
those norms. For instance, the estimation of the term (∂z1η±1 )u1 in the H

3
2 +α(Ω)−norm would

require that ∂z1η±1 ∈ H
5
2 +α(−L/2, L), which is not possible due to Proposition 3.2.1. For the

definition of Gdiv, we refer the reader to (3.6.22).

A second approach is the one proposed in [MRR20, Proposition 5.1], where the authors construct
a lifting based on a quasi-stationary Stokes system. More precisely, the lifting w is solution of
the equation {

−div σ(w, π) = F in Ω, div w = div Gdiv in Ω,
w = 0 on Γd, σ(w, π)n = 0 on Γn.

(3.4.4)

The way to adapt that idea to our setting is by requiring the following regularity:

div Gdiv ∈ L2(0, T ; H
1
2 +α,1(Ω)) and Gdiv ∈ H1(0, T ; H−

1
2 +α,0

Γd (Ω)).

Nevertheless, the problem with this approach arises from the fact that we cannot ensure the
regularity w ∈ H1(0, T ; H−

1
2 +α,0

Γd (Ω)) from the condition Gdiv ∈ H1(0, T ; H−
1
2 +α,0

Γd (Ω)). Indeed,

since Gdiv ∈ H−
1
2 +α

Γd (Ω), we must define the solution w of (3.4.4) by transposition. In doing so,
we obtain that w and the adjoint states (Φ, ψ) satisfy

〈w, ζ〉
H
− 1

2 +α
Γd

,H
1
2−α
Γd

= 〈Gdiv,∇ψ〉
H
− 1

2 +α
Γd

,H
1
2−α
Γd

, (3.4.5)

for all ζ ∈ H
1
2−α
Γd (Ω), where (Φ, ψ) is solution of system{

−div σ(Φ, ψ) = ζ in Ω, div Φ = 0 in Ω,
Φ = 0 on Γd, σ(Φ, ψ)n = 0 on Γn.

(3.4.6)

We note that the right-hand side of identity (3.4.5) is well-defined provided ψ ∈ H
3
2−α(Ω). How-

ever, we cannot ensure this regularity because of the reentrant corners present in the domain
fluid Ω.

Let us now explain how we combine the approaches mentioned above in order to obtain a
lifting w with the desired regularity (3.4.3). Roughly speaking, the idea consists in splitting the
fluid domain into two parts, OL and OR, as shown in Figure 3.5. Then, in the region OL, which
does not include the reentrant corners, we apply the strategy of [MRR20, Proposition 5.1], based
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on a quasi-stationary Stokes system, while in the region OR we use the approach described in
[FNR19, Theorem 10.2].

Figure 3.5 – Representation of the split fluid domain Ω.

Let us start by introducing some notation. Let ε0 and ε1 be two positive constants satisfying
ε0 < ε1 < `s. Let us set

OR = ([ε0, `s]× ([−`,−e] ∪ [e, `])) ∪ ([`s, L]× [−`, `]) ,
OL = (Ω \ OR) ∪ ([ε0, ε1]× ([−`,−e] ∪ [e, `])) .

We introduce the cut-off function θ̃ ∈ C∞(R2) satisfying 0 ≤ θ̃ ≤ 1,

θ̃ = 1 on [−L/2, ε0]× [−`, `] and θ̃ = 0 on [ε1, L]× [−`, `]. (3.4.7)

We consider the following decomposition of Gdiv:

Gdiv = θ̃Gdiv + (1− θ̃)Gdiv. (3.4.8)

Let (wL(t), pL(t)) be the solution of (3.3.2) with F = 0, g = 0 and h = div(θ̃Gdiv), where θ̃Gdiv
satisfy

div(θ̃Gdiv) ∈ L2(0, T ;H
1
2 +α,1(Ω)) (3.4.9)

and
θ̃Gdiv ∈ H1(0, T ; H−

1
2 +α,0(Ω)). (3.4.10)

Let wR := (1− θ̃)Gdiv, with (1− θ̃)Gdiv satisfying

(1− θ̃)Gdiv ∈ L2(0, T ; H
3
2 +α,2
δ (Ω)) ∩H1(0, T ; H−

1
2 +α,0(Ω)),

(1− θ̃)Gdiv = 0 in Ω2,

(1− θ̃)Gdiv = 0 on ΣT
d , ε((1− θ̃)Gdiv)n = 0 on ΣT

n .

(3.4.11)

Let us now set
w := wL + wR. (3.4.12)

As a consequence of Theorem 3.3.1 and Lemma 3.C.2, we have the following result:
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Proposition 3.4.2. Let α ∈ (0, α∗), δ ∈ (δ∗, 1) and 0 < T < 1. Under the assumptions
(3.4.9) and (3.4.10), along with condition (3.4.11), the function w defined in (3.4.12) belongs
to L2(0, T ; H

3
2 +α,2
δ (Ω)) ∩ H1(0, T ; H−

1
2 +α,0(Ω)). Moreover, there exists a constant Cα,δ > 0

independent of T , such that

‖w‖
L2(0,T ;H

3
2 +α,2
δ

(Ω))
+ ‖w‖

H1(0,T ;H−
1
2 +α,0(Ω))

≤ Cα,δ
(∥∥∥div

(
θ̃Gdiv

)∥∥∥
L2(0,T ;H

1
2 +α,1(Ω))

+ ‖θ̃Gdiv‖
H1(0,T ;H−

1
2 +α,0(Ω))

+
∥∥∥(1− θ̃)Gdiv

∥∥∥
L2(0,T ;H

3
2 +α,2
δ

(Ω))∩H1(0,T ;H−
1
2 +α,0(Ω))

)
.

(3.4.13)

We are now in position to establish the main result of this section.

Theorem 3.4.1. Let α ∈ (0, α∗), δ ∈ (δ∗, 1) and 0 < T < 1. Let us assume that v0 ∈ H1(Ω),
ζ0

2 ∈ H1
{0}(0, `s), Ff ∈ L2(0, T ; H−

1
2 +α,0(Ω)), gi ∈ H1

{0}(0, 1; H(Γi)) and Fs ∈ L2(0, T ;L2(0, `s)).
Let us assume that Gdiv satisfies assumptions (3.4.9) and (3.4.10), along with condition (3.4.11)
and Gdiv|t=0 = 0, and let w denotes its lifting defined as in (3.4.12). We assume in addition
the following conditions:

v0 = 0 on Γi, v0 = 0 on Γr ∪ Γw,
v0 = ζ2(0, ·)~e2 on Γs, div v0 = 0 in Ω,
(Pv0, 0, ζ0

2 ) ∈ [D(A),Z]1/2, Pv0 ∈ [D(A0; V0
n,Γd(Ω)),V0

n,Γd(Ω)]1/2,
(3.4.14)

Then, system (3.3.1) admits a unique solution (v, p, ζ1, ζ2) belonging to L2(0, T ; H
3
2 +α,2
δ (Ω)) ∩

H1(0, T ; H−
1
2 +α,0(Ω))×L2(0, T ;H

1
2 +α,1
δ (Ω))×H4,2((0, T )× (0, `s))×H2,1((0, T )× (0, `s)), sat-

isfying the estimate

‖v‖
L2(0,T ;H

3
2 +α,2
δ

(Ω))
+ ‖v‖

H1(0,T ;H−
1
2 +α,0(Ω))

+ ‖p‖
L2(0,T ;H

1
2 +α,1
δ

(Ω))

+ ‖ζ1‖H4,2((0,T )×(0,`s)) + ‖ζ2‖H2,1((0,T )×(0,`s))

≤ CL
(
‖v0‖H1(Ω) + ‖gi‖L2(0,1;H(Γi)) + ‖∂tgi‖L2(0,1;H(Γi)) + ‖ζ0

2‖H1(0,`s)

+ ‖Ff‖
L2(0,T ;H−

1
2 +α,0(Ω))

+ ‖Fs‖L2((0,T )×(0,`s))

+
∥∥∥div

(
θ̃Gdiv

)∥∥∥
L2(0,T ;H

1
2 +α,1(Ω))

+ ‖θ̃Gdiv‖
H1(0,T ;H−

1
2 +α,0(Ω))

+
∥∥∥(1− θ̃)Gdiv

∥∥∥
L2(0,T ;H

3
2 +α,2
δ

(Ω))∩H1(0,T ;H−
1
2 +α,0(Ω))

)
,

(3.4.15)

where CL > 0 is a constant independent of T .

Proof. We split the proof in two steps.

• Step 1. Reformulation of the system (3.3.1).

Let (z(t), π(t)) be the solution to system (3.4.1). Let w be the vector field given in (3.4.12). We
set ṽ = v−w− z and p̃ = p− pL − π. Next, the couple (ṽ, p̃) satisfies



3.4. Existence and regularity results for the non-homogeneous linear system 92



∂tṽ− div σ(ṽ, p̃) = Ff − ∂tw + 2ν div ε(w)− ∂tz−∇pL in QT ,
div ṽ = 0 in QT ,
ṽ = 0 on ΣT

i , ṽ = 0 on ΣT
w ∪ ΣT

r , ṽ = ζ2~e2 on ΣT
s ,

σ(ṽ, p̃)n = 0 on ΣT
n , ṽ(0) = v0 −w(0)− z(0) in Ω,

∂tζ1 = ζ2 in (0, T )× (0, `s),
∂tζ2 + α∆2

sζ1 + γ(∆2
s)

1
2 ζ2 = −γ+

s p̃+ γ−s p̃+ Fs in (0, T )× (0, `s),
ζ1 = 0 and ∂z1ζ1 = 0 on (0, T )× {0},
∂2
z1ζ1 = 0 and ∂3

z1ζ1 = 0 on (0, T )× {`s},
ζ1(0) = 0 and ζ2(0) = ζ0

2 in (0, `s).

(3.4.16)

We notice that the structure equation can be rewritten as follows:(
I + [γ+

s − γ−s ]Ns

)
∂tζ2 + α∆2

sζ1 + γ(∆2
s)

1
2 ζ2 = −γ+

s Nv(P ṽ +Dv
sζ2 − PDv

sζ2)

+ γ−s Nv(P ṽ +Dv
sζ2 − PDv

sζ2)− γ+
s NpF + γ−s NpF

+ γ+
s π − γ−s π + Fs,

where F := Ff − ∂tw + 2ν div ε(w) − ∂tz − ∇pL. Thus, from Theorem 3.3.6 we have that the
solution (ṽ, p̃, ζ1, ζ2) of (3.4.16) satisfies

d

dt


P ṽ
ζ1

ζ2

 = A


P ṽ
ζ1

ζ2

+


PF
0
H

 ,

P ṽ(0)
ζ1(0)
ζ2(0)

 =


Pv0

0
ζ0

2

 ,
(I − P )ṽ = (I − P )Dv

sζ2,

p̃ = Nv(P ṽ− PDv
sζ2 +Dv

sζ2) +Nsζ2 +NpF,

(3.4.17)

where H = K−1
s

(
−γ+

s NpF + γ−s NpF + Fs + γ+
s π − γ−s π

)
. We observe that

‖PF‖
L2(0,T ;V

− 1
2 +α,0

n,Γd
)
≤ C

(
‖Ff‖

L2(0,T ;H−
1
2 +α,0)

+ ‖∂tw‖
L2(0,T ;H−

1
2 +α,0)

+‖div ε(w)‖
L2(0,T ;H−

1
2 +α,0)

+ ‖g‖
L2(0,1;H

3
2 (Γi))

+ ‖∂tg‖
L2(0,1;H

3
2 (Γi))

) (3.4.18)

and
‖H‖L2(0,T ;L2(0,`s)) ≤ C

(
‖Ff‖

L2(0,T ;H−
1
2 +α,0)

+ ‖Fs‖L2(0,T ;L2(0,`s))

+ ‖g‖
L2(0,1;H

3
2 (Γi))

+ ‖∂tg‖
L2(0,1;H

3
2 (Γi))

)
,

(3.4.19)

where C > 0 is independent of T . In the last two estimates we used (3.4.2).

• Step 2. Regularity of solutions to system (3.4.16).

In order to show that the constants that appear in the estimates below are independent of
T , we proceed as follows. Let us set

F =
{

F if 0 < t ≤ T ,
0 if T < t ≤ 1,

and H =
{
H if 0 < t ≤ T ,
0 if T < t ≤ 1.

Notice that PF ∈ L2(0, 1; V−
1
2 +α,0

n,Γd (Ω)) and H ∈ L2((0, 1) × (0, `s)). Next, instead of system
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(3.4.17), we consider the following problem:

d

dt

Pv
ζ1
ζ2

 = A

Pv
ζ1
ζ2

+

PF
0
H

 , t ∈ (0, 1),

Pv(0)
ζ1(0)
ζ2(0)

 =

Pv0
0
ζ0

2

 .
Since A is the infinitesimal generator of an analytic semigroup on Z (see Theorem 3.3.7) and
(Pv0, 0, ζ0

2 ) ∈ [D(A),Z]1/2, the maximal regularity result [BDDM07, Theorem 3.1, p. 143]
implies that (Pv, ζ1, ζ2) belongs to L2(0, 1;D(A)) ∩H1(0, 1; Z) and satisfies

‖Pv‖
H1(0,1;V

− 1
2 +α

n,Γd
)

+ ‖ζ1‖H4,2((0,1)×(0,`s)) + ‖ζ2‖H2,1((0,1)×(0,`s))

≤ C
(
‖v0‖H1 + ‖ζ0

2‖H1(0,`s) + ‖PF‖
L2(0,1;V

− 1
2 +α,0

n,Γd
)

+ ‖H‖L2(0,1;L2(0,`s))

)
,

(3.4.20)

where C is independent of T . Let us notice that by construction we have (P ṽ, ζ1, ζ2) =
(Pv, ζ1, ζ2) in [0, T ]. Then, from (3.4.18), (3.4.19) and (3.4.20) it follows that

‖P ṽ‖
H1(0,T ;V

− 1
2 +α

n,Γd
)

+ ‖ζ1‖H4,2((0,T )×(0,`s)) + ‖ζ2‖H2,1((0,T )×(0,`s))

≤ ‖Pv‖
H1(0,1;V

− 1
2 +α

n,Γd
)

+ ‖ζ1‖H4,2((0,1)×(0,`s)) + ‖ζ2‖H2,1((0,1)×(0,`s))

≤ C
(
‖v0‖H1 + ‖ζ0

2‖H1(0,`s) + ‖PF‖
L2(0,T ;V

− 1
2 +α,0

n,Γd
)

+ ‖H‖L2(0,T ;L2(0,`s))

)
.

(3.4.21)

We analyze separetely the regularity of ζ1, ζ2 and ṽ, p.
− Regularity of ζ1 and ζ2. The fact that ζ1 ∈ H4,2((0, T ) × (0, `s)) and ζ2 ∈ H2,1((0, T ) ×

(0, `s)) follows from (3.4.21).

− Regularity of ṽ and p̃. From (3.4.21) we deduce that P ṽ ∈ H1(0, T ; H−
1
2 +α

Γd (Ω)). We

claim that (I − P )ṽ ∈ H1(0, T ; H−
1
2 +α

Γd (Ω)). Indeed,

‖(I − P )ṽ‖
H1(0,T ;H−

1
2 +α(Ω))

= ‖(I − P )Dv
sζ2‖

H1(0,T ;H−
1
2 +α(Ω))

≤ C‖(I − P )Dv
sζ2‖H1(0,T ;L2(Ω))

≤ C‖ζ2‖H2,1((0,T )×(0,`s)).

(3.4.22)

To deduce the last estimate we first use the transposition method to define the solution
of the mixed Stokes system with Dirichlet data ζ2,t ∈ L2(0, T ;L2(0, `s)), and then we
conclude by invoking the Riesz representation theorem. Thus, ṽ ∈ H1(0, T ; H−

1
2 +α

Γd (Ω)).

Let us now consider the system{
−div σ(ṽ, p̃) = F− ∂tṽ, div ṽ = 0 in Ω,
ṽ = ζ2~e2 on Γs, ṽ = 0 on Γi ∪ Γr ∪ Γw, σ(ṽ, p̃)n = 0 on Γn.

Since F − ∂tṽ ∈ L2(0, T ; H−
1
2 +α

Γd (Ω)) ⊂ L2(0, T ; H−1
Γd (Ω)) and ζ2 ∈ L2(0, T ;H2

{0}(0, `s)),
Theorem 2.3.1 implies that

ṽ ∈ L2(0, T ; H1(Ω)) and p̃ ∈ L2(0, T ;L2(Ω)).
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Let us now consider{
∂tṽ− div σ(ṽ, p̃) = F, div ṽ = 0 in QT ,
ṽ = ζ2~e2 on ΣT

s , ṽ = 0 on ΣT
i ∪ ΣT

r ∪ ΣT
w, σ(ṽ, p̃)n = 0 on ΣT

n .

We will show that

ṽ ∈ L2(0, T ; H
3
2 +α,2
δ (Ω))∩H1(0, T ; H−

1
2 +α,0(Ω)) and p̃ ∈ L2(0, T ;H

1
2 +α,1
δ (Ω)). (3.4.23)

Let us set (ṽ1, p̃1) := (Ψṽ,Ψp̃) and (ṽ2, p̃2) := ((1−Ψ)ṽ, (1−Ψ)p̃). To show (3.4.23), it
is suffices to prove that

ṽ1 ∈ L2(0, T ; H
3
2 +α(Ω)) ∩H1(0, T ; H−

1
2 +α(Ω)) and p̃1 ∈ L2(0, T ;H

1
2 +α(Ω)) (3.4.24)

and

ṽ2 ∈ L2(0, T ; H2
δ(Ω)) ∩H1(0, T ; L2(Ω)) and p̃2 ∈ L2(0, T ;H1

δ (Ω)). (3.4.25)

− Proof of (3.4.24). Firstly, since ṽ ∈ H1(0, T ; H−
1
2 +α

Γd (Ω)), then ṽ1 ∈ H1(0, T ; H−
1
2 +α

Γd (Ω)).
Let us now observe that (ṽ1, p̃1) solves{

−div σ(ṽ1, p̃1) = F1 − ∂tṽ1, div ṽ1 = h1 in QT ,
ṽ1 = Ψζ2~e2 on ΣT

s , ṽ1 = 0 on ΣT
i ∪ ΣT

r ∪ ΣT
w ∪ ΣT

n ,

where

F1 = ΨF + p̃∇Ψ− ν (ṽ∆Ψ + 2(∇Ψ · ∇)ṽ +∇(ṽ · ∇Ψ)) and h1 = ∇Ψ · ṽ.

Since F ∈ L2(0, T ; H−
1
2 +α

Γd (Ω)), p̃ ∈ L2(0, T ;L2(Ω)), ṽ ∈ L2(0, T ; H1(Ω)) and ∂tṽ1 ∈

L2(0, T ; H−
1
2 +α

Γd (Ω)), we deduce that

F− ∂tṽ1 ∈ L2(0, T ; H−
1
2 +α

Γd (Ω)), h1 ∈ L2(0, T ;H
1
2 +α(Ω))

and Ψζ2e2 ∈ L2(0, T ; H
3
2 (Γd)).

Then, after applying [Dau89, Theorem 5.5(a)] and [BR, Theorem 3.2 and Corol-
lary 3.3], we obtain

ṽ1 ∈ L2(0, T ; H
3
2 +α(Ω)) and p̃1 ∈ L2(0, T ;H

1
2 +α(Ω)).

This concludes the proof of (3.4.24).
− Proof of (3.4.25). Let us first observe that (ṽ2, p2) satisfies{

∂tṽ2 − div σ(ṽ2, p̃2) = F2, div ṽ2 = h2 in QT ,
ṽ2 = (1−Ψ)ζ2~e2 on ΣT

s , ṽ2 = 0 on ΣT
d \ ΣT

s , σ(ṽ2, p2)n = 0 on ΣT
n ,

where

F2 = (1−Ψ)F− p̃∇Ψ + ν (ṽ∆Ψ + 2(∇Ψ · ∇)ṽ +∇(ṽ · ∇Ψ)) and h2 = −∇Ψ · ṽ.

Since (1−Ψ)F ∈ L2(0, T ; L2(Ω)), p̃ ∈ L2(0, T ;L2(Ω)), ṽ ∈ L2(0, T ; H1(Ω)), we deduce
that

F2 ∈ L2(0, T ; L2(Ω)) and h2 ∈ L2(0, T ;H1(Ω)).
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We will now construct two lifting functions: one corresponding to the boundary data
(1−Ψ)ζ2~e2, and another corresponding to the divergence data h1.

• Lifting for the boundary data. Let us consider the system{
−div σ(w̃1, π̃1) = 0, div w̃1 = 0 in Ω,
w̃1 = (1−Ψ)ζ2~e2 on Γs, w̃1 = 0 on Γd \ Γs σ(w̃1, π̃1)n = 0 on Γn.

(3.4.26)

Since ζ2 ∈ H2,1((0, T )× (0, `s)), thanks to [MR10, Theorem 9.4.5] and the transposi-
tion method, we deduce that

w̃1 ∈ L2(0, T ; H2
δ(Ω)) ∩H1(0, T ; L2(Ω)) and π̃1 ∈ L2(0, T ;H1

δ (Ω)). (3.4.27)

• Lifting for the divergence data. Let us consider the system{
−div σ(w̃2, π̃2) = 0, div w̃2 = h2 in Ω,
w̃2 = 0 on Γd, σ(w̃2, π̃2)n = 0 on Γn.

(3.4.28)

Since h2 ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−
1
2 +α

Γd (Ω)), from [MR10, Theorem 9.4.5] and
Lemma 3.6.1 we deduce that

w̃2 ∈ L2(0, T ; H2
δ(Ω)) ∩H1(0, T ; L2(Ω)) and π̃2 ∈ L2(0, T ;H1

δ (Ω)). (3.4.29)

Setting w̃ := w̃1 + w̃2 and π̃ := π̃1 + π̃2, we deduce from (3.4.26) and (3.4.28) that

w̃ ∈ L2(0, T ; H2
δ(Ω)) ∩H1(0, T ; L2(Ω)) and π̃ ∈ L2(0, T ;H1

δ (Ω)). (3.4.30)

After setting ṽ2 = w̃ + z̃ and p̃2 = π̃ + q̃, we observe that (z̃, q̃) solves{
∂tz̃− div σ(z̃, q̃) = F2 − ∂tw̃, div z̃ = 0 in QT ,
z̃ = 0 on ΣT

d , σ(z̃, q̃)n = 0 on ΣT
n .

Since F2−∂tw̃ ∈ L2(0, T ; L2(Ω)) and the semigroup generated by the Stokes operator
(A0; V0

n,Γd(Ω)) on V0
n,Γd(Ω) is analytic (see Theorem 2.4.1 in Chapter 2), the maximal

regularity result [BDDM07, Theorem 3.1, p. 143] with the constraint (I − P )z̃ = 0
implies in particular that

‖z̃‖H1(0,T ;L2(Ω)) ≤ C
(
‖F2‖L2(0,T ;L2(Ω)) + ‖∂tw̃‖L2(0,T ;L2(Ω))

)
. (3.4.31)

Then, from [MR10, Theorem 9.4.5] we deduce that the system{
−div σ(z̃, q̃) = F2 − ∂tw̃− ∂tz̃, div z̃ = 0 in QT ,
z̃ = 0 on ΣT

d , σ(z̃, q̃)n = 0 on ΣT
n ,

admits a unique solution

z̃ ∈ L2(0, T ; H2
δ(Ω)) and q̃ ∈ L2(0, T ;H1

δ (Ω)). (3.4.32)

Thus, from (3.4.29), (3.4.31) and (3.4.32) we deduce that

ṽ2 ∈ L2(0, T ; H2
δ(Ω)) ∩H1(0, T ; L2(Ω)) and p̃2 ∈ L2(0, T ;H1

δ (Ω)).

This completes the proof of (3.4.25).
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Then, ṽ and p̃ satisfy the regularity stated in (3.4.23). Finally, using the fact that v = ṽ+w+z
and p = p̃ + π, and noting that the regularity of w and z is the same as that of ṽ (thanks to
Propositions 3.4.2 and 3.4.1, respectively), and that the regularity of π is the same as that of p̃
(again, thanks to Proposition 3.4.1), we deduce that

‖v‖
L2(0,T ;H

3
2 +α,2
δ

)
+ ‖v‖

H1(0,T ;H−
1
2 +α,0)

+ ‖p‖
L2(0,T ;H

1
2 +α,1
δ

)

+ ‖ζ1‖H4,2((0,T )×(0,`s)) + ‖ζ2‖H2,1((0,T )×(0,`s))

≤ C
(
‖v0‖H1 + ‖ζ0

2‖H1(0,`s) + ‖Ff‖
L2(0,T ;H−

1
2 +α,0)

+ ‖Fs‖L2((0,T )×(0,`s)) + ‖w‖
L2(0,T ;H

3
2 +α,2
δ

)
+ ‖∂tw‖

L2(0,T ;H−
1
2 +α,0)

+‖g‖L2(0,1;H(Γi)) + ‖∂tg‖L2(0,1;H(Γi))
)
.

(3.4.33)

The estimate (3.4.15) follows by using (3.4.13) in (3.4.33). This completes the proof. �

3.5 Estimates of nonlinear terms

In this section, we shall estimate the nonlinear terms F̂f , Ĝdiv and F̂s in the corresponding
appropriate norms. See Appendix B for the definition of F̂f , Ĝdiv and F̂s.

3.5.1 Auxiliary results

Lemma 3.5.1. Let a0 ∈ (0, 1/2). There exists a constant C > 0, depending only on a0, such
that, for all 0 < T < 1 and all η ∈ H4,2

{0,`s}((0, T ) × (0, `s)) with η(0) = 0, the extension Eη
defined in (3.2.7) satisfies

‖Eη‖L∞(0,T ;H2+a0 (−L/2,L)) ≤ CT β
(
‖∂tη(0)‖H1

{0}(0,`s)
+ ‖η‖L2(0,T ;H4(0,`s))

+ ‖∂2
t η‖L2(0,T ;L2(0,`s))

)
.

(3.5.1)

Proof. Let us first observe that from the definition given in (3.2.7) it follows that there exists
a positive constant C independent of T such that

‖Eη(t, ·)‖H2+a0 (−L/2,L) ≤ C‖η(t, ·)‖H2+a0 (0,`s) for a.e. t ∈ (0, T ).

From the last estimate we obtain

‖Eη‖L∞(0,T ;H2+a0 (−L/2,L)) ≤ C‖η‖L∞(0,T ;H2+a0 (0,`s)). (3.5.2)

In what follows we will prove that there exists a constant C > 0 independent of T such that

‖η‖L∞(0,T ;H2+a0 (0,`s)) ≤ CT
β
(
‖∂tη(0)‖H1

{0}(0,`s)
+ ‖η‖L2(0,T ;H4(0,`s))

+ ‖∂2
t η‖L2(0,T ;L2(0,`s))

)
.

(3.5.3)

We split the proof in three steps.

• Step 1. Interpolation and scaling arguments.
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Let us first observe that by interpolation we have

H4,2
{0,`s}((0, 1)× (0, `s)) ↪→ H1−a0/2(0, 1;H2+a0(0, `s)). (3.5.4)

Moreover, there exists a positive constant C such that

‖ζ‖
H1−a0

2 (0,1;H2+a0 (0,`s))
≤ C‖ζ‖1/2+a0/4

L2(0,1;H4(0,`s))‖ζ‖
1/2−a0/4
H2(0,1;L2(0,`s)), (3.5.5)

for all ζ ∈ H4,2
{0,`s}((0, 1)× (0, `s)) satisfying ζ(0) = 0 and ∂tζ(0) = 0. Then, thanks to Poincaré’s

inequality, we have

‖ζ‖
H1−a0

2 (0,1;H2+a0 (0,`s))
≤ C‖ζ‖1/2+a0/4

L2(0,1;H4(0,`s))‖∂
2
t ζ‖

1/2−a0/4
L2(0,1;L2(0,`s)). (3.5.6)

On the other hand, from the continuous embedding H1−a0/2(0, 1) ↪→ L∞(0, 1), we have

H1−a0/2(0, 1;H2+a0(0, `s)) ↪→ L∞(0, 1;H2+a0(0, `s)). (3.5.7)

Moreover, there exists a positive constant C such that

‖ζ‖L∞(0,1;H2+a0 (0,`s)) ≤ C‖ζ‖H1−a0
2 (0,1;H2+a0 (0,`s))

, (3.5.8)

for all ζ ∈ H4,2
{0,`s}((0, 1)× (0, `s)) satisfying ζ(0) = 0 and ∂tζ(0) = 0. Next, after combining the

estimates (3.5.5) and (3.5.8), we get

‖ζ‖L∞(0,1;H2+a0 (0,`s)) ≤ C‖ζ‖
1/2+a0/4
L2(0,1;H4(0,`s))‖∂

2
t ζ‖

1/2−a0/4
L2(0,1;L2(0,`s)), (3.5.9)

for all ζ ∈ H4,2
{0,`s}((0, 1)× (0, `s)) satisfying ζ(0) = 0 and ∂tζ(0) = 0. Let ζ(t) = ζ̃(tT ), t ∈ (0, 1).

Then, since
‖ζ‖L2(0,1;H4(0,`s)) = T−1/2‖ζ̃‖L2(0,T ;H4(0,`s)),

‖∂2
t ζ‖L2(0,1;L2(0,`s)) = T 3/2‖∂2

t ζ̃‖L2(0,T ;L2(0,`s)),
(3.5.10)

from estimate (3.5.9) we obtain

‖ζ̃‖L∞(0,T ;H2+a0 (0,`s)) ≤ CT
1/2−a0/2‖ζ̃‖1/2+a0/4

L2(0,T ;H4(0,`s))‖∂
2
t ζ̃‖

1/2−a0/4
L2(0,T ;L2(0,`s)), (3.5.11)

for all ζ̃ ∈ H4,2
{0,`s}((0, T )×(0, `s)) satisfying ζ̃(0) = 0 and ∂tζ̃(0) = 0. We highlight that the posi-

tive constant C in (3.5.11) is the same as the one appearing in (3.5.9), which is independent of T .

• Step 2. Lifting.

Before using estimate (3.5.11), we will introduce an appropriate lifting. Let us first introduce
the space H4,2

{0,`s}((0, T )× (0, `s)) endowed with the norm

‖η̃‖
H4,2
{0,`s}

((0,1)×(0,`s)) :=
(
‖η̃‖2L2(0,1;H4(0,`s)) + ‖∂2

t η̃‖2L2(0,1;L2(0,`s))

)1/2
.

From [LM72, Theorem 3.2, p. 21 and Remark 3.3, p. 22] it follows that for the couple
(0, ∂tη(0)) ∈ H3

{0,`s}(0, `s) × H
1
{0}(0, `s), there exists a lifting η̃ ∈ H4,2

{0,`s}((0, 1) × (0, `s)) such
that η̃(0) = 0, ∂tη̃(0) = T∂tη(0) and

‖η̃‖
H4,2
{0,`s}

((0,1)×(0,`s)) ≤ CT‖∂tη(0)‖H1
{0}(0,`s)

. (3.5.12)



3.5. Estimates of nonlinear terms 98

Let us set ζ̃(t) := η(t)− η̂(t), where η̂(t) := η̃(t/T ), t ∈ (0, T ). We observe that

ζ̃ ∈ H4,2
{0,`s}((0, T )× (0, `s)), ζ̃(0) = 0, and ∂tζ̃(0) = 0.

Then, applying estimate (3.5.11) to ζ̃, we get

‖η − η̂‖L∞(0,T ;H2+a0 (0,`s)) ≤ CT
1/2−a0/2‖η − η̂‖1/2+a0/4

L2(0,T ;H4(0,`s))

× ‖∂2
t (η − η̂)‖1/2−a0/4

L2(0,T ;L2(0,`s)).
(3.5.13)

After using
‖η̂‖L2(0,T ;H4(0,`s)) = T 1/2‖η̃‖L2(0,1;H4(0,`s)),

‖∂2
t η̂‖L2(0,T ;L2(0,`s)) = T−3/2‖∂2

t η̃‖L2(0,1;L2(0,`s)),

estimate (3.5.12), Young’s inequality and the fact that 0 < T < 1, we obtain

‖η − η̂‖L∞(0,T ;H2+a0 (0,`s))

≤ CT β
(
‖∂tη(0)‖H1

{0}(0,`s)
+ ‖η‖L2(0,T ;H4(0,`s)) + ‖∂2

t η‖L2(0,T ;L2(0,`s))
)
,

(3.5.14)

where β = 1/4− 3a0/8 > 0.

• Step 3. Conclusion.

Finally, after combining the estimates (3.5.12) and (3.5.14), [LM72, Theorem 3.1, p. 19] and
using the fact that 0 < T < 1, we obtain

‖η‖L∞(0,T ;H2+a0 (0,`s)) ≤ ‖η − η̂‖L∞(0,T ;H2+a0 (0,`s)) + ‖η̂‖L∞(0,T ;H2+a0 (0,`s))

≤ CT β
(
‖∂tη(0)‖H1

{0}(0,`s)
+ ‖η‖L2(0,T ;H4(0,`s))

+ ‖∂2
t η‖L2(0,T ;L2(0,`s))

)
,

(3.5.15)

where C is a positive constant depending only on a0. This completes the proof of (3.5.3). �

Lemma 3.5.2. Let a0 ∈ (0, 1/2). There exists a constant C > 0, depending only on a0, such
that, for all 0 < T < 1 and all η ∈ H4,2

{0,`s}((0, T ) × (0, `s)), the extension Eη defined in (3.2.7)
satisfies

‖Eη‖L∞(0,T ;H2(0,`s)) ≤ C
(
‖η(0)‖H2

{0,`s}
(0,`s) + ‖η‖L2(0,T ;H4(0,`s))

+ ‖∂tη‖L2(0,T ;L2(0,`s))
)
,

(3.5.16)

‖∂tEη‖L∞(0,T ;Ha0 (−L/2,L)) ≤ C
(
‖∂tη(0)‖H1

{0}(0,`s)
+ ‖∂tη‖L2(0,T ;H2(0,`s))

+ ‖∂2
t η‖L2(0,T ;L2(0,`s))

)
,

(3.5.17)

‖∂tEη‖
Lq∗ (0,T ;H

3
2 +a0 (−L/2,L))

≤ C
(
‖∂tη(0)‖H1

{0}(0,`s)
+ ‖∂tη‖L2(0,T ;H2(0,`s))

+ ‖∂2
t η‖L2(0,T ;L2(0,`s))

)
,

(3.5.18)

where q∗ = 4/(1 + 2a0).

Moreover, if ` − e + η±χ (t, z) ≥ (` − e)/2 in (0, T ) × Ω, then there exists a positive constant



3.5. Estimates of nonlinear terms 99

C, depending only on ` and e, such that

‖det(J)‖L∞(0,T ;H2(Ω)) ≤ C
(
1 + ‖η‖L2(0,T ;H2(0,`s))

)
‖η‖L2(0,T ;H2(0,`s)), (3.5.19)

where
det(J) = `− e

`− e+ η±χ (t, z1)
, (t, z) ∈ (0, T )× Ω.

Proof.

• Proof of (3.5.16). Let us first notice that from the definition of the extension of η given
in (3.2.7), it follows that there exists a positive constant C independent of T such that

‖Eη(t, ·)‖H2(−L/2,L) ≤ C‖η(t, ·)‖H2(0,`s) a.e. t ∈ (0, T ). (3.5.20)

Next, from these estimates we deduce that

‖Eη‖L∞(0,T ;H2(−L/2,L)) ≤ C‖η‖L∞(0,T ;H2(0,`s)). (3.5.21)

Using the estimates (3.5.21) and Lemma 3.C.3 with X = H4
{0,`s}(0, `s) and Y = L2(0, `s), we

obtain the desired esimate.

• Proof of (3.5.17). The proof is analogous to that of estimate (3.5.16) and is presented in
Appendix D.1.

• Proof of (3.5.18). The proof can be adapted from that of Lemma 3.5.1. The detailed argu-
ment is presented in Appendix D.2.

• Proof of (3.5.19). The estimate (3.5.19) is a consequence of [MRR20, Lemma A.4]. �

Lemma 3.5.3. Let s0 ∈ (0, 1/2). Then, for all s ∈ (0, 1
2), there exists a constant C > 0 such

that, for all F ∈ H−s0(Ω) and η̃ ∈ H
1
2 +s(−L/2, L), with η̃ = 0 on (−L/2, 0)

⋃
(`s + ε/2, L), the

following estimate holds:

‖η̃F‖H−s0 (Ω) ≤ C‖η̃‖H 1
2 +s(−L/2,L)

‖F‖H−s0 (Ω). (3.5.22)

Proof. Since η̃ = 0 on (−L/2, 0)
⋃

(`s + ε/2, L), we assume that Ω = Ω+ ∪ Ω−, where Ω± =
(0, `s+ε/2)×((e, `) ∪ (−`,−e))

⋃
(`s, `s+ε/2)×(−e, e). Given ϕ ∈ Hs0(Ω), with ‖ϕ‖Hs0 (Ω) ≤ 1, it

is sufficient to show that η̃ϕ ∈ Hs0(Ω±). We will only prove that η̃ϕ ∈ L2(0, `s+ε/2;Hs0(e, `))∩
Hs0(0, `s + ε/2;L2(e, `)). Let us first show that η̃ϕ ∈ L2(0, `s + ε/2;Hs0(e, `)). Since ϕ(z1, ·) ∈
Hs0(e, `) for a.e. z1 ∈ (0, `s + ε/2) and η̃ ∈ H

1
2 +s(−L/2, L) ↪→ L∞(−L/2, L), we have

‖ηϕ‖2L2(0,`s+ε/2;Hs0 (e,`)) =
∫ `s+ε/2

0
|η(z1)|2‖ϕ(z1, ·)‖2Hs0 (e,`) dz1

≤ ‖η̃‖2L∞(−L/2,L)‖ϕ‖
2
L2(0,`s+ε/2;Hs0 (e,`))

≤ C‖η̃‖2
H

1
2 +s(−L/2,L)

‖ϕ‖2L2(0,`s+ε/2;Hs0 (e,`)),

from where we deduce that

‖ηϕ‖L2(0,`s+ε/2;Hs0 (e,`)) ≤ C‖η̃‖H 1
2 +s(−L/2,L)

‖ϕ‖L2(0,`s+ε/2;Hs0 (e,`)). (3.5.23)

Let us prove that η̃ϕ ∈ Hs0(0, `s+ε/2;L2(e, `)). Since ‖η̃(z1)ϕ(z1, ·)‖L2(e,`) = |η̃(z1)|‖ϕ(z1, ·)‖L2(e,`)
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for a.e. z1 ∈ (0, `s + ε/2) and, z1 7→ η̃(z1) ∈ H
1
2 +s(0, `s + ε/2), z1 7→ ‖ϕ(z1, ·)‖L2(e,`) ∈

Hs0(0, `s + ε/2), from [GS91, Proposition B.1] we have that

‖η̃ϕ‖Hs0 (0,`s+ε/2;L2(e,`)) ≤ C‖η̃‖H 1
2 +s(−L/2,L)

‖ϕ‖Hs0 (0,`s+ε/2;L2(e,`)). (3.5.24)

From (3.5.23) and (3.5.24), we deduce that η̃ϕ ∈ L2(0, `s+ε/2;Hs0(e, `))∩Hs0(0, `s+ε/2;L2(e, `)).
�

Lemma 3.5.4. There exists a positive constant C, depending only on α ∈ (0, α∗), s ∈ (1/2, 1/2+
α), such that for all 0 < T < 1 and all v ∈ L∞(0, T ; H−

1
2 +α(Ω)) ∩ L2(0, T ; H

3
2 +α(Ω)), we have

‖v‖L2(0,T ;H1+s(Ω)) ≤ CT
1
2( 1

4−
s
2 +α

2 )‖v‖
1
4−

s
2 +α

2

L∞(0,T ;H−
1
2 +α(Ω))

‖v‖
3
4 + s

4−
α
4

L2(0,T ;H
3
2 +α(Ω))

, (3.5.25)

‖v‖
L∞(0,T ;H

1
2 +α(Ω))

≤C
(
‖v(0)‖

H
1
2 +α(Ω)

+ ‖v‖
L2(0,T ;H

3
2 +α(Ω))

+ ‖∂tv‖
L2(0,T ;H−

1
2 +α(Ω))

)
.

(3.5.26)

Proof.
• Proof of (3.5.25). Let us first notice that by interpolation we have that there exists a constant
C > 0 independent of T such that

‖v(t, ·)‖H1+s(Ω) ≤ C‖v(t, ·)‖
3
4 + s

2−
α
2

H
3
2 +α(Ω)

‖v(t, ·)‖
1
4−

s
2 +α

2

H−
1
2 +α(Ω)

.

Next, using Hölder’s inequality with p = 1/ (3/4 + s/2− α/2) and p′ = 1/ (1/4− s/2 + α/2),
we get

‖v‖2L2(0,T ;H1+s(Ω)) ≤ CT ( 1
4−

s
2 +α

2 )‖v‖2(
1
4−

s
2 +α

2 )
L∞(0,T ;H−

1
2 +α(Ω))

(∫ T

0
‖v(t, ·)‖2

H
3
2 +α(Ω)

dt

) 3
4 + s

2−
α
2

.

This proves the estimate (3.5.25).

• Proof of (3.5.26). It is a consequence of Lemma 3.C.3 with X = H
3
2 +α(Ω) and Y =

H−
1
2 +α(Ω). �

3.5.2 Estimates of nonlinear terms

This subsection is devoted to the estimate of the nonlinear terms F̂f , Ĝdiv and F̂s.

Let R > 0 and let a0 ∈ (0, 1/2) be the parameter that appears in Proposition 3.2.2. Let us
also assume that u0 ∈ H1(Ω) and η0

2 ∈ H1
{0}(0, `s). Let us recall that the set B(T,R,u0, η

0
2) is

defined by

B(T,R,u0, η
0
2) :=

{
(û, p̂, η) ∈ ZT | ‖(û, p̂, η)‖ZT ≤ R, η ∈ E(0, T )

and û(0) = u0, η(0) = 0, ηt(0) = η0
2

}
,

(3.5.27)

where the space ZT is defined in (3.2.18).
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Estimate of F̂f

Lemma 3.5.5. There exist constants CF̂f
> 0 and β > 0, depending only on R, a0, u0 and η0

2,
such that, for all 0 < T < 1, all (û, p̂, η) ∈ B(T,R,u0, η

0
2), we have

‖F̂f (û, p̂, η)‖
L2(0,T ;H−

1
2 +α,0(Ω))

≤ CF̂f
T β. (3.5.28)

Furthermore, for all (û1, p̂1, η1), (û2, p̂2, η2) ∈ B(T,R,u0, η
0
2), we have

‖F̂f (û1, p̂1, η1)− F̂f (û2, p̂2, η2)‖
L2(0,T ;H−

1
2 +α,0(Ω))

≤ CF̂f
T β‖(û1, p̂1, η1)− (û2, p̂2, η2)‖ZT .

(3.5.29)

Proof. We recall that F̂f is given in Appendix B, (3.6.21).
Firstly, given the similarity between some of the terms present in F̂f , we will only show the

estimates (3.5.28) and (3.5.29) for some of them. In particular, we have selected the following
terms:

• F̃1
f := det(J)(∂z1η±)∂ûi

∂z1
û1,

• F̃2
f := det(J)(η±t )∂ûi

∂z2
,

• F̃3
f := det(J)(∂z1η±) ∂2ûi

∂z2∂z1
,

• F̃4
f := det(J)(∂2

z1η
±)∂ûi
∂z2

,

where

η+(t, ·, e) := (Eη)(t, ·) on [−L/2, L], η−(t, ·,−e) := (Eη)(t, ·) on [−L/2, L],

and det(J) = `−e
`−e+η±χ (t,z) , with η±χ (t, z) := (∓χ± + (`∓ z2)∂z2χ±) η±(t, z1), (t, z) ∈ [0, T ] × Ω.

Secondly, let us observe that in order to show the estimate (3.5.28), it is sufficient to prove

‖F̂f (û, p̂, η)‖
L2(0,T ;H−

1
2 +α)

≤ CF̂f
T β (3.5.30)

and
‖F̂f (û, p̂, η)|Ω2‖L2(0,T ;L2(Ω2)) ≤ CF̂f

T β. (3.5.31)

The Lipschitz estimate (3.5.29) can be obtained in a similar way to how we will proceed to
prove (3.5.28).

• F̃1
f : By using the Hölder inequality, the continuous embedding Hs(Ω) ↪→ L4(Ω) with 1/2 <

s ≤ 1/2 + α and Lemmas 3.5.1, 3.5.2 and 3.5.4, we obtain∥∥∥∥det(J)(∂z1η±)∂ûi
∂z1

û1

∥∥∥∥
L2(0,T ;L2(Ω))

≤ C ‖det(J)‖L∞((0,T )×Ω) ‖∂z1η
±‖L∞((0,T )×(−L/2,L))

× ‖û1‖
L∞(0,T ;H

1
2 +α(Ω))

×
∥∥∥∥∂ûi∂z1

∥∥∥∥
L2(0,T ;Hs(Ω))

≤ CT β.

• F̃2
f : Let a0 ∈ (1/4, 1/2) be the parameter that appears in Proposition 3.2.2. By using Hölder’s

inequality and the continuous embeddings Ha0(−L/2, L) ↪→ L4(−L/2, L) and Hs(Ω) ↪→ L4(Ω),
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with 1/2 < s < 1/2 + α, together with Lemmas 3.5.2 and 3.5.4, we obtain∥∥∥∥det(J)η±t
∂ûi
∂z2

∥∥∥∥
L2(0,T ;L2(Ω))

≤ C ‖det(J)‖L∞((0,T )×Ω)

× ‖η±t ‖L∞(0,T ;Ha0 (−L/2,L))

∥∥∥∥∂ûi∂z2

∥∥∥∥
L2(0,T ;Hs(Ω))

≤ CT β

• F̃3
f : From Lemmas 3.5.1, 3.5.2 and 3.5.3, we get∥∥∥∥∥det(J)(∂z1η±) ∂2ûi

∂z2∂z1

∥∥∥∥∥
L2(0,T ;H−

1
2 +α(Ω))

≤ C ‖det(J)‖L∞((0,T )×Ω) ‖∂z1η
±‖

L∞(0,T ;H
1
2 +a0 (−L/2,L))

×
∥∥∥∥∥ ∂2ûi
∂z2∂z1

∥∥∥∥∥
L2(0,T ;H−

1
2 +α0 (Ω))

≤ CT β.

• F̃4
f : Let a0 ∈ (1/4, 1/2) be the parameter that appears in Proposition 3.2.2. Using the Hölder

inequality and the continuous embeddings Ha0(−L/2, L) ↪→ L4(−L/2, L) and Hs(Ω) ↪→ L4(Ω),
with 1/2 < s < 1/2 + α, together with Lemmas 3.5.1, 3.5.2 and 3.5.4, we obtain∥∥∥∥det(J)(∂2

z1η
±)∂ûi
∂z2

∥∥∥∥
L2(0,T ;L2(Ω))

≤ C ‖det(J)‖L∞((0,T )×Ω) ‖∂
2
z1η
±‖L∞(0,T ;Ha0 (−L/2,L))

∥∥∥∥∂ûi∂z2

∥∥∥∥
L2(0,T ;Hs(Ω))

≤ CT β.

This completes the proof. �

Estimate of Ĝdiv

Lemma 3.5.6. There exist constants CĜdiv
> 0 and β > 0, depending only on R, a0, u0 and

η0
2, such that, for all 0 < T < 1, and for all (û, p̂, η) ∈ B(T,R,u0, η

0
2), we have∥∥∥div

(
θ̃Ĝdiv

)
(û, η)

∥∥∥
L2(0,T ;H

1
2 +α,1(Ω))

+ ‖θ̃Ĝdiv(û, η)‖
H1(0,T ;H−

1
2 +α,0(Ω))

≤ CĜdiv
T β

(3.5.32)

and ∥∥∥(1− θ̃)Ĝdiv(û, η)
∥∥∥
L2(0,T ;H

3
2 +α,2
δ

(Ω))∩H1(0,T ;H−
1
2 +α,0(Ω))

≤ CĜdiv
T β, (3.5.33)

where θ̃ is introduced in (3.4.7). Furthermore, for all (û1, p̂1, η1) and (û2, p̂2, η2) ∈ B(T,R,u0, η
0
2),

we have∥∥∥(div
(
θ̃Ĝdiv

)
(û1, η1)− div

(
θ̃Ĝdiv

)
(û2, η2)

)∥∥∥
L2(0,T ;H

1
2 +α,1(Ω))

+
∥∥∥θ̃Ĝdiv(û1, η1)− θ̃Ĝdiv(û2, η2)

∥∥∥
H1(0,T ;H−

1
2 +α,0(Ω))

+
∥∥∥(1−Ψ)

(
Ĝdiv(û1, η1)− Ĝdiv(û2, η2)

)∥∥∥
L2(0,T ;H

3
2 +α
2,δ (Ω))∩H1(0,T ;H−

1
2 +α,0(Ω))

≤ CĜdiv
T β‖(û1, p̂1, η1)− (û2, p̂2, η2)‖ZT .

(3.5.34)
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Proof. We recall that Ĝdiv is given in Appendix B, (3.6.22). We will only present the proofs
of estimates (3.5.32) and (3.5.33). The proof of the Lipschitz estimate (3.5.34) can be proved in
a similar way.

Let us show the estimates (3.5.32) and (3.5.33). We split the proof in three steps.

• Step 1: Proof of estimate
∥∥∥div

(
θ̃Ĝdiv

)
(û, η)

∥∥∥
L2(0,T ;H

1
2 +α,1)

≤ CĜdiv
T β.

We will only consider the term (∂z1η±)∂û1
∂z2

. In this case, the proof of∥∥∥∥(∂z1η±)∂û1
∂z2

∥∥∥∥
L2(0,T ;L2)

+
∥∥∥∥∇((∂z1η±)∂û1

∂z2

)∥∥∥∥
L2(0,T ;H−

1
2 +α,0)

≤ CT β (3.5.35)

may be adapted from the one of Lemma 3.5.5.

• Step 2: Proof of estimate ‖θ̃Ĝdiv(û, η)‖
H1(0,T ;H−

1
2 +α,0)

≤ CĜdiv
T β.

We will prove that
‖(∂z1η±)û1‖

L2(0,T ;H−
1
2 +α)

≤ CT β (3.5.36)

and
‖∂t((∂z1η±)û1)‖

L2(0,T ;H−
1
2 +α)

≤ CT β. (3.5.37)

To prove estimate (3.5.36), we can proceed in a similar way as in the proof of Lemma 3.5.5.

In order to prove (3.5.37), we will show that

‖(∂2
z1tη

±)û1‖
L2(0,T ;H−

1
2 +α)

≤ CT β (3.5.38)

and
‖(∂z1η±)∂tû1‖

L2(0,T ;H−
1
2 +α)

≤ CT β. (3.5.39)

Let us begin by proving (3.5.38). Let us first observe that thanks to the embedding H
1
2 +α(Ω) ↪→

L2(Ω), Lemmas 3.5.2 and 3.5.4, we obtain the following estimate:∥∥∥(∂2
z1tη

±)û1
∥∥∥
L2(0,T ;L2(Ω))

≤ C‖∂2
z1tη

±‖L2(0,T ;L∞(−L/2,L)). (3.5.40)

To conclude the proof of (3.5.38), we will show that

‖∂2
z1tη

±‖L2(0,T ;L∞(−L/2,L)) ≤ CT β. (3.5.41)

Let us notice that for all a0 ∈ (0, 1/2) we have that H1/4−a0/2(0, T ) ↪→ Lq
∗(0, T ), with q∗ =

4/(1 + 2a0). We highlight that the continuity constant in the preceding embedding does not
depend on T (see [DPV12, Remark 6.8]). Then, by using Hölder’s inequality and Lemma 3.5.2,
we obtain∫ T

0
‖∂2

z1tη
±‖2L∞(−L/2,L) dt ≤ T

q∗
q∗−2 ‖∂2

z1tη
±‖2Lq∗ (0,T ;L∞(−L/2,L)) ≤ CT

q∗
q∗−2 . (3.5.42)

This proves (3.5.41) and hence the estimate (3.5.38).
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Let us now prove (3.5.39). With Lemmas 3.5.1 and 3.5.3, we have the following estimate:

‖∂z1η±∂tû1‖
L2(0,T ;H−

1
2 +α(Ω))

≤ C‖∂z1η±‖L∞(0,T ;H
1
2 +a0 (−L/2,L))

‖∂tû1‖
L2(0,T ;H−

1
2 +α(Ω))

≤ CT β.

Thus, the estimate (3.5.32) follows from steps 1 and 2.

• Step 3: Proof of estimate (3.5.33).
Let a0 ∈ (0, 1/2) be the parameter that appears in Proposition 3.2.2. Since η±(t, ·) ∈

H4(ε0, L) ↪→ L∞(ε0, L), from Lemma 3.5.1 we obtain

‖(1− θ̃)(∂z1η±)û1‖
L2(0,T ;H

3
2 +α(Ω))

≤ C‖∂z1η±‖L∞(0,T ;H
1
2 +a0 (ε0,L))

‖û1‖
L2(0,T ;H

3
2 +α(Ω))

≤ CT β.
(3.5.43)

This completes the proof. �

Estimate of F̂s

Lemma 3.5.7. There exist constants C
F̂s
> 0 and β > 0, depending only on R, a0, u0 and η0

2,
such that, for all 0 < T < 1, and for all (û, p̂, η) ∈ B(T,R,u0, η

0
2), we have

‖F̂s(û, η)‖L2(0,T ;Hα(0,`s)) ≤ CF̂sT
β. (3.5.44)

Furthermore, for all (û1, p̂1, η1), (û2, p̂2, η2) ∈ B(T,R,u0, η
0
2), we have

‖F̂s(û1, η1)− F̂s(û2, η2)‖L2(0,T ;Hα(0,`s))

≤ C
F̂s
T β‖(û1, p̂1, η1)− (û2, p̂2, η2)‖ZT .

(3.5.45)

Proof. We first recall that F̂s is given in Appendix B, (3.6.23). Analogously to the proof of the
Lemmas 3.5.5 and 3.5.6, we will only prove the estimates (3.5.44) and (3.5.45) for some terms
of F̂s. In this particular case, we will only consider the term

γ+
s

(
det(J)(∂z1η±)∂û2

∂z2

)
.

Let us remark that in order to prove the Lipschitz estimate (3.5.45) we can proceed in a similar
manner as we will proceed to show (3.5.44).

Since γ+
s ∈ L(H

1
2 +α(Ω), Hα(Γ+

s )), it suffices to show that∥∥∥∥det(J)(∂z1η±)∂û2
∂z2

∥∥∥∥
L2(0,T ;H

1
2 +α)

≤ CT β. (3.5.46)

To conclude the estimate (3.5.46) we will prove that∥∥∥∥det(J)(∂z1η±)∂û2
∂z2

∥∥∥∥
L2(0,T ;L2)

≤ CT β (3.5.47)

and ∥∥∥∥∇(det(J)(∂z1η±)∂û2
∂z2

)∥∥∥∥
L2(0,T ;H−

1
2 +α)

≤ CT β. (3.5.48)
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Let us first prove the estimate (3.5.47). Let a0 ∈ (1/4, 1/2) be the parameter that appears in
Proposition 3.2.2. Using Hölder’s inequality and the continuous embeddings Ha0(−L/2, L) ↪→
L4(−L/2, L) and Hs(Ω) ↪→ L4(Ω), with 1/2 < s < 1/2 +α, with Lemmas 3.5.1, 3.5.2 and 3.5.4,
we get ∥∥∥∥det(J)(∂z1η±)∂û1

∂z2

∥∥∥∥
L2(0,T ;L2(Ω))

≤ C ‖det(J)‖L∞((0,T )×Ω) ‖∂z1η
±‖L∞(0,T ;Ha0 (−L/2,L))

∥∥∥∥∂û1
∂z2

∥∥∥∥
L2(0,T ;Hs(Ω))

≤ CT β.

This completes the proof of (3.5.47).
Let us now show (3.5.48). We will only consider the estimate∥∥∥∥det(J)(∂2

z1η
±)∂û1
∂z2

∥∥∥∥
L2(0,T ;H−

1
2 +α)

+
∥∥∥∥∥det(J)∂z1η±

∂2û1
∂z2

2

∥∥∥∥∥
L2(0,T ;H−

1
2 +α)

≤ CT β. (3.5.49)

The proof of (3.5.49) is similar of that of Lemma 3.5.5. �

3.6 Proof of Theorem 3.2.1

Let us first recall the definition of the space ZT given in (3.2.18):

ZT =
(
L2(0, T ; H

3
2 +α,2
δ (Ω)) ∩H1(0, T ; H−

1
2 +α,0(Ω))

)
× L2(0, T ;H

1
2 +α,1
δ (Ω))×H4,2

{0,`s}((0, T )× (0, `s)).

We now introduce the mapping N from ZT into itself, defined by

N (Φ, ψ, k) = (û, p̂, η) for all (Φ, ψ, k) ∈ ZT ,

where (û, p̂, η) is the solution of the system

∂tû− div σ(û, p̂) = F̂f (Φ, ψ, k), div û = div Ĝdiv(Φ, k) in QT ,
û = gi on ΣT

i , û = 0 on ΣT
w ∪ ΣT

r , û = ηt~e2 on ΣT
s ,

σ(û, p̂)n = 0 on ΣT
n , û(0) = u0(Xη(·)) in Ω,

∂2
t ηt + α∆2

sη + γ(∆2
s)

1
2 ηt = −γ+

s p̂+ γ−s p̂+ F̂s(Φ, k) in (0, T )× (0, `s),
η = 0 and ∂x1η = 0 on (0, T )× {0},
∂2
x1η = 0 and ∂3

x1η = 0 on (0, T )× {`s},
η(0) = 0 and ηt(0) = η0

2 in (0, `s).

(3.6.1)

To prove the existence of a solution to the system (3.6.1), we will show that for an appropri-
ate radius R > 0, there exists T ∈ (0, 1) sufficiently small such that the mapping N maps
B(T,R,u0, η

0
2) into B(T,R,u0, η

0
2) and it is a strict contraction in B(T,R,u0, η

0
2).

Proposition 3.6.1. Let M be a positive constant satisfying

‖u0‖H1(Ω) + ‖η0
2‖H1(0,`s) + ‖gi‖H1

{0}(0,1;H(Γi)) ≤M. (3.6.2)

Then, there exists T ∈ (0, 1) such that N maps B(T,R,u0, η
0
2) into itself, where R = 2CLM , with

CL being the constant appearing in estimate (3.4.15). Moreover, for all (Φ, ψ, k) ∈ B(T,R,u0, η
0
2),
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all (Φ1, ψ1, k1), (Φ2, ψ2, k2) ∈ B(T,R,u0, η
0
2), we have

‖N (Φ, ψ, k)‖ZT ≤ R (3.6.3)

and

‖N (Φ1, ψ1, k1) −N (Φ2, ψ2, k2)‖ZT ≤ CT
β‖(Φ1, ψ1, k1)− (Φ2, ψ2, k2)‖ZT . (3.6.4)

Proof. From Theorem 3.4.1 it follows that

‖(û, p̂, η)‖ZT ≤ CL
(
‖u0‖H1 + ‖η0

2‖H1(0,`s) + ‖g‖H1(0,T ;H(Γi))

+ ‖F̂f (Φ, ψ, k)‖
L2(0,T ;H−

1
2 +α,0)

+ ‖F̂s(Φ, k)‖L2((0,T )×(0,`s))

+
∥∥∥div

(
θ̃Ĝdiv(Φ, k)

)∥∥∥
L2(0,T ;H

1
2 +α,1)

+ ‖θ̃Ĝdiv(Φ, k)‖
H1(0,T ;H−

1
2 +α,0)

+
∥∥∥(1− θ̃)Ĝdiv(Φ, k)

∥∥∥
L2(0,T ;H

3
2 +α,2
δ

)∩H1(0,T ;H−
1
2 +α,0)

)
,

(3.6.5)

where CL > 0 is the constant appearing in estimate (3.4.15), which is independent of T . After
combining the estimates (3.5.28), (3.5.32), (3.5.33), (3.5.44), (3.6.2), in (3.6.5), we get

‖(û, p̂, η)‖ZT ≤ CLM + CL(CF̂f
+ CĜdiv

+ C
F̂s

)T β.

We recall that M depends on the initial conditions u0, η
0
2 and on the boundary data gi. Next,

for T ∈ (0, 1) small enough we deduce that

‖(û, p̂, η)‖ZT ≤ R.

From Lemma 3.5.1, we get
‖η±‖L∞((0,T )×(−L/2,L)) ≤ CT β,

with C > 0 independent of T . Then, by choosing T > 0 sufficiently small, we obtain that
`− e+ η±χ ≥ (`− e)/2 for all (t, z) ∈ (0, T )× Ω. Therefore, we have that N (B(T,R,u0, η

0
2)) ⊂

B(T,R,u0, η
0
2). Now, we are going to show that N is a strict contraction in B(T,R,u0, η

0
2). For

j = 1, 2, we set N (Φj , ψj , kj) = (ûj , p̂j , ηj). From Theorem 3.4.1 and the estimates (3.5.29),
(3.5.34) and (3.5.45), we obtain

‖(û1, p̂1, η1)− (û2, p̂2, η2)‖ZT
≤ CL(CF̂f

+ CĜdiv
+ C

F̂s
)T β‖(Φ1, ψ1, k1)− (Φ2, ψ2, k2)‖ZT .

Then, if 0 < T < 1 is small enough, we conclude that N is a strict contraction in B(T,R,u0, η
0
2).
�

Proof of Theorem 3.2.1. The first part of Theorem 3.2.1 follows from Proposition 3.6.1 and
the Banach fixed point Theorem. On the other hand, since X(t, ·) is a C1−diffeomorphism from
Ω into Ωη(t), there exists a unique Y (t, ·) from Ωη(t) into Ω such that X(t, ·)−1 = Y (t, ·). Defining
u(t, x) = û(t, Y (t, x)) and p(t, x) = p̂(t, Y (t, x)) we can verify that (u, p, η) satisfies the system
(3.1.1)-(3.1.2).
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Appendix A: Expression of the function H and simplification in
the modelling

In this section, we present the formal computations leading to the expression of the function
H = H(u, p, η) in the system

∂tu + (u · ∇)u− div σ(u, p) = 0 in QTη , (3.6.6a)
div u = 0 in QTη , (3.6.6b)
u = gi on ΣT

i , u = 0 on ΣT
w, u = 0 on ΣT

r , (3.6.6c)
u = ηt~e2 on ΣT

η , σ(u, p)n = 0 on ΣT
n , (3.6.6d)

u(0) = u0 in Ω, (3.6.6e)
∂2
t η + α∆2

sη + γBηt = H(u, p, η) in (0, T )× (0, `s), (3.6.6f)
η = 0 and ∂x1η = 0 on (0, T )× {0}, (3.6.6g)
∂2
x1η = 0 and ∂3

x1η = 0 on (0, T )× {`s}, (3.6.6h)
η(0) = 0 and ∂tη(0) = η0

2 in (0, `s). (3.6.6i)

The computations rely on an energy equality. For simplicity, we assume that gi = 0 on Γi and
that B = ∆2

s, with D(B) = H4
{0,`s}(0, `s).

Let us first derive an energy identity for the sub-fluid system (3.6.6a)-(3.6.6e). By taking the
scalar product of both sides of the momentum equation (3.6.6a) with the fluid velocity u, and
then integrating over Ωη(t), we obtain∫

Ωη(t)

∂tu · u +
∫

Ωη(t)

(u · ∇)u · u + 2ν
∫

Ωη(t)

|ε(u)|2 −
∫
∂Ωη(t)

σ(u, p)n · u = 0. (3.6.7)

The first term in the previous identity can be rewritten with the aid of the Reynold’s transport
Theorem. Indeed, using the cited theorem (see [BF12, Theorem I.2.1]), we get

d

dt

∫
Ωη(t)

|u|2 =
∫

Ωη(t)

∂t(|u|2) +
∫

Γη(t)

|u|2u · n,

from where we deduce that∫
Ωη(t)

∂tu · u = 1
2
d

dt

∫
Ωη(t)

|u|2 − 1
2

∫
Γη(t)

|u|2u · n. (3.6.8)

Let us analyze the second term in the identity (3.6.7). From the divergence’s Theorem and the
incompressbility condition div u = 0 in Ωη(t) it follows that∫

Ωη(t)

(u · ∇)u · u = 1
2

∫
Γη(t)

|u|2u · n + 1
2

∫
Γn
|u|2u · n. (3.6.9)

Now, using identities (3.6.8) and (3.6.9) in (3.6.7), we obtain

1
2
d

dt

∫
Ωη(t)

|u|2 + 1
2

∫
Γn
|u|2u · n + 2ν

∫
Ωη(t)

|ε(u)|2 −
∫
∂Ωη(t)

σ(u, p)n · u = 0. (3.6.10)

Let us now derive an energy identity for the sub-structure system (3.6.6f)-(3.6.6i). By multi-
plying both sides of the identity (3.6.6f) by ∂tη, integrating over (0, `s) and some integration by



Appendix A: Expression of the function H and simplification in the modelling 108

parts, we get

1
2
d

dt

∫ `s

0

(
|∂tη|2 + α|ηxx|2

)
+ γ

∫ `s

0
|ηtxx|2 =

∫ `s

0
H(u, p, η)∂tη. (3.6.11)

Now, after adding identities (3.6.10) and (3.6.11), we obtain

1
2
d

dt

∫
Ωη(t)

|u|2 + 1
2

∫
Γn
|u|2u · n + 2ν

∫
Ωη(t)

|ε(u)|2

+1
2
d

dt

∫ `s

0

(
|∂tη|2 + α|ηxx|2

)
+ γ

∫ `s

0
|ηtxx|2 −

∫
∂Ωη(t)

σ(u, p)n · u =
∫ `s

0
H(u, p, η)∂tη.

(3.6.12)

This last identity suggests defining the function H such that∫ `s

0
H(u, p, η)∂tη = −

∫
∂Ωη(t)

σ(u, p)n · u.

Let us analyze the right-hand side of the last equality. Indeed, let us first observe that

−
∫
∂Ωη(t)

σ(u, p)n · u = −
∫

Γ+
η(t)

σ(u, p)n+
η(t) · u︸ ︷︷ ︸

J1

−
∫

Γ−
η(t)

σ(u, p)n−η(t) · u︸ ︷︷ ︸
J2

−
∫

Γ`
η(t)

σ(u, p)n`η(t) · u︸ ︷︷ ︸
J3

.

The curves Γ+
η(t) and Γ−η(t) are parametrized by

Φ±(t, x) = (x, η(t, x)± e), (t, x) ∈ (0, T )× (0, `s), (3.6.13)

while the curve Γ`η(t) is parametrized by

Φ`s(t, λ) = (`s, (1− λ)(−e+ η(t, `s)) + λ(e+ η(t, `s))), (t, λ) ∈ (0, T )× (0, 1). (3.6.14)

Then,

J1 = −
∫ `s

0
σ(u(t,Φ+(t, x)), p(t,Φ+(t, x)))n+

η(t) · u(t,Φ+(t, x))|Φ+
x (t, x)| dx

= −
∫ `s

0
σ(u(t,Φ+(t, x)), p(t,Φ+(t, x)))n+

η(t)ηt~e2

√
1 + η2

x dx,

(3.6.15)

and

J2 = −
∫ `s

0
σ(u(t,Φ−(t, x)), p(t,Φ−(t, x)))n−η(t) · u(t,Φ−(t, x))|Φ−x (t, x)| dx

= −
∫ `s

0
σ(u(t,Φ−(t, x)), p(t,Φ−(t, x)))n−η(t)ηt~e2

√
1 + η2

x dx.

(3.6.16)

On the other hand, since the kinematic condition is given by

u(t,Φ`s(t, λ)) = Φ`s
t (t, x), (t, λ) ∈ (0, T )× (0, 1),

which is equivalent to

u(t,Φ`s(t, λ)) = ηt(t, `s)~e2, (t, λ) ∈ (0, T )× (0, 1), (3.6.17)
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we have that

J3 = −
∫ 1

0
σ(u(t,Φ`s(t, λ)), p(t,Φ`s(t, λ)))n`η(t) · u(t,Φ`s(t, λ))|Φ`s

λ (t, λ)| dλ

= −
∫ 1

0
σ(u(t,Φ`s(t, λ)), p(t,Φ`s(t, λ)))n`η(t)ηt(t, `s)~e22e dλ

= −2eηt(t, `s)
∫ 1

0
σ21(u(t,Φ`s(t, λ)), p(t,Φ`s(t, λ))) dλ

= −2eηt(t, `s)
∫ 1

0
u2,x(t,Φ`s(t, λ)) dλ.

(3.6.18)

Thus, the relations (3.6.15) and (3.6.16) suggest us to define H as

H(u, p, η) = −
(
σ+(u, p)n+

η(t) + σ−(u, p)n−η(t)

)√
1 + (∂x1η)2 · ~e2. (3.6.19)

Discussion about the term J3

As we can notice, the term J3 given in (3.6.18) is not necessarily zero, since neither ηt(t, `s)
nor

∫
Γ`
η(t)

u2,x is necessarily zero. One possible way to compensate this term in the energy iden-

tity would be to include it in one of the bondary conditions at the right end x = `s of the beam.
This would amount to treating a structure equation with a non-standard condition. However, as
a first step toward addressing such a problem in the future, we decide to consider homogeneous
conditions at the right end of the beam. In this context, we present numerical results showing
that the term J3 can be neglected after comparison with the viscous dissipation term.

To assess the order of magnitude of the term J3 = J3(t) in comparison with respect to the
viscosity dissipation D = 2ν

∫
Ωη(t)

|ε(u)|2, we present three numerical simulations. Given a fixed

Reynolds number Re = 200, damping coefficient γ = 10−6 and the perturbation amplitude
β = 1.5 of the inflow condition, we consider three different values of the rigidity coefficient α:
1, 10−1 and 10−2.

Figures 3.6, 3.7 and 3.8 show the evolution the viscosity dissipation D = D(t) and |J3| = |J3(t)|
when the rigidity coefficient α is equal to 1, 10−1 and 10−2, respectively. From these figures we
deduce the following:

• When α = 1, D ≈ 10−1, while |J3| ≈ 10−5.

• When α = 10−1, D ≈ 10−1, while |J3| ≈ 10−4.

• When α = 10−2, D ≈ 10−1, while |J3| ≈ 10−4.

In all three cases analyzed, we observe that the viscous dissipation D is at least three orders of
magnitude larger than J3. Thus, it seems reasonable to neglect the contribution of J3.
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Figure 3.6 – Comparison between the viscosity dissipation D = D(t) and J3 = J3(t), when
α = 1.
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Figure 3.7 – Comparison between the viscosity dissipation D = D(t) and J3 = J3(t), when
α = 10−1.
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Figure 3.8 – Comparison between the viscosity dissipation D = D(t) and J3 = J3(t), when
α = 10−2.
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Appendix B: Change of variables

B.1 General change of variable formula

In this appendix we present the formulas used to obtain the nonlinear terms F̂f , F̂div and
F̂s.

We set
u(t, x) = û(t, Y (t, x)) and p(t, x) = p̂(t, Y (t, x)).

Then,

∂tui = ∂tûi +
∑
j

∂ûi
∂zj

∂Yj
∂t

, ((u · ∇)u)i =
∑
j,k

ûj
∂ûi
∂zk

∂Yk
∂xj

,
∂ui
∂xj

=
∑
k

∂ûi
∂zk

∂Yk
∂xj

,

∂2ui
∂xj∂xm

=
∑
k,l

∂2ûi
∂zk∂zl

∂Yl
∂xm

∂Yk
∂xj

+
∑
k

∂ûi
∂zk

∂2Yk
∂xj∂xm

,
∂p

∂xi
=
∑
k

∂p̂

∂zk

∂Yk
∂xi

,

div u =
∑
k,j

∂ûj
∂zk

∂Yk
∂xj

.

(3.6.20)

B.2 Nonlinear terms coming from the geometric transformation (3.2.9)

In this section, we present the explicit formulas of the terms F̂f , F̂div and F̂s that we obtain
for the geometric transformation given in (3.2.9).

After some computations, we obtain:

• F̂f,i(û, p̂, η) = −
(
û1
∂ûi
∂z1
− (`∓ z)χ±∂z1η±

`− e+ η±χ

∂ûi
∂z2

û1 + `− e
`− e+ η±χ

∂ûi
∂z2

û2

)

+ (`∓ z)χ±η±t
`− e+ η±χ

∂ûi
∂z2
− 2ν

(
(`∓ z)χ±∂z1η±

`− e+ η±χ

)
∂2ûi
∂z1∂z2

+ ν

(
(`∓ z)χ±∂z1η±

`− e+ η±χ

)2
∂2ûi
∂z2z1

− ν
(

2(`− e) + η±χ

(`− e+ η±χ )2

)
η±χ
∂2ûi
∂z2

2

− ν ∂

∂z1

(
(`∓ z)χ±∂z1η±

`− e+ η±χ

)
∂ûi
∂z2

+ ν
∂

∂z2

(
(`∓ z)χ±∂z1η±

`− e+ η±χ

)
(`∓ z)χ±∂z1η±

`− e+ η±χ

∂ûi
∂z2

+ ν(`− e)2 1
`− e+ η±χ

∂

∂z2

(
1

`− e+ η±χ

)
∂ûi
∂z2

− ν ∂

∂zi

(
−

η±χ
`− e

∂û1
∂z1

+ (`∓ z)χ±∂z1η±

`− e
∂û1
∂z2

)
+ ((IR2 − J>)∇q)i,

(3.6.21)

where,

(IR2 − J>)∇q = (`∓ z)χ±∂z1η±

`− e+ η±χ

∂q

∂z2
~e1 +

η±χ

`− e+ η±χ

∂q

∂z2
~e2.

• Ĝdiv(û, η) = −
η±χ
`− e

û1~e1 + (`∓ z)χ±∂z1η±

`− e
û1~e2. (3.6.22)

•F̂s(û, η) = −νγ+
s

(
`− e

`− e+ η±χ

∂û1
∂z2

+ ∂û2
∂z1
− (`∓ z)χ±∂z1η±

`− e+ η±χ

∂û2
∂z2

)
(3.6.23)
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+ νγ−s

(
`− e

`− e+ η±χ

∂û1
∂z2

+ ∂û2
∂z1
− (`∓ z)χ±∂z1η±

`− e+ η±χ

∂û2
∂z2

)
(3.6.24)

+ 2ν `− e
`− e+ η±χ

γ+
s

(
∂û2
∂z2

)
− 2ν `− e

`− e+ η±χ
γ−s

(
∂û2
∂z2

)
. (3.6.25)

Appendix C: Auxiliar results

C.1 Study of Stokes system with irregular divergence data (case 1)

Let α ∈ (0, α∗). Here, we will consider the decomposition of the domain Ω as the one given
in Figure 3.4. In this section, we shall study the the Stokes system{

−div σ(w, p) = 0 in Ω, div w = div hdiv in Ω,
w = 0 on Γd, σ(w, p)n = 0 on Γn,

(3.6.26)

when hdiv belongs to H−
1
2 +α

Γd (Ω) satisfies hdiv|OR = 0. Before to introduce the definition of what
we will understand by a solution of (3.6.26), let us consider the system{

−div σ(Φ, ψ) = ζ in Ω, div Φ = 0 in Ω,
Φ = 0 on Γd, σ(Φ, ψ)n = 0 on Γn.

(3.6.27)

Definition 3.C.1. Let α ∈ (0, α∗). Let us assume that hdiv ∈ H−
1
2 +α

Γd (Ω) with hdiv|OR = 0. We

say that w ∈ H−
1
2 +α

Γd (Ω) is a solution to (3.6.26) in the sense of transposition if and only if

〈w, ζ〉
H
− 1

2 +α
Γd

,H
1
2−α
Γd

= 〈hdiv,∇ψ〉
H
− 1

2 +α
Γd

,H
1
2−α
Γd

, (3.6.28)

for all ζ ∈ L2(Ω), where (Φ, ψ) is solution of system (3.6.27).

Lemma 3.C.2. Let α ∈ (0, α∗). For all hdiv ∈ H−
1
2 +α

Γd (Ω) satisfying hdiv|OR = 0, system
(3.6.26) admits a unique solution w ∈ H−

1
2 +α,0(Ω) in the sense of definition 3.C.1.

Proof. Let ζ ∈ H
1
2−α
Γd (Ω) satisfiying ζ|OR = 0. By using a localization argument and [Dau89,

Theorem 5.5(b)], [MR10, Theorem 9.4.5] as in the proof of [BFGR, Theorem 3.2], we can
deduce that ψ ∈ H

1
2 +α(Ω) with ψ|OL ∈ H

3
2−α(OL). Then, arguing as in the proof of [BFGR,

Theorem 17] we have that w|OL ∈ H−
1
2 +α

Γd (OL). Moreover,

‖w‖
H
− 1

2 +α
Γd

(OL)
≤ C‖hdiv‖

H
− 1

2 +α
Γd

(OL)
‖∇ψ‖

H
1
2−α(OL)

. (3.6.29)

On the other hand, taking ζ ∈ L2(Ω) with ζ|OL = 0 and using a similar argument as above, we
can deduce that in particular ψ|OL ∈ H

3
2−α(OL). Moreover,

‖w‖L2(OR) ≤ C‖hdiv‖
H
− 1

2 +α
Γd

(OL)
‖∇ψ‖

H
1
2−α(OL)

. (3.6.30)

Then, the conclusion follows from (3.6.29) and (3.6.30). �
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C.2 Study of the Stokes system with irregular divergence data (case 2)

Let us consider the system{
−div σ(w̃, π̃) = 0, div w̃ = h2 in Ω,
w̃ = 0 on Γd, σ(w̃, π̃)n = 0 on Γn.

(3.6.31)

Definition 3.6.1. Let α ∈ (0, α∗). Assume h2 ∈ H−
1
2 +α

Γd (Ω). We say that w̃ ∈ L2(Ω) is solution
to (3.6.31) if and only if,∫

Ω
w̃ ·G = −〈h2, ρ〉

H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)
for all G ∈ L2(Ω), (3.6.32)

where (ϕ, ρ) is solution to {
−div σ(ϕ, ρ) = G, divϕ = 0 in Ω,
ϕ = 0 on Γd, σ(ϕ, ρ)n = 0 on Γn.

(3.6.33)

Lemma 3.6.1. Assume h2 ∈ H−
1
2 +α

Γd (Ω). System (3.6.31) admits a unique solution w̃ ∈ L2(Ω)
in the sense of Definition 3.6.1.

Proof. Given G ∈ L2(Ω), we know from [MR10, Theorem 9.4.5] that there exists a unique
couple (ϕ, ρ) ∈ H

3
2 +α
δ (Ω) × H1

δ (Ω) solution to (3.6.33). Then, since H1
δ (Ω) ↪→ H

1
2 +α(Ω), the

right-hand side in (3.6.32) is well-defined.

Let us consider the linear functional L : L2(Ω) −→ R defined by

L(G) = −〈h2, ρ〉
H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)
.

Then,

|L(G)| =
∣∣∣∣∣〈h2, ρ〉

H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)

∣∣∣∣∣ ≤ C‖h2‖
H
− 1

2 +α
Γd

(Ω)
‖G‖L2(Ω).

Thus, L ∈ L(L2(Ω),R). Then, the result follows from the Riesz representation Theorem. �

C.3 Auxiliar Lemma

Throughout this section we will assume that X and Y are two separable Hilbert spaces. We
will also suppose that X is continuously embedded into Y and that the range of X is dense in Y .

Let a and b two real numbers, finite or not, with a < b. We set

W (a, b) :=
{
f ∈ L2(a, b;X) | ∂tf ∈ L2(a, b;Y )

}
(3.6.34)

endowed with the norm

‖f‖W (a,b) :=
(
‖f‖2L2(a,b;X) + ‖∂tf‖2L2(a,b;Y )

)1/2
.

Lemma 3.C.3. Let 0 < T < 1. If f ∈W (0, T ), then f ∈ C([0, T ]; [X,Y ]1/2) and

‖f‖L∞(0,T ;[X,Y ]1/2) ≤ C
(
‖f(0)‖[X,Y ]1/2 + ‖f‖L2(0,T ;X) + ‖∂tf‖L2(0,T ;Y )

)
, (3.6.35)



Appendix D: Proof of estimates (3.5.17) and (3.5.18) 114

where C > 0 is independent of T .

Proof. We split the proof in three steps.

• Step 1. Intermediate estimate.

We claim that there exists a constant C independent of T , such that for all w̃ ∈ W (0, T )
with w̃(0) = 0, we have

‖w̃‖L∞(0,T ;[X,Y ]1/2) ≤ C
(
‖w̃‖L2(0,T ;X) + ‖∂tw̃‖L2(0,T ;Y )

)
. (3.6.36)

Indeed, from [LM72, Theorem 3.1, p. 19] we have that there exists C > 0 such that for all
w ∈W (0,∞)

‖w‖L∞(0,∞;[X,Y ]1/2) ≤ C
(
‖w‖L2(0,∞;X) + ‖∂tw‖L2(0,∞;Y )

)
. (3.6.37)

To conclude the estimate (3.6.36) we will proceed as follows. Let us first extend w̃ toW (−∞, T )
by defining w̃(t) = 0 if t < 0. Then, for t > 0 we define w̃(T + t) = 3w̃(T − t) − 2w̃(T − 2t).
We see that this extension belongs toW (0,∞). Then, the estimate (3.6.36) follows from (3.6.37).

• Step 2. Lifting.

From [LM72, Theorem 3.2, p. 21 and Remark 3.3, p. 22] it follows that for f0 := f(0) ∈
[X,Y ]1/2, there exists a lifting f̃ ∈W (0, 1), such that f̃(0) = f0 and

‖f̃‖W (0,1) ≤ C‖f0‖[X,Y ]1/2 . (3.6.38)

Let us set w̃(t) := f(t) − f̃(t), t ∈ [0, T ]. Then, by construction w̃ ∈ W (0, T ) and w̃(0) = 0.
Thus, using estimates (3.6.36) and (3.6.38), we get

‖f − f̃‖L∞(0,T ;[X,Y ]1/2) ≤ C
(
‖f(0)‖[X,Y ]1/2 + ‖f‖L2(0,T ;X) + ‖∂tf‖L2(0,T ;Y )

)
. (3.6.39)

• Step 3. Conclusion.

Let us first notice that from estimate (3.6.38) and [LM72, Theorem 3.1, p. 19] we have

‖f̃‖L∞(0,1;[X,Y ]1/2) ≤ C‖f(0)‖[X,Y ]1/2 . (3.6.40)

Let us now show the estimate (3.6.35). By using the estimates (3.6.38), (3.6.39) and (3.6.40),
we obtain

‖f‖L∞(0,T ;[X,Y ]1/2) ≤ ‖f − f̃‖L∞(0,T ;[X,Y ]1/2) + ‖f̃‖L∞(0,T ;[X,Y ]1/2)

≤ C
(
‖f(0)‖[X,Y ]1/2 + ‖f‖L2(0,T ;X)

+ ‖∂tf‖L2(0,T ;Y )
)

+ C‖f(0)‖[X,Y ]1/2

≤ C
(
‖f(0)‖[X,Y ]1/2 + ‖f‖L2(0,T ;X) + ‖∂tf‖L2(0,T ;Y )

)
.

(3.6.41)

This completes the proof.
�
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D.1 Proof of estimate (3.5.17)
It is sufficient to prove that

‖∂tη‖L∞(0,T ;Ha0 (0,`s)) ≤ C
(
‖∂tη(0)‖H1

{0}(0,`s)
+ ‖∂tη‖L2(0,T ;H2(0,`s)) + ‖∂2

t η‖L2(0,T ;L2(0,`s))
)
.

(3.6.42)
Let us set f := ∂tη. Notice that f ∈ H2,1

{0}((0, T ) × (0, `s)), since η ∈ H4,2
{0,`s}((0, T ) × (0, `s)).

Then, using Lemma 3.C.3 with X = H2
{0}(0, `s) and Y = L2(0, `s), we deduce (3.6.42).

D.2 Proof of estimate (3.5.18)
It is sufficient to show that

‖∂tη‖
Lq∗ (0,T ;H

3
2 +a0 (0,`s))

≤ C
(
‖∂tη(0)‖H1

{0}(0,`s)
+ ‖∂tη‖L2(0,T ;H2(0,`s)) + ‖∂2

t η‖L2(0,T ;L2(0,`s))
)
.

(3.6.43)
We split the proof in three steps.

• Step 1. Interpolation and scaling arguments.

Let us set f := ∂tη. Next, since η ∈ H4,2
{0,`s}((0, T )× (0, `s)), f ∈ H2,1

{0}((0, T )× (0, `s)).

Let us first observe that by interpolation we have

H2,1
{0}((0, 1)× (0, `s)) ↪→ H1/4−a0/2(0, 1;H3/2+a0(0, `s)). (3.6.44)

Moreover, there exists a positive constant C such that

‖g‖H1/4−a0/2(0,1;H3/2+a0 (0,`s)) ≤ C‖g‖
3/4+a0/2
L2(0,1;H2(0,`s))‖∂tg‖

1/4−a0/2
L2(0,1;L2(0,`s)), (3.6.45)

for all g ∈ H2,1
{0}((0, 1) × (0, `s)) satisfying g(0) = 0. We remark that the Poincaré inequal-

ity was used in the last estimate. On the other hand, thanks to the continuous embedding
H1/4−a0/2(0, 1) ↪→ Lq

∗(0, 1), with q∗ = 4/(1 + 2a0), we have

H1/4−a0/2(0, 1;H3/2+a0(0, `s)) ↪→ Lq
∗(0, 1;H3/2+a0(0, `s)). (3.6.46)

Moreover, there exists a positive constant C such that

‖g‖Lq∗ (0,1;H3/2+a0 (0,`s)) ≤ C‖ζ‖H1/4−a0/2(0,1;H3/2+a0 (0,`s)), (3.6.47)

for all g ∈ H2,1
{0}((0, 1)× (0, `s)) satisfying g(0) = 0.

Then, after combining the estimates (3.6.45) and (3.6.46), we obtain

‖g‖Lq∗ (0,1;H3/2+a0 (0,`s)) ≤ C‖g‖
3/4+a0/2
L2(0,1;H2(0,`s))‖∂tg‖

1/4−a0/2
L2(0,1;L2(0,`s)), (3.6.48)

for all g ∈ H2,1
{0}((0, 1)× (0, `s)) satisfying g(0) = 0. Let g̃(t) := g(t/T ), t ∈ (0, T ). Then, since

‖g̃‖Lq∗ (0,T ;H3/2+a0 (0,`s)) = T 1/q∗‖g‖Lq∗ (0,1;H3/2+a0 (0,`s)),

‖g̃‖L2(0,T ;H2(0,`s)) = T 1/2‖g‖L2(0,1;H2(0,`s)),

‖∂tg̃‖L2(0,T ;L2(0,`s)) = T−1/2‖∂tg‖L2(0,1;L2(0,`s)),

(3.6.49)
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from estimate (3.6.48) we deduce that

‖g̃‖Lq∗ (0,T ;H3/2+a0 (0,`s)) ≤ C‖g̃‖
3/4+a0/2
L2(0,T ;H2(0,`s))‖∂tg̃‖

1/4−a0/2
L2(0,T ;L2(0,`s)), (3.6.50)

for all g̃ ∈ H2,1
{0}((0, T ) × (0, `s)) satisfying g̃(0) = 0. We highlight that the positive constant C

in (3.6.50) is the same that appears in (3.6.48), which is independent of T .

• Step 2. Lifting.

Let us first provide the space H2,1
{0}((0, 1)× (0, `s)) with the norm

‖f̃‖
H2,1
{0}((0,1)×(0,`s)) :=

(
‖f̃‖2L2(0,1;H2

{0}(0,`s))
+ ‖∂tf̃‖2L2(0,1;L2(0,`s))

)1/2
.

From [LM72, Theorem 3.2, p. 21 and Remark 3.3, p. 22] it follows that for f(0) = ∂tη(0) ∈
H1
{0}(0, `s), there exists a lifting f̃ ∈ H2,1

{0}((0, 1)× (0, `s)), such that f̃(0) = f(0) and

‖f̃‖
H2,1
{0}((0,1)×(0,`s)) ≤ C‖f(0)‖H1

{0}(0,`s)
. (3.6.51)

Let us set g̃(t) := f(t)− f̃(t), t ∈ (0, T ). Let us notice that by construction

f̃ ∈ H2,1
{0}((0, T )× (0, `s)) and f̃(0) = 0.

Then, from estimate (3.6.50), we get

‖f − f̃‖Lq∗ (0,T ;H3/2+a0 (0,`s)) ≤ C‖f − f̃‖
3/4+a0/2
L2(0,T ;H2(0,`s))‖∂t(f − f̃)‖1/2−a0/2

L2(0,T ;L2(0,`s)). (3.6.52)

Let us estimate the right-hand side in (3.6.52). By using Young’s inequality and estimate
(3.6.51), we obtain

‖f − f̃‖3/4+a0/2
L2(0,T ;H2(0,`s))‖∂t(f − f̃)‖1/4−a0/2

L2(0,T ;L2(0,`s))

≤
(
‖f‖3/4+a0/2

L2(0,T ;H2(0,`s)) + ‖f̃‖3/4+a0/2
L2(0,T ;H2(0,`s))

)
×
(
‖∂tf‖1/4−a0/2

L2(0,T ;L2(0,`s)) + ‖∂tf̃‖1/4−a0/2
L2(0,T ;L2(0,`s))

)
≤ C

(
2(3/4 + a0/2)‖f‖L2(0,T ;H2(0,`s)) + 2(1/4− a0/2)‖∂tf‖L2(0,T ;L2(0,`s))

+ 2C ‖f(0)‖H1
{0}(0,`s)

)
≤ C

(
‖f(0)‖H1

{0}(0,`s)
+ ‖f‖L2(0,T ;H2(0,`s)) + ‖∂tf‖L2(0,T ;L2(0,`s))

)
.

(3.6.53)
Next, using (3.6.53) in (3.6.52), we get

‖f − f̃‖Lq∗ (0,T ;H3/2+a0 (0,`s)) ≤ C
(
‖f(0)‖H1

{0}(0,`s)
+ ‖f‖L2(0,T ;H2(0,`s))

+ ‖∂tf‖L2(0,T ;L2(0,`s))
)
.

(3.6.54)

• Step 3. Conclusion.

We claim that
‖f̃‖Lq∗ (0,1;H3/2+a0 (0,`s)) ≤ C‖f(0)‖H1

{0}(0,`s)
. (3.6.55)
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Since f̃ belongs to H2,1
{0}((0, 1)× (0, `s)), we have that

‖f̃‖L2(0,1;H2(0,`s)) ≤ C‖f(0)‖H1
{0}(0,`s)

. (3.6.56)

Thanks to [LM72, Theorem 3.1, p. 19] and estimate (3.6.51), we deduce that

‖f̃‖L∞(0,1;H1(0,`s)) ≤ C‖f(0)‖H1
{0}(0,`s)

. (3.6.57)

By interpolation, we get

‖f̃(t, ·)‖Hs(0,`s) ≤ C‖f̃(t, ·)‖2−sH1(0,`s)‖f̃(t, ·)‖s−1
H2(0,`s) for a.e. t ∈ (0, 1), for all s ∈ [1, 2].

In particular, if s = 3/2 + a0, we obtain

‖f̃(t, ·)‖H3/2+a0 (0,`s) ≤ ‖f̃(t, ·)‖1/2−a0
H1(0,`s)‖f̃(t, ·)‖1/2+a0

H2(0,`s).

Thus, ∫ 1

0
‖f̃(t, ·)‖q

∗

H3/2+a0 (0,`s)
dt =

∫ 1

0
‖f̃(t, ·)‖2/(1/2+a0)

H3/2+a0 (0,`s)
dt

≤ C‖f̃‖(2(1−2a0)/(1+2a0))
L∞(0,1;H1(0,`s))

∫ 1

0
‖f̃(t, ·)‖2H2(0,`s)

This proves the claim.

Let us now show the estimate (3.6.43). By using the estimates (3.6.51), (3.6.54) and (3.6.55),
we get

‖f‖Lq∗ (0,T ;H3/2+a0 (0,`s)) ≤ ‖f − f̃‖Lq∗ (0,T ;H3/2+a0 (0,`s)) + ‖f̃‖Lq∗ (0,T ;H3/2+a0 (0,`s))

≤ C
(
‖f(0)‖H1

{0}(0,`s)
+ ‖f‖L2(0,T ;H2(0,`s))

+ ‖∂tf‖L2(0,T ;L2(0,`s))
)

+ C‖f(0)‖H1
{0}(0,`s)

≤ C
(
‖f(0)‖H1

{0}(0,`s)
+ ‖f‖L2(0,T ;H2(0,`s))

+ ‖∂tf‖L2(0,T ;L2(0,`s))
)
.

(3.6.58)

This completes the proof of estimate (3.6.43).



Chapter4
Numerical simulations of the fluid-structure
interaction system

Abstract of the current chapter

In this chapter, we deal with the numerical approximation of a fluid-structure interaction system.
The system couples the incompressible Navier-Stokes equations in a two dimensional rectangular
domain with an elastic structure governed by a damped Euler-Bernoulli beam equation. To deal
with the change of the fluid domain over the time, we use a classical approach widely used in the
literature, namely the Arbitrary Lagrangian-Eulerian (ALE) approach. We then describe the
semi-implicit monolithic method employed, along with the presentation of the numerical results
obtained from its implementation. We also present numerical experiments aimed at analyzing
the spectrum of the fluid-structure operator.
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4.1. Introduction 119

4.1 Introduction

Thoughout this chapter, the notation used to describe the reference domain Ω and the phys-
ical domain Ωη(t), as well as their boundaries, will be the same as that introduced in Subsection
3.1.1 of Chapter 3.

In this chapter, we deal with the numerical simulation of the fluid-structure interaction sys-
tem 

∂tu + (u · ∇)u− div σ(u, p) = 0 in QTη ,
div u = 0 in QTη ,
u = gi on ΣT

i , u = 0 on ΣT
r ∪ ΣT

w,

u = ηt~e2 on ΣT
η , σ(u, p)n = 0 on ΣT

n ,

u(0) = u0 in Ω,
∂2
t η + α∆2

sη + γBηt = H(u, p, η) + fs in (0, T )× (0, `s),
η = 0 and ∂x1η = 0 on (0, T )× {0},
∂2
x1η = 0 and ∂3

x1η = 0 on (0, T )× {`s},
η(0) = 0 and ∂tη(0) = η0

2 in (0, `s),

(4.1.1)

where u and p respresent the fluid velocity and pressure. Here, σ(u, p) is the fluid stress tensor
given by

σ(u, p) = 2νε(u)− pI, ε(u) = 1
2(∇u + (∇u)>),

with ν > 0 denoting the fluid viscosity. The inflow boundary condition gi = gis+βgip, where gis is
time-independent, gip is a time-dependent perturbation of gis, while β represents the perturbation
amplitude. The elastic part of the structure is governed by the reference centerline curve η of the
beam. The parameters α > 0 and γ > 0 are constants relative to the structure. The damping
operator B is given by

B = ∆2
s = ∂4

x1 , D(B) = H4
{0,`s}(0, `s).

The expression of the force exerted by the fluid on Γ+
η(t) ∪ Γ−η(t) is given by

H(u, p, η) = −
(
σ+(u, p)n+

η(t) + σ−(u, p)n−η(t)

)√
1 + (∂x1η)2 · ~e2, (4.1.2)

where
σ±(u, p) = σ(u(t, x, η(t, x)± e), p(t, x, η(t, x)± e)),

and n+
η(t) (resp. n+

η(t)) is the unit normal to Γ+
η(t) (resp. Γ−η(t)) exterior to Ωη(t).

As previously mentioned in Chapter 3, one of the main difficulties in studying a fluid-structure
interaction system lies in the fact that the fluid domain Ωη(t) evolves over time. This issue
arises not only at the continuous level, but also represents a major challenge in the context of
numerical simulations. To address this difficulty, we employ the Arbitrary Lagrangian Eulerian
(ALE) approach (see [DGH82]). In the literature, there exists a plethora of works in which this
strategy has been adopted (see, for instance, [QTV00], [QF04], [TH06], [FGG07], [Ric15]). Let
us briefly describe this approach.

Let Ωref ⊂ R2 be a fixed reference domain. We consider the ALE map A : (0,∞)× Ωref → R2

given by A = IΩref + ηext, where ηext : (0,∞) × Ωref → R2 denotes the fluid domain displace-
ment. The map A is assumed to be invertible. We also assume that the fluid domain Ωη(t) is
parameterized as Ωη(t) = A(t,Ωref ). The fluid domain velocity w is defined by w = ∂tA. Thus,
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we can rewrite the incompressible Navier-Stokes equations in ALE formulation as follows:{
∂tu|A − div σ(u, p) + ((u−w) · ∇)u = 0 in Ωη(t),

div u = 0 in Ωη(t),
(4.1.3)

for all t > 0, where ∂t|A represents the ALE time derivative. In order to define the ALE mapping
A we use the classical harmonic mesh motion (see, for instance, [QTV00], [RW10]).

Another important aspect in the numerical approximation of fluid-structure systems concerns
the resolution strategies. Broadly speaking, we can consider two groups. The first one, known
as the Partitioned strategy, consists of solving the fluid and the structure subproblems inde-
pendently and coupling them through transmision conditions. This particular strategy allows
the use of existing ad-hoc solvers, although the price is the loss of efficiency with respect to the
second group described in the following. This second group, refered as Monolithic approach, is
characterized by the fact that the fluid and structure subproblems are solved simultaneously.
As pointed out in [Ric15], "this approach allows the use of implicit discretization techniques and
strong coupled solvers for the whole system". One the main drawback of this strategy is the
computational cost.

The strategy used in this chapter follows the monolithic approach presented in [Mur19], where
the author presents a monolithic algorithm for solving a fluid-structure interaction coupling
the incompressible Navier-Stokes equations and an incompressible neo-hookean structure. More
precisely, a semi-implicit algorithm is employed, where semi-implicit is understood in the sense
that the fluid domain is computed explicitly. A similar approach is proposed in [SM08] with the
difference that, instead of using a monolithic strategy, a partitioned one is employed.

The remainder of this chapter is organized as follows. In Section 4.2, we present a variational
formulation of system (4.1.1). In Section 4.3, we introduce the ALE mapping and describe
the time-marching process used to solve this formulation. In Section 4.4, we present numerical
experiments. In Subsection 4.4.1, we first present the spectrum of the fluide-structure operator
for different values of the rigidity coefficient α, ceteris paribus. We then, in Subsection 4.4.2,
provide the corresponding numerical simulations of the direct problem associated with the cases
studied in the previous subsection.

4.2 A variational formulation of the continuous system

Before presenting the variational formulation associated with system (4.1.1) and its corre-
sponding discretization, we begin by introducing the auxiliary variables η1 := η and η2 := η1,t.
With this notation, the structure equations in (4.1.1) can be rewritten as a first-order system.
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Thus, the full system takes the following form:

∂tu + (u · ∇)u− div σ(u, p) = 0 in QTη1

div u = 0 in QTη1 ,

u = gi on ΣT
i , u = 0 on ΣT

r ∪ ΣT
w,

u = η2~e2 on ΣT
η1 , σ(u, p)n = 0 on ΣT

n

u(0) = u0 in Ω,
η2 = η1,t in (0, T )× (0, `s),
∂tη2 + α∆2

sη1 + γBη2 = H(u, p, η1) + fs in (0, T )× (0, `s),
η1 = 0 and ∂x1η1 = 0 on (0, T )× {0},
∂2
x1η1 = 0 and ∂3

x1η1 = 0 on (0, T )× {`s},
η1(0) = 0 and ∂2η(0) = η0

2 in (0, `s).

(4.2.1)

We set Γ0 = Γr ∪Γw. In order to take into account the Dirichlet boundary conditions on Γd, we
introduce the Lagrange multiplier λ = (λi,λ0,λs,top,λs,bot,λs,lat)>, where:

λi is the multiplier associated to the boundary data gi prescribed on Γi,
λ0 is the multiplier associated to the null boundary data prescribed on Γ0,

λs,top is the multiplier associated to the kinematic condition imposed on Γ+
η1(t),

λs,bot is the multiplier associated to the kinematic condition imposed on Γ−η1(t),

λs,lat is the multiplier associated to the kinematic condition imposed on Γ`η1(t).

(4.2.2)

Then, the variational formulation of system (4.2.1) reads as follows:

Find η1, η2 ∈ L2(0, T ;H2
{0}(0, `s)), u ∈ H1(0, T ; H−

1
2 +α(Ωη1(t))) ∩ L2(0, T ; H1(Ωη1(t))),

p ∈ L2(0, T ;L2(Ωη1(t))) and λ ∈ L2(0, T ; H−
1
2 (Γd)) such that

∫
Ωη1(t)

∂tu · φ = af (u,φ) + b(φ, p) + c(u,u,φ) +
∫

Γi
λi · φ+

∫
Γ0
λ0 · φ

+
∫

Γ+
η1(t)

λs,top · φ+
∫

Γ−
η1(t)

λs,bot · φ,+
∫

Γ`
η1(t)

λs,lat · φ, ∀φ ∈ H1(Ωη1(t)),

b(u, ψ) = 0, ∀ψ ∈ L2(Ωη1(t)),∫
Γi

u · τ =
∫

Γi
gi · τ , ∀τ ∈ H−

1
2 (Γi),

∫
Γ0

u · τ = 0, ∀τ ∈ H−
1
2 (Γ0),∫

Γ+
η1(t)

u · τ =
∫

Γ+
η1(t)

η2~e2 · τ , ∀τ ∈ H−
1
2 (Γ+

η1(t)),∫
Γ−
η1(t)

u · τ =
∫

Γ−
η1(t)

η2~e2 · τ , ∀τ ∈ H−
1
2 (Γ−η1(t)),∫

Γ`
η1(t)

u · τ =
∫

Γ`
η1(t)

η2~e2 · τ , ∀τ ∈ H−
1
2 (Γ`η1(t)),∫ `s

0
(∂tη1)ζ =

∫ `s

0
η2ζ, ∀ζ ∈ H2

{0}(0, `s),∫ `s

0
(∂tη2)ζ = a1

s(η1, ζ) + a2
s(η2, ζ)−

∫
Γ+
η1(t)

λs,top · ~e2ζ

−
∫

Γ−
η1(t)

λs,bot · ~e2ζ +
∫ `s

0
fsζ, ∀ζ ∈ H2

{0}(0, `s),

(4.2.3)
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where the bilinear forms af , b, a1
s and a2

s are given by

af (v,φ) = −2ν
∫

Ωη1(t)

ε(v) : ε(φ), b(φ, q) =
∫

Ωη1(t)

(divφ)q,

a1
s(η1, ζ) = −α

∫ `s

0
∆η1 ·∆ζ, a2

s(η2, ζ) = −γ
∫ `s

0
∆η2 ·∆ζ,

(4.2.4)

while the trilinear form c is defined by

c(u,v,φ) = −
∫

Ωη1(t)

(u · ∇)v · φ. (4.2.5)

System (4.2.3) has to be completed with initial conditions.
Remark 11. In the variational formulation (4.2.3), we make an abuse of notation by using the
L2 inner product instead of the appropriate duality pairing.

Figure 4.1 – Physical domain at time level k.

4.3 ALE mapping and the time-marching process

In this section, we introduce the ALE mapping A and describe the time-marching procedure
used to solve problem (4.2.3).

Let us consider the ALE transformation A(t, ·) : Ωref −→ Ωη(t) defined by

A(t, ·) = I +
∫ t

0
w(s, ·) ds, (4.3.1)

where w(t, ·) is solution of the elliptic equation

∆w = 0 in Ω, w = u|Γs on Γs, w = 0 on Γ \ Γs. (4.3.2)

Here, u|Γs stands for the trace of the fluid velocity on Γs. This classical approach to defining
the ALE mapping has been previously used, for instance, in [QTV00], [RW10]. This particular
choice is known to be effective for small deformations of the structure (see, for instance, [Wic11]).
Indeed, in Subsection 4.4.2, we present a numerical test that illustrates the deterioration of the
mesh when the displacement of the structure is no longer small. To address this issue, alterna-
tive strategies should be explored. We refer [Wic11] and [HC23], for instance.

The time discretization is treated by using the classical backward Euler method. We denote by
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∆t the time step and tk = k∆t, for k ∈ N the time level k. For all k ∈ N, Ωk := A(tk,Ωref )
with boundary Γk = Γi ∪ Γ0 ∪ Γks ∪ Γn, where Γ0 = Γr ∪ Γw and Γks = Γks,top ∪ Γks,bot ∪ Γks,lat,
see Figure 4.1. We denote by uk, pk and λk the approximations of u(tk, ·), p(tk, ·) and λ(tk, ·),
respectively. Here, λk = (λki ,λk0,λks,top,λks,bot,λks,lat)> denotes the Langrange multiplier associ-
ated to the Dirichlet boundary conditions. We also denote by ηk1 and ηk2 the approximations of
η1(tk, ·) and η2(tk, ·) defined on (0, `s), respectively.

Then, assuming known uk, pk, λk, wk, ηk1 and ηk2 , let us consider the following intermedi-
ate problem used in the description of the algorithm presented in Subsection 4.3.1:

Find ûk+1 ∈ H1(Ωk), p̂k+1 ∈ L2(Ωk), λ̂k+1 ∈ H−
1
2 (Γk \ Γn), ηk+1

1 , ηk+1
2 ∈ H2

{0}(0, `s) such that



∫
Ωk

ûk+1 − uk

∆t · φ = af (ûk+1,φ) + b(φ, p̂k+1) + c(ûk+1 −wk, ûk+1,φ)

+
∫

Γi
λ̂
k+1
i · φ+

∫
Γk0
λ̂
k+1
0 · φ+

∫
Γks,top

λ̂
k+1
s,top · φ

+
∫

Γk
s,bot

λ̂
k+1
s,bot · φ,+

∫
Γk
s,lat

λ̂
k+1
s,lat · φ, ∀φ ∈ H1(Ωk),

b(ûk+1, ψ) = 0, ∀ψ ∈ L2(Ωk),∫
Γi

ûk+1 · τ =
∫

Γi
gi · τ , ∀τ ∈ H−

1
2 (Γi),

∫
Γ0

ûk+1 · τ = 0, ∀τ ∈ H−
1
2 (Γ0),∫

Γks,top
ûk+1 · τ =

∫
Γks,top

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,top),∫

Γk
s,bot

ûk+1 · τ =
∫

Γk
s,bot

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,bot),∫

Γk
s,lat

ûk+1 · τ =
∫

Γk
s,lat

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,lat),∫ `s

0

ηk+1
1 − ηk1

∆t ζ =
∫ `s

0
ηk+1

2 ζ, ∀ζ ∈ H2
{0}(0, `s),∫ `s

0

ηk+1
2 − ηk2

∆t ζ = a1
s(ηk+1

1 , ζ) + a2
s(ηk+1

2 , ζ)

−
∫ `s

0
λ̂
k+1
s,top · ~e2ζ

√
1 + (ηk1,x)2

−
∫ `s

0
λ̂
k+1
bot · ~e2ζ

√
1 + (ηk1,x)2 +

∫ `s

0
fsζ, ∀ζ ∈ H2

{0}(0, `s).

(4.3.3)

where

af (v,φ) = −2ν
∫

Ωk
ε(v) : ε(φ), b(φ, q) =

∫
Ωk

(divφ)q, c(u,v,φ) = −
∫

Ωk
(u · ∇)v · φ,

a1
s(η1, ζ) = −α

∫ `s

0
∆η1 ·∆ζ, a2

s(η2, ζ) = −γ
∫ `s

0
∆η2 ·∆ζ.

4.3.1 The time-marching process

In this subsection, we describe the semi-implicit algorithm used to solve the problem (4.2.3).
This approach was implemented in [Mur19] for a fluid-structure interaction system coupling the
incompresible Navier-Stokes equations and an incompressible neo-hookean structure.

Given the solution at the instant tk, uk, pk, λk, wk, ηk1 and ηk2 at the known configuration
Ωk, the procedure to solve the time advancing scheme from k to k + 1 level is described in
Algorithm 3.



4.3. ALE mapping and the time-marching process 124

Algorithm 3: Semi-implicit algorithm
For k ≥ 1 :
1 : Solve the linear system that yields after applying the Newton algorithm in system (4.3.3)
and get ûk+1, ηk+1

1 , ηk+1
2 .

2 : Compute the mesh velocity ŵk+1 : Ωk → R2 satisfying the elliptic equation
∆ŵk+1 = 0 in Ωk,

ŵk+1 = ûk+1 on Γks ,
ŵk+1 = 0 on Γ \ Γks .

(4.3.4)

3 : Define Ak(x̂) := x̂ + ∆tŵk+1(x̂) and Ωk+1 := Ak(Ωk).
4 : Define uk+1 : Ωk+1 → R2, p : Ωk+1 → R, λk+1 : Ωk+1 → R2 and wk+1 : Ωk+1 → R2 by

uk+1(x) = ûk+1(x̂), pk+1(x) = p̂k+1(x̂), λk+1(x) = λ̂
k+1(x̂)

and wk+1(x) = ŵk+1(x̂), ∀x = Ak(x̂), x̂ ∈ Ωk.

Remark 12. In Algorithm 3 we use the notation ̂ to represent the state variables of Eulerian
nature that are subsequently updated later in the algorithm. In this regard, we remark that,
since the state variables η1 and η2 are of Lagangian nature, we do not use the notation .̂

4.3.2 Full discretization of the nonlinear system

Let k ∈ N. We introduce the finite-dimensional spaces Vh ⊂ H1(Ωk) for the velocity,
Ph ⊂ L2(Ωk) for the pressure, Dh ⊂ L2(Γd) for the multiplier and Sh ⊂ H2

{0}(0, `s) for the
structure’s displacement and its velocity. We denote by (φi)1≤i≤Nu a basis of Vh, (qi)1≤i≤Np a
basis of Ph, (µui )1≤i≤Nλu a basis of Dh and (ζi)1≤i≤Ns a basis of Sh. We set

uk =
Nu∑
i=1

ukiφi, u0 =
Nu∑
i=1

u0
iφi, p

k =
Np∑
i=1

pki qi, η1 =
Ns∑
i=1

ηk,i1 ζi, η2 =
Ns∑
i=1

ηk,i2 ζi,

η0
1 =

Ns∑
i=1

ηi1,0ζi, η
0
2 =

Ns∑
i=1

ηk2,0ζi, λ
v
f =

Nu
λ∑

i=1
λu,kf,i µ

u
i , λ

u
s =

Nu
λ∑

i=1
λu,ks,i µ

u
i ,

wk =
Nu∑
i=1

wki φi, gi =
Nλ∑
i=1

gki µ
u
i .

We also introduce the corresponding coordinate vectors,

Ûk = (uk1, · · · , ukNu)>, U0 = (u0
1, · · · , u0

Nu)>, Pk = (pk1, · · · , pkNp)
>, Nk

1 = (ηk,11 , · · · , ηk,Ns1 )>,

Nk
2 = (ηk,12 , · · · , ηk,Ns2 )>, N0

1 = (η1
1,0, · · · , η

Ns
1,0)>, N0

2 = (η1
2,0, · · · , η

Ns
2,0)>,

Λu,k
f = (λu,kf,1 , · · · , λ

u,k
f,Nu

λ
)>, Λu,k

s = (λu,ks,1 , · · · , λ
u,k
s,Nu

λ
)>, Wk = (wk1 , · · · , wkNu)>,

Λu,k = (Λu,k
f Λu,k

s )>, Θk = (Pk Λu,k)>, Gi,k = (gk1 , · · · , gkNλ)>.
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For all 1 ≤ i, j ≤ Nv, 1 ≤ i ≤ Np, 1 ≤ `,m ≤ Nλ, 1 ≤ r, t ≤ Ns, we introduce the matrices

(Auu)ij = af (φi,φj), (Aup)ik = b(φi, pk), (Auλu
f
)il =

∫
Γk
d
\Γks
µu` · φi, (Auλus )il =

∫
Γks
µu` · φi,

(Muu)ij =
∫

Ωk
φj · φi, (Ãη2λus )r` = −

∫
Γks,top∪Γk

s,bot

µu` · ~e2ζr, (Aλus η2)`r = −
∫

Γks
µu` · ~e2ζr,

(Mλuλu)ml =
∫

Γk
d

µu` · µum, (Aη1η2)rt = (Mηη)rt =
∫ `s

0
ζr · ζt, (Aη2η1)rt = −α

∫ `s

0
∆ζr ·∆ζt,

(Aη2η2)rt = −γ
∫ `s

0
∆ζr ·∆ζt, Aθg =

(
0

Mλλ

)
.

We also set
Nz = Nu + 2Ns, Nθ = Np +Nλ and N = Nz +Nθ.

Let us now introduce the following matrices:

M =
(
Mzz 0

0 0

)
and A =

(
Azz Azθ
Aθz 0

)
,

where

Mzz =

Muu 0 0
0 Mηη 0
0 0 Mηη

 , Azz =

Auu 0 0
0 0 Aη1η2

0 Aη2η1 Aη2η2

 ,

Azθ =

Aup Auλu
f

Avλus
0 0 0
0 0 Ãη2λus

 , Aθz =

 A>up 0 0
A>uλu

f
0 0

A>uλus 0 Aλus η2

 .
Let us consider the vectors

Lw(v̂) = −
(∫

Ωk
(w · ∇)v̂ · φ`

)
1≤`≤Nu

and

Nf (v̂) = −

∫
Ωk

Nu∑
i=1

Nu∑
j=1

v̂iv̂j(φi · ∇)φj · φ`


1≤`≤Nu

,

where v̂ =
Nu∑
i=1

v̂iφi. Thus, the matrix formulation of the full discretization is given by

1
∆tM


Û
N1
N2
Θ


k+1

= A


Û
N1
N2
Θ


k+1

+


Lwk(Û)

0
0
0


k+1

+ 1
∆tM


U
N1
N2
Θ


k

+


0
0
0

−AθgGi


k

+


Nf (Û)

0
0
0


k+1

.

(4.3.5)

4.4 Numerical simulations

Let us first introduce the data used in the numerical experiments. The initial domain config-
uration Ω considered corresponds to the non-symmetric setting introduced in [TH06]; see Table
4.1.
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Geometric parameters Value [m]
Channel length (L) 2.5
Channel width (H) 0.41
Cylinder center position (C) (0.2, 0.2)
Cylinder radius (R) 0.05
Elastic structure length (`s) 0.35
Elastic structure thickness (h) 0.02

Table 4.1 – Parameters of the domain Ω. Table extracted from [TH06].

At the inlet Γi = {0} × [0, 0.41] of the channel, we prescribe the Dirichlet boundary data

gi(t, x1, x2) = gis(x1, x2) + β · gip(t, x1, x2), (4.4.1)

where
gis(x1, x2) = (gis,1, gis,2)> =

( 6
0.1681x2(0.41− x2), 0

)>
and

gip(t, x1, x2) =


(
gip(t) · e−1000(x2−0.25)2

, 0
)>

if t ∈ [0, 2],
(0, 0)> if t > 2,

(4.4.2)

with gip(t) = 0.5(1 − cos(πt)) and β ≥ 0 being a parameter that measures the amplitude of
the perturbation gip. We highlight that the inclusion of the term gip in the expression (4.4.1)
is motivated by the study of the numerical stabilization problem treated in Chapter 6. In
Figures 4.2a and 4.2b, we show the profiles of the inflow condition gis,1 and the perturbation gip,
respectively. Figure 4.3 shows the first component of the inflow condition gi at different time
instants when the perturbation parameter β = 1.5. The perturbation has its greatest effect at
t = 1[s] (see Figure 4.3c).
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(a) Profile of the inflow condition gi
s,1
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(b) Profile perturbation gi
p at t = 0.

Figure 4.2 – Profile of the inflow condition gis,1 and perturbation gip.
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(d) t = 1.5[s]

Figure 4.3 – Profile of the first component of the inflow data gi at different time instants for the
perturbation parameter β = 1.5.

The Reynolds number is defined by Re = 2RUm
ν

, where Um is the mean value of gi0,1. Thus,
Re = 1

10ν depends only on ν.

In the various numerical tests carried out in this chapter, we use a triangular mesh with 30168
cells locally refined around the structure, see Figure 4.4. For the space discretization of system
(4.3.3), we choose the generalized Taylor-Hood finite elements P2 − P1 − P1 for the velocity, the
pressure and the Lagrange multiplier, respectively. The displacement and the velocity of the
structure are discretized by using Hermite finite elements. The nonlinearity is treated with a
Newton algorithm. The total number of degrees of freedom is equal to 394803. The numerical
implementations were carried out with the open source library GetFEM++, written in C++
[RP].

Figure 4.4 – Geometrical configuration and triangular mesh used in the numerical simulation.

4.4.1 Computation of the spectrum

An important step in the stabilization analysis to be carried out in Chapter 6 involves the
spectral study of the fluid-structure operator associated with the system obtained by lineariz-
ing system (4.2.1) around a given stationary solution. This linearization processs consists of



4.4. Numerical simulations 128

two stages: rewriting system (4.2.1) in the reference domain Ω, and subsequently linearizing it
around the stationary solution. The first stage requires selecting a suitable mapping from Ω into
Ωη(t). A natural idea would be to use the same mapping introduced in Chapter 3 to study the
existence of strong solutions, as done in [FNR]. However, we follow a different approach and
consider a mapping like the one defined in (4.3.1).

We begin by introducing some notation before presenting the eigenvalue problem:

λds is the multiplier associated to the boundary data η2~e2 on Γs,
λdf is the multiplier associated to the null boundary data prescribed on Γ \ Γs,
λws is the multiplier associated to the boundary data η2~e2 on Γs,
λwf is the multiplier associated to the null boundary data prescribed on Γ \ Γs.

(4.4.3)

We thus define λds = (λds ,λdf )> and λws = (λws ,λwf )>. Then, the eigenvalue problem reads as:

Find µ ∈ C, (u, p,λ, η1, η2) ∈ H1(Ω)× L2(Ω)×H−
1
2 (Γd)×H2

{0}(0, `s)×H
2
{0}(0, `s) and

(d,λd,w,λw) ∈ H1(Ω)×H−
1
2 (Γd)×H1(Ω)×H−

1
2 (Γd) such that

µ

∫
Ω

u · φ = ãf (u,φ) + b(φ, p) +
∫

Γi
λi · φ+

∫
Γ0
λ0 · φ+

∫
Γ+
λs,top · φ+

∫
Γ−
λs,bot · φ

+
∫

Γ`
λs,lat · φ+

∫
Ω
A1w · φ+

∫
Ω
A2d · φ, ∀φ ∈ H1(Ω),

b(u, ψ) =
∫

Ω
A3dψ, ∀ψ ∈ L2(Ω),∫

Γi∪Γ0
u · τ = 0, ∀τ ∈ H−

1
2 (Γi ∪ Γ0),∫

Γ+
u · τ =

∫
Γ+
η2~e2 · τ , ∀τ ∈ H−

1
2 (Γ+),∫

Γ−
u · τ =

∫
Γ−
η2~e2 · τ , ∀τ ∈ H−

1
2 (Γ−),∫

Γ`
u · τ =

∫
Γ`
η2~e2 · τ , ∀τ ∈ H−

1
2 (Γ`),

µ

∫ `s

0
η1ζ =

∫ `s

0
η2ζ, ∀ζ ∈ H2

{0}(0, `s),

µ

∫ `s

0
η2ζ = a1

s(η1, ζ) + a2
s(η2, ζ)−

∫
Γ+
λs,top · ~e2ζ

−
∫

Γ−
λs,bot · ~e2ζ +

∫ `s

0
A4dζ, ∀ζ ∈ H2

{0}(0, `s),∫
Ω
∇d : ∇ϕ−

∫
Γs
λds ·ϕ−

∫
Γ\Γs

λdf ·ϕ = 0, for all ϕ ∈ H1(Ω),∫
Γs

d · τ s −
∫

Γs
η1~e2 · τ s = 0, for all τ s ∈ H−

1
2 (Γs),∫

Γ\Γs
d · τ f = 0, for all τ f ∈ H−

1
2 (Γ \ Γs),∫

Ω
∇w : ∇ϕ−

∫
Γs
λws ·ϕ−

∫
Γ\Γs

λwf ·ϕ = 0, for all ϕ ∈ H1(Ω),∫
Γs

w · τ s −
∫

Γs
η2~e2 · τ s = 0, for all τ s ∈ H−

1
2 (Γs),∫

Γ\Γs
w · τ f = 0, for all τ f ∈ H−

1
2 (Γ \ Γs),

(4.4.4)
where

ãf (v,φ) = −2ν
∫

Ω
ε(v) : ε(φ)−

∫
Ω

((us · ∇)v + (v · ∇)us) · φ,
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while the bilinear forms b, a1
s and a2

s are defined in (4.2.4). Here, A1, A2, A3 and A4 are linear
operators, which are determined (in their discretized form) using a GetFEM++ library [RP] rou-
tine, after linearizing system (4.2.3) around the stationary solution (u, p,λ, η1, η2,d,λd,w,λw) =
(us, ps,λs, 0, 0,0,0,0,0), where the triple (us, ps,λs) is a stationary solution of system

(us · ∇)us − div σ(us, ps) = 0, div us = 0 in Ω,
us = gis, on Γi, us = 0 on Γ \ Γi,
σ(us, ps)n = 0 on Γn,

(4.4.5)

with λs representing the Lagrange multiplier associated with the Dirichlet boundary condition.
We highlight that this contrast with the approach used in [FNR], where the authors carried
out the linearization manually. In Appendix A, we present all the terms implemented in Get-
FEM++ library, which allow us to obtain all the linear operators A1, A2, A3, A41, A42, A43 and
A5 in their discretized form. For the discretization of system (4.4.4), we choose the generalized
Taylor-Hood finite elements P2 − P1 − P1 for the velocity, the pressure and the Lagrange multi-
plier, respectively. The displacement and the velocity of the structure are discretized by using
Hermite finite elements. The displacement d (resp. the velocity w) and the Lagrange multiplier
λd (resp. the multiplier λw) are discretized by using P2 − P1, respectively. The total of degree
of freedom is equal to 387655. We remark that the nonlinear problem (4.4.5) is solved by using
a Newton’s algorithm. The magnitude of the fluid velocity Us is displayed in Figure 4.5.

• Spectral analysis with different physical parameters. This preliminary spectral anal-
ysis of the fluid-structure operator will later allow us, in Chapter 6, to establish a comparison
with the spectrum of the fluid-structure operator modified by the action of the control operator.

Figure 4.5 – Fluid velocity magnitude Us corresponding to Reynolds number Re = 200.

α = 1. The fluid-structure spectrum displayed in Figure 4.6 shows four unstable eigenvalues,
namely, µ1,2 and µ3,4 (see Table 4.2). The corresponding real parts of the eingenfunctions
associated to the unstable eigenvalues are shown in Figures 4.7 (horizontal component of the
fluid velocity) and 4.8 (structure’s displacement).

µ1,2 µ3,4 µ5 µ6 µ7 µ8,9 µ10
1.21± 25.72i 0.85± 14.03i −0.23 −0.69 −0.85 −1.43± 2.64i −2.14

Table 4.2 – First eigenvalues of the fluid-structure system (ordered according to the real part)
corresponding to Reynolds number Re = 200, rigidity coefficient α = 1, and damping coefficient
γ = 10−6.
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Figure 4.6 – Portion of the fluid-structure spectrum corresponding to Reynolds number Re =
200, rigidity coefficient α = 1, and damping coefficient γ = 10−6. The unstable eigenvalues are
colored in red (the conjugate pair µ1,2) and green (the conjugate pair µ3,4).

(a) (b)

(c) (d)

Figure 4.7 – Real part of the horizontal component of the fluid velocity associated with the
unstable eigenvalues µ1,2 and µ3,4, corresponding to the rigidity coefficient α = 1, and damping
coefficient γ = 10−6. (a)-(c): Eigenfunctions associated to µ1 and µ2, respectively. (b)-(d):
Eigenfunctions associated to µ3 and µ4, respectively.

(a) Eigenfunctions associated with the un-
stable eigenvalues µ1,2. The eigenfunction
corresponding to µ1 is shown in solid red,
and that of µ2 in dashed red.

(b) Eigenfunctions associated with the un-
stable eigenvalues µ3,4. The eigenfunc-
tion corresponding to µ3 is shown in solid
green, and that of µ4 in dashed green.

Figure 4.8 – Structure’s displacement of the real part of the unstable eigenmodes associated to
the unstable eigenvalues µ1,2 and µ3,4, for the rigidity coefficient α = 1.

α = 10−1. In Figure 4.9 we show the fluid-structure spectrum. For this new parameter
value of α and with γ = 10−6 remaining constant, we observe the presence of four unstable
eigenvalues, specifically µ1,2 and µ3,4 (see Table 4.3).
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µ1,2 µ3,4 µ5 µ6 µ7 µ8,9 µ10
3.05± 21.61i 0.50± 11.96i −0.16 −0.69 −0.79 −1.86± 27.91i −1.94

Table 4.3 – First eigenvalues of the fluid-structure system (ordered according to the real part)
corresponding to Reynolds number Re = 200, rigidity coefficient α = 10−1, and damping coef-
ficient γ = 10−6.
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Figure 4.9 – Portion of the fluid-structure spectrum corresponding to Reynolds number Re =
200, rigidity coefficient α = 10−1, and damping coefficient γ = 10−6. The unstable eigenvalues
are colored in red (the conjugate pair µ1,2) and green (the conjugate pair µ3,4).

In Figures 4.10 and 4.11 we show the real part of the eigenfunctions of the structure’s
displacement and the horizontal component of the fluid velocity associated with the unstable
eigenvalues µ1,2 and µ3,4.

(a) (b)

(c) (d)

Figure 4.10 – Real part of the horizontal component of the fluid velocity associated with the
unstable eigenvalues µ1,2 and µ3,4, corresponding to the rigidity coefficient α = 10−1, , and
damping coefficient γ = 10−6. (a)-(c): Eigenfunctions associated to µ1 and µ2, respectively.
(b)-(d): Eigenfunctions associated to µ3 and µ4, respectively.
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(a) Eigenfunctions associated with the un-
stable eigenvalues µ1,2. The eigenfunction
corresponding to µ1 is shown in solid red,
and that of µ2 in dashed red.

(b) Eigenfunctions associated with the un-
stable eigenvalues µ3,4. The eigenfunc-
tion corresponding to µ3 is shown in solid
green, and that of µ4 in dashed green.

Figure 4.11 – Structure’s displacement of the real part of the unstable eigenmodes associated to
the unstable eigenvalues µ1,2 and µ3,4, for the rigidity coefficient α = 10−1.

α = 10−2. In constrast to the two cases presented above, when α = 10−2, we observe from
Figure 4.12 the presence of five unstable eigenvalues, namely µ1,2, µ3 and µ4,5 (see Table 4.4),
with µ3 being a real eigenvalue.

µ1,2 µ3 µ4,5 µ6 µ7 µ8,9 µ10
2.0± 19.21i 0.38 0.021± 8.27i −0.48 −0.68 −0.75± 43.33i −1.04

Table 4.4 – First eigenvalues of the fluid-structure system (ordered according to the real part)
corresponding to Reynolds number Re = 200, rigidity coefficient α = 10−2, and damping coef-
ficient γ = 10−6.
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Figure 4.12 – Portion of the fluid-structure spectrum corresponding to Reynolds number Re =
200, rigidity coefficient α = 10−2, and damping coefficient γ = 10−6. The unstable eigenvalues
are colored in red (the conjugate pair µ1,2) and green (the real eigenvalue µ3) and blue (the
conjugate pair µ4,5).

In Figures 4.13 and 4.14 we show the real part of the eigenfunctions of the structure’s
displacement and the horizontal component of the fluid velocity associated with the unstable
eigenvalues µ1,2, µ3,4 and µ5.



4.4. Numerical simulations 133

(a) (b)

(c) (d)

(e)

Figure 4.13 – Real part of the horizontal component of the fluid velocity associated with the
unstable eigenvalues µ1,2, µ3 and µ4,5, corresponding to the rigidity coefficient α = 10−2, and
damping coefficient γ = 10−6. (a)-(c): Eigenfunctions associated to µ1 and µ2, respectively. (b):
Eigenfunction associated to µ3. (e)-(f): Eigenfunctions associated to µ4 and µ5, respectively.

(a) Eigenfunctions associated with the un-
stable eigenvalues µ1,2. The eigenfunction
corresponding to µ1 is shown in solid red,
and that of µ2 in dashed red.

(b) Eigenfunctions associated with the un-
stable eigenvalues µ4,5. The eigenfunction
corresponding to µ4 is shown in solid blue,
and that of µ5 in dashed blue.

(c) Eigenfunctions associated with the un-
stable eigenvalues µ3.

Figure 4.14 – Structure’s displacement of the real part of the unstable eigenmodes associated to
the unstable eigenvalues µ1,2, µ3 and µ4,5, for the rigidity coefficient α = 10−2, and damping
coefficient γ = 10−6.

α = 10−3. Similarly to what was observed in the previous case when α = 10−2, we see that
the fluid-structure spectrum exhibits five unstable eigenvules when α = 10−3, namely, µ1,2, µ3,4
and µ5 (see Table 4.5).
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µ1,2 µ3 µ4,5 µ6 µ7 µ8,9 µ10
2.85± 18.64i 0.23 0.17± 25.34i −0.43 −0.65 −1.00 −1.49± 5.45i

Table 4.5 – First eigenvalues of the fluid-structure system (ordered according to the real part)
corresponding to Reynolds number Re = 200, rigidity coefficient α = 10−3, and damping coef-
ficient γ = 10−6.
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Figure 4.15 – Portion of the fluid-structure spectrum corresponding to Reynolds number Re =
200, rigidity coefficient α = 10−3, and damping coefficient γ = 10−6. The unstable eigenvalues
are colored in red (the conjugate pair µ1,2) and green (the real eigenvalue µ3) and blue (the
conjugate pair µ4,5).

(a) (b)

(c) (d)

(e)

Figure 4.16 – Real part of the horizontal component of the fluid velocity associated with the
unstable eigenvalues µ1,2 and µ3,4, corresponding to the rigidity coefficient α = 10−3, and
damping coefficient γ = 10−6. (a)-(c): Eigenfunctions associated to µ1 and µ2, respectively. (b):
Eigenfunction associated to µ3. (d)-(e): Eigenfunctions associated to µ4 and µ5, respectively. .
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(a) Eigenfunctions associated with the un-
stable eigenvalues µ1,2. The eigenfunction
corresponding to µ1 is shown in solid red,
and that of µ2 in dashed red.

(b) Eigenfunctions associated with the un-
stable eigenvalues µ4,5. The eigenfunction
corresponding to µ4 is shown in solid blue,
and that of µ5 in dashed blue.

(c) Eigenfunctions associated with the un-
stable eigenvalues µ3.

Figure 4.17 – Structure’s displacement of the real part of the unstable eigenmodes associated to
the unstable eigenvalues µ1,2, µ3 and µ4,5, for the rigidity coefficient α = 10−3.

4.4.2 Solving the direct problem

In this subsection, we present some numerical simulations of the direct problem (4.3.3) by using
the time-marching Algorithm 3. In all the numerical simulations carried out in this subsection
we use the following scheme for the space discretization of system (4.4.4). We choose the gener-
alized Taylor-Hood finite elements P2 − P1 − P1 for the velocity, the pressure and the Lagrange
multiplier, respectively. The displacement and the velocity of the structure are discretized by
using Hermite finite elements. The velocity w and the Lagrange multiplier are discretized by
using P2 − P1, respectively. The total of degree of freedom is equal to 263759.

• Test temporal convergence of the Algorithm 3. To carry out this simulation, we con-
sider the following physical parameters:

Re = 200, α = 10−1, γ = 10−6.

We also fix the perturbation paramter β = 0.1. We denote by (Us, Ps) the pair that represents
the numerical approximation of the solution of system (4.4.5).

In Figure 4.18, we show the evolution of L2−norm of the difference U−Us for different time
steps: ∆t = 10−3, 5 · 10−4, 2.5 · 104, 10−4.

Although for a given fixed mesh, as the one shown in Figure 4.4, we do not prove the conver-
gence of Algorithm 3 as ∆t −→ 0, we can infer from Figure 4.18 that, as the time step becomes
smaller, we can at least qualitatively observe such convergence. This is also observed in Figure
4.19, which show the evolution of the L∞−norm of the structure’s displacement for different
time steps.
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Figure 4.18 – Evolution of L2−norm of U−Us for different time steps.
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Figure 4.19 – Evolution of L∞−norm of η for different time steps.

• Numerical simulations of the direct problem. In this subsection, we present several
numerical simulations in which we analyze the behaviour dynamics of the solution to the fluid-
structure interaction problem by considering different values of the rigidity coefficient α. We
also consider different levels of the perturbation β at the inflow of the channel. We emphasize
that this analysis will later allow us, in Chapter 6, to evaluate the performance of the control
used to stabilize the fluid-structure interaction system.

In order to facilitate the comparison, the same scale has been used in the plots showing the
structure’s displacement η (see Figures 4.22, 4.24, 4.26, 4.28, 4.30, 4.32).
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(a) t = 0.5[s] (b) t = 0.5[s]

(c) t = 1[s] (d) t = 1[s]

(e) t = 1.5[s] (f) t = 1.5[s]

Figure 4.20 – Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient α = 1. In the left column (a)-(c)-(e), the velocity magnitudes are
shown for perturbation parameter β = 0.5, while in the right column (b)-(d)-(f), we display the
velocity magnitude corresponding to β = 1.5.

α = 1. We fix the rigidity coefficient α = 1. Figures 4.21 and 4.22 show snapshots of the fluid
velocity magnitude and the deflection of the structure at different time instants, respectively,
for β = 0.5.

(a) t = 4[s] (b) t = 6[s]

(c) t = 8[s] (d) t = 10[s]

(e) t = 12[s] (f) t = 14[s]

Figure 4.21 – Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient α = 1 and perturbation parameter β = 0.5.

In Figures 4.23 and 4.24, we show snapshots of the fluid velocity magnitude and the deflection
of the structure at different time instants, respectively, for β = 1.5.
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Figure 4.22 – Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient α = 1 and perturbation parameter β = 0.5.
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(c) t = 8[s] (d) t = 10[s]

(e) t = 12[s] (f) t = 14[s]

Figure 4.23 – Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient α = 1 and perturbation parameter β = 1.5.
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Figure 4.24 – Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient α = 1 and perturbation parameter β = 1.5.

As observed in Figures 4.21 and 4.23, the dynamic of the fluid appears to be similar in both
cases starting from time t = 6[s], for β = 0.5 and β = 1.5. However, from Figures 4.21a and
4.25a we see that the dynamics of the fluid at t = 4[s] are not the same. This is explained by the
size of the perturbutation considered, as shown in Figure 4.20, which present some snapshots of
the fluid velocity magnitude at t = 0.5[s], t = 1[s] and t = 1.5[s]. In this figure, we can observe
how the perturbation propagates towards the region where the structure is located.

In both cases, for β = 0.5 and β = 1.5, we observe that the deflection of the structure
remains relatively small, as shown in Figures 4.22 and 4.24. This can be attributed to the fact
that the rigidity coefficient α is relatively "large" compared to the one used in the experiments
shown below, where smaller values of this coefficient are considered.

α = 10−1. In this experiment, we fix the rigidity coefficient α = 10−1. Figures 4.25 (resp.
Figure 4.27) and 4.26 (resp. Figure 4.28) show snapshots of the fluid velocity magnitude and
the deflection of the structure at different time instants, respectively, for β = 0.5 (resp. β = 1.5).

(a) t = 4[s] (b) t = 6[s]

(c) t = 8[s] (d) t = 10[s]

(e) t = 12[s] (f) t = 14[s]

Figure 4.25 – Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient α = 10−1 and perturbation parameter β = 0.5.
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Figure 4.26 – Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient α = 10−1 and perturbation parameter β = 0.5.

As we can observe from Figures 4.25 and 4.27, we notice that the fluid dynamics are similar,
for β = 0.5 and β = 1.5. On the other hand, from Figures 4.26 and 4.28, we see that the
structure’s displacement at the plotted time instants is larger than that observed when α = 1
(see Figures 4.22 and 4.24).

(a) t = 4[s] (b) t = 6[s]

(c) t = 8[s] (d) t = 10[s]

(e) t = 12[s] (f) t = 14[s]

Figure 4.27 – Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient α = 10−1 and perturbation parameter β = 1.5.
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Figure 4.28 – Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient α = 10−1 and perturbation parameter β = 1.5.

α = 10−2. In this experiment, we consider the rigidity coefficient α = 10−2. Figures 4.29
(resp. Figure 4.31) and 4.30 (resp. Figure 4.32) show snapshots of the fluid velocity magnitude
and the deflection of the structure at different time instants, respectively, for β = 0.5 (resp.
β = 1.5).

(a) t = 4[s] (b) t = 6[s]

(c) t = 8[s] (d) t = 10[s]

(e) t = 12[s] (f) t = 14[s]

Figure 4.29 – Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient α = 0.01 and perturbation parameter β = 0.5.
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Figure 4.30 – Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient α = 10−2 and perturbation parameter β = 0.5.

(a) t = 4[s] (b) t = 6[s]

(c) t = 8[s] (d) t = 10[s]

(e) t = 12[s] (f) t = 14[s]

Figure 4.31 – Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient α = 10−2 and perturbation parameter β = 1.5.
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Figure 4.32 – Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient α = 10−2 and perturbation parameter β = 1.5.

α = 10−3. In this experiment, we fix the rigidity coefficient α = 10−3. Figure 4.33 shows
the snapshot of the magnitude of the fluid velocity at the time instant t = 6[s]. In Figure
4.34, we show the meshing around the reentrant corners. In those figures we can observe the
mesh deterioration around the lower reentrant corner. As pointed out at the beginning of this
chapter, it is known that the classical harmonic extension used to define the ALE mapping
performs well when the displacement of the structure is small (see, for instance, [Wic11]). This
suggests investigating alternative approaches that allow us to carry out numerical simulations
where the displacement of the structure is not small. In this regard, some techniques to be
explored include those proposed in [Wic11] and [HC23], for instance.

Figure 4.33 – Snapshots of the fluid velocity magnitude at the time instant t = 6[s] corresponding
to the rigidity coefficient α = 10−3 and perturbation parameter β = 0.5.
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(a)

(b)

Figure 4.34 – Snapshots of the mesh around the reentrant corners at t = 6[s], corresponding to
the rigidity coefficient α = 10−3 and perturbation parameter β = 0.5.
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Appendix A: Terms to be linearized

In this appendix, we present all the terms to be linearized around the stationary solution
(us, ps, 0, 0). First, we introduce the mapping that allows us to rewrite the system (4.2.3) in the
fixed reference domain Ω. Let X(t, ·) : Ω −→ Ωη(t) defined by

X(t, ·) = I + d(t, ·),

where d is the solution of the elliptic equation

∆d = 0 in Ω, d = η1~e2 on Γs, d = 0 on Γ \ Γs. (4.4.6)

We denote by J the jacobian matrix of the transformation X.

•Momentum equation. After using [HP00, Proposition 5.4.3 p. 190] to rewrite the boundary
terms, we obtain∫

Ω
∂tû · v̂|J | =−

∫
Ω

(
J−1(û−w) · ∇

)
û · v̂|J |+

∫
Ω
p̂I2×2 : (∇v̂J−1)|J |

−
∫

Ω

(
ν
(
∇ûJ−1 + J−>(∇û)>

))
: (∇v̂J−1)|J |+

∫
Γtop

λ̂top · v̂‖J−>~e2‖|J |

+
∫

Γbot
λ̂bot · v̂‖J−>~e2‖|J |+

∫
Γlat

λ̂lat · v̂‖J−>~e1‖|J |+
∫

Γfix
λfix · v̂, for all v̂.

(4.4.7)
• Conservation equation. ∫

Ω
∇û : J−>Ψ̂|J | = 0, for all Ψ̂. (4.4.8)

• Kinematic equation.∫
Γtop

û · τ̂‖J−>~e2‖|J | −
∫ `s

0
η2~e2 · τ̂

√
1 + η2

1,x = 0, for all τ̂ ,∫
Γbot

û · τ̂‖J−>~e2‖|J | −
∫ `s

0
η2~e2 · τ̂

√
1 + η2

1,x = 0, for all τ̂ ,∫
Γlat

û · τ̂‖J−>~e1‖|J | −
∫

Γlat
η2~e2 · τ̂‖J−>~e1‖|J | = 0, for all τ̂ .

(4.4.9)

Let us notice that in the third identity in (4.4.9) can be rewritten as∫
Γlat

û · τ̂ −
∫

Γlat
η2~e2 · τ̂ = 0. (4.4.10)

Indeed, since

X(t, z1, z2) = (z1 + d1(t, z1, z2), z2 + d2(t, z1, z2)), J =
(

1 + d1,z1 d1,z2
d2,z1 1 + d2,z2

)
(4.4.11)

and d1 ≡ 0,

J =
(

1 0
d2,z1 1 + d2,z2

)
and J−> = 1

1 + d2,z2

(
1 + d2,z2 −d2,z1

0 1

)
. (4.4.12)
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Next,

J−>~e1 = 1
1 + d2,z2

(
1 + d2,z2 −d2,z1

0 1

)(
1
0

)
=
(

1
0

)
. (4.4.13)

Then, using (4.4.13) and the fact that d2,z2 = 0 on Γlat, we deduce that

−
∫

Γlat
η2~e2 · τ̂‖J−>~e1‖|J | = −

∫
Γlat

η2~e2 · τ̂‖~e1‖|1 + d2,z2 | = −
∫

Γlat
η2~e2 · τ̂ . (4.4.14)

Moreover,this last expression can be further simplified as follows. We denote by (ζj , ζ̃j)1≤j≤Ns
the Hermite basis and by (τ̂ j)1≤j≤Nm` the P1 basis used. Then, for all i = 1, . . . Nm`,

−
∫

Γlat
η2~e2 · τ̂ i = −

∫
Γlat

η2(`s)~e2 · τ̂ i

= −
Ns∑
j=1

∫
Γlat

(
ηj2ζj + ηj2,xζ̃j

)
~e2 · τ̂ i

= −
Ns−1∑
j=1

∫
Γlat

(
ηj2ζj + ηj2,xζ̃j

)
~e2 · τ̂ i︸ ︷︷ ︸

=0

−
∫

Γlat

(
ηNs2 ζNs + ηNs2,xζ̃Ns

)
~e2 · τ̂ i.

(4.4.15)

• Structure equations.∫ `s

0
η1,tζ =

∫ `s

0
η2ζ for all ζ,∫ `s

0
η2,tζ = −α

∫ `s

0
∆η1∆ζ − γ

∫ `s

0
∆η2∆ζ

−
∫ `s

0
λ̂top · ~e2ζ

√
1 + η2

1,x −
∫ `s

0
λ̂bot · ~e2ζ

√
1 + η2

1,x, for all ζ.

(4.4.16)

• Equations for w and d.

∫
Ω
∇w : ∇ϕ−

∫
Γs
λs,w ·ϕ−

∫
Γ\Γs

λf,w ·ϕ = 0, for all ϕ,∫
Γs

w · τ s −
∫

Γs
η2~e2 · τ s = 0, for all τ s,∫

Γ\Γs
w · τ f = 0, for all τ f ,

(4.4.17)

and 

∫
Ω
∇d : ∇ϕ−

∫
Γs
λs,d ·ϕ−

∫
Γ\Γs

λf,d ·ϕ = 0, for all ϕ,∫
Γs

d · τ s −
∫

Γs
η1~e2 · τ s = 0, for all τ s,∫

Γ\Γs
d · τ f = 0, for all τ f .

(4.4.18)



Chapter5
Stabilization of the Fluid-Structure
Interaction system

Abstract of the current chapter

In this chapter, we study the stabilization of a fluid-structure interaction system about an
unstable stationary solution. We consider a fluid-structure interaction model coupling the in-
compressible Navier-Stokes equations in a 2D rectangular-type domain, and an elastic structure
governed by a damped Euler-Bernoulli beam equation. The structure, which is assumed to be
clamped at one end and free at the other, is immersed in the domain occupied by the fluid. We
prove that the system is exponentially stable, locally around an unstable stationary solution, for
any given decay rate, by using a feedback control corresponing to a force term in the structure
equation.

We emphasize that the computation of adjoint fluid-structure operator was obtained by for-
mal computations. In particular, the well-posedness of such a system has not been established
and the corresponding analysis will be the subject of a future work. However, this analysis is
not needed to prove the main result of the chapter.
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5.1 Introduction

In this chapter, we are interested in determining a feedback control law of finite dimension
able to stabilize a fluid-structure interaction system in a neighborhood of an unstable stationary
solution. Before introducing the governing equations, let us introduce some notation.

The reference configuration Ω of the fluid domain is given by

Ω = [−L/2, L]× [−`, `] \ S,

where S = Sr ∪ Se. The boundary Γ of Ω is divided into

Γ = Γi ∪ Γr ∪ Γs ∪ Γw ∪ Γn,

where

Γi = {−L/2} × [−`, `],
Γr =

{
(r(cos(θ)− cos(θ0)), r sin(θ)) | θ ∈ [θ0, 2π − θ0]

}
, r > 0, θ0 ∈ (0, π/2),

Γs = Γ−s ∪ Γ+
s ∪ Γ`s,

Γw = [−L/2, L]× {−`} ∪ [−L/2, L]× {`},
Γn = {L} × [−`, `],

with Γ−s = [0, `s] × {−e}, Γ+
s = [0, `s] × {e} and Γ`s = {`s} × [−e, e]. We also set Γd = Γ \ Γn.

See Figure 5.1.
For a given function η defined from (0,∞) × (0, `s) to R that describes the centerline dis-

placement of the elastic part of the structure, we denote by Ωη(t) the fluid domain at time t and
by Γη(t) = Γ−η(t) ∪ Γ+

η(t) ∪ Γ`η(t) the fluid-structure interface, where Γ−η(t) and Γ+
η(t) represent the

bottom and top of the elastic part of the structure, respectively and Γ`η(t) the lateral part (see
Figure 5.2). Here, Γ−η(t), Γ+

η(t) and Γ`η(t) are given by

Γ−η(t) = {(x, η(t, x)− e)| x ∈ [0, `s]}, Γ+
η(t) = {(x, η(t, x) + e)| x ∈ [0, `s]}

and
Γ`η(t) = {(`s, y) | y = (1− λ)(−e+ η(t, `s)) + λ(e+ η(t, `s))), λ ∈ [0, 1]}.

Figure 5.1 – Reference configuration.
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Figure 5.2 – Physical domain. The dashed lines denotes the reference centerline.

We set

Q∞η =
⋃

t∈(0,∞)

(
{t} × Ωη(t)

)
, Σ∞η =

⋃
t∈(0,∞)

(
{t} × Γη(t)

)
,

Q∞ = (0,∞)× Ω, Σ∞s = (0,∞)× Γs,
Σ∞i = (0,∞)× Γi, Σ∞d = (0,∞)× Γd,
Σ∞r = (0,∞)× Γr, Σ∞n = (0,∞)× Γn.

The governing equations for the fluid-structure interaction system are given by

∂tu + (u · ∇)u− div σ(u, p) = 0 in Q∞η , (5.1.1a)
div u = 0 in Q∞η , (5.1.1b)
u = gs + gp on Σ∞i , u = 0 on Σ∞r ∪ Σ∞w , (5.1.1c)
u = ηt~e2 on Σ∞η , σ(u, p)n = 0 on Σ∞n , (5.1.1d)
u(0) = u0 in Ω, (5.1.1e)
∂2
t η + α∆2

sη + γBηt = H(u, p, η) + fs + f in (0,∞)× (0, `s), (5.1.1f)
η = 0 and ∂x1η = 0 on (0,∞)× {0}, (5.1.1g)
∂2
x1η = 0 and ∂3

x1η = 0 on (0,∞)× {`s}, (5.1.1h)
η(0) = 0 and ∂tη(0) = η0

2 in (0, `s), (5.1.1i)

where u and p respresent the fluid velocity and pressure. Here, σ(u, p) is the Cauchy stress
tensor given by

σ(u, p) = 2νε(u)− pI, ε(u) = 1
2(∇u + (∇u)>),

with ν > 0 denoting the fluid viscosity. The inflow boundary condition gs is time-independent,
while gp is a time-dependent perturbation of gs. The elastic part of the structure is governed
by the reference centerline curve η. The parameters α > 0 and γ > 0 are constants relative to
the structure. The damping operator B is given by

B = (∆2
s)1/2, D(B) =

{
η ∈ H2(0, `s) | η(0) = ∂x1η(0) = 0

}
,

where ∆2
s = ∂4

x1 , with D(∆2
s) = H4

{0,`s}(0, `s). The expression of the force exerted by the fluid
on Γ+

η(t) ∪ Γ−η(t) is given by

H(u, p, η) = −
(
σ+(u, p)n+

η(t) + σ−(u, p)n−η(t)

)√
1 + (∂x1η)2 · ~e2, (5.1.2)



5.1. Introduction 151

where
σ±(u, p) = σ(u(t, x, η(t, x)± e), p(t, x, η(t, x)± e)),

and n+
η(t) (resp. n+

η(t)) is the unit normal vector to Γ+
η(t) (resp. Γ−η(t)) exterior to Ωη(t).

We assume that the control function f has the form

f(t, x, y) =
Nc∑
i=1

fi(t)wi(x, y), (5.1.3)

where the functions (wi)1≤i≤Nc are chosen appropriately. We will discuss their choice later.

Let (us, ps) be a solution of the stationary Navier-Stokes equations
(us · ∇)us − div σ(us, ps) = 0, div us = 0 in Ω,
us = gs, on Γi, us = 0 on Γ \ Γi,
σ(us, ps)n = 0 on Γn.

(5.1.4)

The regularity required of us and ps is specified in A1. Let us consider the time-independent
function fs chosen in such a way that the triplet (u, η, ηt) = (us, 0, 0) constitutes a stationary
solution of system (5.1.1). We assume that it is an unstable stationary solution. The aim of this
chapter is to find a control f = (fj)Ncj=1 given in a feedback form, able to stabilize the system
(5.1.1) with a prescribed exponential decay rate ω ≥ 0, locally about (u, η, ηt) = (us, 0, 0).

We briefly describe below the approach adopted, along with the main difficulties encountered.
The strategy consists first in stabilizing the linerized system. Then, using the feedback law
obtained in this step, we show that it also stabilizes the nonlinear system, provided that appro-
priate assumptions on the initial and boundary data are satisfied.

Before linealizing the system, and similarly to the analysis carried out in Chapter 3 concerning
the existence of strong solutions, it is necessary to rewrite the system (5.1.1) on a fixed reference
domain by introducing an appropriate change of variables. As a consequence, the difficulties
discussed in Chapter 3 persist at this stage of the analysis. We briefly discuss these aspects below.

• Analysis of the stationary Oseen system. We have to study the regularity of w and pressure
π of the stationary Oseen system

−div σ(w, π) + (us · ∇)w + (w · ∇)us = F in Ω,
div w = h in Ω,
w = g on Γi, σ(w, π)n = 0 on Γn,

(5.1.5)

where F, h and g are stationary data. In this regard, under appropriate conditions on (us, ps),
we adapted the regularity result presented in Theorem 3.3.1 of Chapter 3.

• Analysis of the instationary Oseen system. An important step in the analysis consists in
studying the system

∂w
∂t
− div σ(w, π) + (us · ∇)w + (w · ∇)us = F in (0, T )× Ω,

div w = h in (0, T )× Ω,
w = g on (0, T )× Γd, σ(w, π)n = 0 on (0, T )× Γn,
w(0) = w0 in Ω,

(5.1.6)
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and establishing the analyticity of the semigroup associated with the Oseen operator in the
context of heterogeneous Sobolev spaces. The ideas presented in Subsection 3.3.4 of Chapter 3,
can be suitably adapted to address the case of the Oseen operator.

On the other hand, additional issues arise, which are intrisic to the stabilization of the lin-
earized system. Although the difficulties outlined below have been already treated in [FNR19],
it is important to highlight them, since they are also encountered in our analysis.

• Analysis of eigenvalue problems. Since the system (5.1.1) is linearized around a nontrivial
stationary solution, the analysis of both the direct and the adjoint eigenvalues problems in-
volves non-standard conditions. Specifically, the direct eigenvalue problem requires handling an
algebraic constraint of the form

div v = A3η1 in Ω, v = η2~e2 on Γs, (5.1.7)

while the adjoint eigenvalue problem features a condition of the type

div Φ = 0 in Ω, v = ζ2~e2 on Γs, (5.1.8)

where A3 is linear bounded operator.

• Equivalence between PDE and operator formulations. Closely related to the difficulty men-
tioned above is the necessity, in the spectral study of the linearized system, to establish the
equivalence between the partial differential equation formulations and the operator formulation
of both the direct and adjoint eigevanlue problems.

5.2 Notation and statement of the main results

5.2.1 Notation

Usual and weighted Sobolev spaces

We recall some of the notation introduced in Chapter 3. We set L2(Ω) = L2(Ω;R2) and
Hs(Ω) = Hs(Ω;R2) for s > 0. We also introduce the following functional spaces:

Hs
Γd(Ω) = {u ∈ Hs(Ω) | u = 0 on Γd} for s > 1/2,

V0
n,Γd(Ω) = {u ∈ L2(Ω) | div u = 0 in Ω, u · n = 0 on Γd},

V1
Γd(Ω) = H1

Γd(Ω) ∩V0
n,Γd(Ω),

H1
{0}(0, `s) = {µ ∈ H1(0, `s) | µ(0) = 0},

H2
{0}(0, `s) = {µ ∈ H2(0, `s) | µ(0) = ∂x1µ(0) = 0},

H3
{0,`s}(0, `s) = {µ ∈ H3(0, `s) ∩H2

{0}(0, `s) | ∂
2
x1µ(`s) = 0},

H4
{0,`s}(0, `s) = {µ ∈ H4(0, `s) ∩H2

{0}(0, `s) | ∂
2
x1µ(`s) = ∂3

x1µ(`s) = 0},

H2,1
{0}((0, T )× (0, `s)) = L2(0, T ;H2

{0}(0, `s)) ∩H
1(0, T ;L2(0, `s)),

H4,2
{0,`s}((0, T )× (0, `s)) = L2(0, T ;H4

{0,`s}(0, `s)) ∩H
2(0, T ;L2(0, `s)).

All of the previous spaces are endowed with the natural norms.

We introduce the space for the inflow conditions

H(Γi) =
{
g = (g1, g2) | g2 = 0 and g1 ∈ H

3
2 (Γi) ∩H1

0 (Γi)
}
, (5.2.1)
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equipped with the norm (g1, g2) 7→ ‖g1‖
H

3
2 (Γi)

. For 0 < s < 1/2, we introduce the intermediate
spaces

Hs
Γd(Ω) = [L2(Ω),H1

Γd(Ω)]s.

The dual of Hs
Γd(Ω) is denoted by H−sΓd (Ω).

Let us denote by J the set of vertices of Γ. For β > 0, we introduce the norms

‖w‖H2
β

:=

 2∑
|k|=0

2∑
i=1

∫
Ω

( ∏
J∈J

r2β
J

)
|∂kwi|2dx

1/2

, w ∈ C∞(Ω;R2),

‖p‖H1
β

:=

 1∑
|k|=0

∫
Ω

( ∏
J∈J

r2β
J

)
|∂kp|2dx

1/2

, p ∈ C∞(Ω;R),

(5.2.2)

where rJ stands for the distance to a junction point J ∈ J , k = (k1, k2) ∈ N2 denotes a
two-index with length |k| = k1 + k2, ∂k denotes the corresponding partial differential operator
and w = (w1, w2). We denote by H2

β(Ω;R2) (respectively, H1
β(Ω)) the closure of C∞(Ω;R2)

(respectively, C∞(Ω)) in the norm ‖·‖H2
β

(Ω) (respectively, ‖·‖H1
β

(Ω)).
Throughout this chapter, we will use the following regularity exponents

α∗ ∈ (0, 1/2) and δ∗ ∈ (0, 1/2). (5.2.3)

Heterogeneous Sobolev spaces

Let ε > 0. We introduce the cut-off function Ψ ∈ C∞(R2) satisfying 0 ≤ Ψ ≤ 1,

Ψ = 1 on (−L/2, `s + ε/2)× (−`, `) and Ψ = 0 on (`s + ε, L)× (−`, `). (5.2.4)

Figure 5.3 – Decomposition of the domain Ω.

We also define Ω2 = (`s + ε/2, L)× (−`, `). We now recall the heterogeneous Sobolev spaces
introduced in Chapter 3:

H−
1
2 +α,0(Ω) =

{
F ∈ H−

1
2 +α(Ω)|(1−Ψ)F ∈ L2(Ω)

}
,

H
1
2 +α,1(Ω) =

{
p ∈ H

1
2 +α(Ω)|(1−Ψ)p ∈ H1(Ω)

}
,

H
1
2 +α,1
δ (Ω) =

{
p ∈ H

1
2 +α(Ω)|(1−Ψ)p ∈ H1

δ (Ω)
}
,

H
3
2 +α,2
δ (Ω) =

{
v ∈ H

3
2 +α(Ω)|(1−Ψ)v ∈ H2

δ(Ω)
}
,

(5.2.5)
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which are respectively endowed with the natural norms.

5.2.2 System in the reference configuration and statement of the main results

This subsection is devoted to rewrite the system (5.1.1) in the reference configuration. We
begin by recalling some results stated in Chapter 3.

The spatial variable in the physical domain is denoted by x = (x1, x2), while the spatial vari-
able in the reference configuration will be denoted by z = (z1, z2). Let us now introduce an
appropriate extension of any function defined on [0, `s] to [−L/2, L]. We set η 7→ Eη, where

Eη(x1) =


0 if x1 ∈ [−L/2, 0],
η(x1) if x1 ∈ [0, `s],
(3η(2`s − x1)− 2η(3`s − 2x1)) θ(x1) if x1 ∈ [`s, L],

(5.2.6)

where θ ∈ C∞([`s, L]) is a nonnegative function with values in [0, 1], which is equal to 1 in
[`s, `s + ε/4] and to 0 in [`s + ε/2, L], for some 0 < ε < (L− `s)/2. The following Proposition is
a consequence of the definition (5.2.6).

Proposition 5.2.1. For all η ∈ H4,2
{0,`s}((0,∞)× (0, `s)), the following assertions are satisfied.

(i) For all 0 < a0 < 1/2,

Eη ∈ L2(0,∞;H2+a0(−L/2, L)) ∩H2(0,∞;L2(−L/2, L)).

and
Eη ∈ H

1+2a0−2τ
2+aa (0,∞;H

3
2 +τ (−L/2, L)), for all τ ∈ (0, 3a0/4).

In particular, (Eη)(t, ·) is a map of class C1.
(ii) For all 0 < ε0 < L,

(Eη)|(ε0,L) ∈ L2(0,∞;H4(ε0, L)).

(iii) (Eη)|[`s+ε/2,L] ≡ 0.

For a given η ∈ H4,2
{0,`s}((0,∞)× (0, `s)), we set

η+(t, ·, e) := (Eη)(t, ·) on [−L/2, L] and η−(t, ·,−e) := (Eη)(t, ·) on [−L/2, L].

We now introduce two C∞ functions χ+ and χ−, with values in [0, 1], such that χ+(z2) = 1 in
[ e2 , `] and χ

+(z2) = 0 in [−`, e3 ], χ−(z2) = 1 in [−`,− e
2 ] and χ−(z2) = 0 in [− e

3 , `].

We introduce the set

E(0,∞) =
{
η ∈H4,2

{0,`s}((0,∞)× (0, `s)) such that

min{`− e+ η±χ (t, z) | (t, z) ∈ [0,∞)× Ω} ≥ (`− e)/2
}
.

(5.2.7)

where
η±χ (t, z) :=

(
∓χ± + (`∓ z2)∂z2χ±

)
η±(t, z1), with (t, z) ∈ [0,∞)× Ω.

For η belonging to E(0,∞), we consider the map X(t, ·) : Ω −→ Ωη(t) defined by X(t, z) = x =
(x1, x2), where

x1 = z1,

x2 = χ±(z2)z2(`− e∓ η±(t, z1)) + `η±(t, z1)
`− e

+ (1− χ±(z2))z2,
(5.2.8)
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for all z = (z1, z2) ∈ Ω. The following proposition is a consequence of the definition of the
mapping X given in (5.2.8) and Proposition 5.2.1.

Proposition 5.2.2. For all η ∈ E(0,∞), the mapping X defined in (5.2.8) satisfies the following
properties:

(i) X(0,Ω) = Ω.
(ii) For all t ∈ [0,∞), we have that X(t,Γi) = Γi, X(t,Γw) = Γw, X(t,Γr) = Γr, X(t,Γs) =

Γη(t) and X(t,Γn) = Γn.
(iii) X ∈ L2(0,∞; H2+a0(OL)) for all 0 < a0 < 1/2, and X ∈ L2(0,∞; H4(OR)).
(iv) X ∈ H2(0,∞; L2(Ω)).
(v) X(t, ·) is a C1−diffeomorphism from Ω onto Ωη(t).

We will denote by Y the inverse of X. We also set J(t, z) = (J i,j)1≤i,j≤2 = (∇X)−1(t, z) for
all (t, z) ∈ (0, T )× Ω. Let us notice that for X defined in (5.2.8)

det(J) = `− e
`− e+ η±χ (t, z)

. (5.2.9)

In order to transform the system (5.1.1) in the reference configuration, we introduce the change
of unknowns

û(t, z) = eωt (u(t,X(t, z))− us(z)) , p̂(t, z) = eωt (p(t,X(t, z))− ps(z)) ,
η̂1(t, z1) = eωtη(t, z1), η̂2(t, z1) = eωt∂tη(t, z1), f̂(t) = (f̂i(t))1≤i≤Nc := eωtf(t),
η̂±1 (t, z1) = eωtη±(t, z1), η̂±2 (t, z1) = eωt∂tη

±(t, z1),
ĝp(t, z) = eωtgp(t, z), û0 = u0 − us,

(5.2.10)

for all (t, z) ∈ (0,∞)×Ω. Here, ω > 0. Thus, after doing the change of variable (5.2.10) we get
that (û, p̂, η̂1, η̂2) satisfies the system

∂tû− div σ(û, p̂) + (us · ∇)û + (û · ∇)us −A1η̂1 −A2η̂2 − ωû = F̂f (û, p̂, η̂1, η̂2) in Q∞,
div û = div Ĝdiv(û, η̂1) +A3η̂1 in Q∞,
û = ĝp on Σ∞i , û = 0 on Σ∞r ∪ Σ∞w ,
û = η̂2~e2 on Σ∞s , σ(û, p̂)n = 0 on Σ∞n ,
û(0) = û0 in Ω,
∂tη̂1 − η̂2 − ωη̂1 = 0 in (0,∞)× (0, `s),
∂tη̂2 + α∆2

s η̂1 + γ(∆2
s)

1
2 η̂2 −A4η̂1 − ωη̂2 = γ+

s p̂− γ−s p̂+ F̂s(û, η̂1)
+f̂ in (0,∞)× (0, `s),

η̂1 = 0 and ∂z1 η̂1 = 0 on (0,∞)× {0},
∂2
z1 η̂1 = 0 and ∂3

z1 η̂1 = 0 on (0,∞)× {`s},
η̂1(0) = 0 and η̂2(0) = η0

2 in (0, `s).
(5.2.11)
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The linear operators A1 = (A1,1, A1,2), A2, A3 and A4 are defined by

A1,iη̂1 =
η̂±χ
`− e

us,2us,i,z2 +
(`∓ z2)χ±η̂±1,z1

`− e
us,1us,1,z2 − 2ν

(`∓ z2)χ±η̂±1,z1
`− e

us,i,z1z2

− 2ν
η̂±χ
`− e

us,i,z2z2 −
(`∓ z2)χ±η̂±1,z1z1

`− e
us,i,z2 − ν

η̂±χ
`− e

us,i,z2

+ ν
η̂±χ,zi
`− e

us,1,z1 + ν
η̂±χ
`− e

us,1,z1zi − ν
∂

∂zi

[
`∓ z2
`− e

χ±
]
η̂±1,zius,1,z2 − ν

[
`∓ z2
`− e

χ±
]
η̂±1,z1zius,1,z2

− ν
[
`∓ z2
`− e

χ±
]
η̂±1,zius,1,z1zi +

(`∓ z2)χ±η̂±1,z1
`− e

ps,z2δ1,i +
η̂±χ
`− e

ps,z2δ2,i, i = 1, 2,

A2η̂2 = (`∓ z2)χ±η̂±2
`− e

us,z2 , A3η̂1 = −
η̂±χ
`− e

us,1,z1 +
(`∓ z2)χ±η̂±1,z1

`− e
us,1,z1 ,

A4η̂1 = −νη̂±1,z1γ
+,−
s us,1,z2 ,

(5.2.12)
where δi,j denotes the Kronecker delta. The expressions of F̂f , Ĝdiv and F̂s can be found in
Appendix A.

The corresponding linearized system associated to (5.2.11) is given by

∂tv− div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2 − ωv = Ff in Q∞,
div v = A3η1 + div Gdiv in Q∞,
v = gp on Σ∞i , v = η2~e2 on Σ∞s , v = 0 on Σ∞r ∪ Σ∞w , σ(v, q)n = 0 on Σ∞n ,
∂tη1 − η2 − ωη1 = 0 in (0,∞)× (0, `s),
∂tη2 + α∆2η1 + γ(∆2

s)
1
2 η2 −A4η1 − ωη2 = −γ+

s q + γ−s q + Fs + f in (0,∞)× (0, `s),
η1 = 0, ∂x1η1 = 0 on (0,∞)× {0} and ∂2

x1η1 = 0, ∂3
x1η1 = 0 on (0,∞)× {`s},

η1(0) = 0 and η2(0) = η0
2 in (0, `s).

(5.2.13)
For simplicity of notation, we omit the symbol ̂ in the preceding system. Before stating the
main results of this chapter, we will introduce notation and the assumptions used throughout.
Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). Let us first consider the class

u ∈ L2(0,∞; H
3
2 +α,2
δ (Ωη(·))) ∩H1(0,∞; H−

1
2 +α,0(Ωη(·)),

p ∈ L2(0,∞;H
1
2 +α,1
δ (Ωη(·))),

η ∈ L2(0,∞;H4
{0,`s}(0, `s)) ∩H

2(0,∞;L2(0, `s)).

(5.2.14)

We now introduce the space

Z∞ =
(
L2(0,∞; H

3
2 +α,2
δ (Ω)) ∩H1(0,∞; H−

1
2 +α,0(Ω))

)
× L2(0,∞;H

1
2 +α,1
δ (Ω))×H4,2

{0,`s}((0,∞)× (0, `s)),
(5.2.15)

equipped with the norm

‖(û, p̂, η̂)‖Z∞ = ‖û‖
L2(0,∞;H

3
2 +α,2
δ

)∩H1(0,∞;H−
1
2 +α,0)

+ ‖p̂‖
L2(0,∞;H

1
2 +α,1
δ

)
+ ‖η̂‖

H4,2
{0,`s}

((0,∞)×(0,`s),
(5.2.16)

where
‖η̂‖

H4,2
{0,`s}

((0,∞)×(0,`s) = ‖η̂‖H4,2((0,∞)×(0,`s)) + ‖η̂t‖H2,1((0,∞)×(0,`s)).
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For a given R > 0, we also introduce the set

B∞(R,u0, η
0
2) :=

{
(û, p̂, η̂) ∈ Z∞ | ‖(û, p̂, η̂)‖Z∞ ≤ R, η̂ ∈ E(0,∞)

and û(0) = u0, η̂(0) = 0, η̂t(0) = η0
2

}
.

(5.2.17)

Assumptions.

Assumption 1. Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). We assume that gs ∈ H(Γi) and that the

system (5.1.4) admits a solution (us, ps) ∈ H
3
2 +α,2
δ (Ω)×H

1
2 +α,1
δ (Ω).

(A1)
The assumptions A2 and A3 are stated in Section 5.7. In Assumption A2, we state a condition
concerning the spectrum of the adjoint of the Oseen operator and the adjoint of the structure
operator. More precisely, we assume that the parts of the spectrum, contained in the half plane
{λ ∈ C | <λ ≥ ω}, of the adjoint of the Oseen operator and the adjoint of the structure operator,
are disjoints. On the other hand, Assumption A3 states a unique continuation property.

We are now in position to state the main results of this chapter.

Theorem 5.2.1. Let α ∈ (0, α∗). Let us suppose that Assumptions A1, A2 and A3 are satisfied.
For all ω > 0, there exists a family (wi)Nci=1 ⊂ H2

{0}(0, `s) and an operator

K ∈ L(L2(Ω)×H2
{0}(0, `s)× L

2(0, `s),RNc),

for which there exist R > 0 and r > 0, such that for all (û0, η0
2) ∈ H1(Ω) ×H2

{0}(0, `s) and all
ĝp ∈ H1

{0}(0,∞; H(Γi)) satisfying

û0 = ĝp(0, ·) on Γi, û0 = 0 on Γr ∪ Γw,
û0 = η0

2(0, ·)~e2 on Γs, div û0 = 0 in Ω,
(5.2.18)

and
‖û0‖H1(Ω) + ‖η0

2‖H2
{0}(0,`s)

+ ‖ĝp‖H1(0,∞;H(Γi)) ≤ r, (5.2.19)

system (5.2.11) with a feedback control

f̂ =
Nc∑
i=1
Ki(û, η̂, η̂t)wi, with K = (K1, . . . ,KNc),

admits a solution (û, p̂, η̂) ∈ B∞(R,u0, η
0
2) satisfying

‖(û(t, ·), η̂(t, ·), η̂t(t, ·))‖H 1
2 +α(Ω)×H3(0,`s)×H1(0,`s)

≤ CR for all t > 0,

where C > 0 depends on α and r.

The following result follows from the preceding theorem:

Theorem 5.2.2. Let α ∈ (0, α∗). Let us suppose that Assumptions A1, A2 and A3 are satisfied.
For all ω > 0, there exists a family (wi)Nci=1 ⊂ H2

{0}(0, `s) and an operator

(K1, . . . ,KNc) ∈ L(L2(Ω)×H2
{0}(0, `s)× L

2(0, `s),RNc),

for which there exists r > 0 such that for all (u0, η0
2) ∈ H1(Ω) × H2

{0}(0, `s) and all eωtgp ∈
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H1
{0}(0,∞; H(Γi)) satisfying

u0 − us = gp(0, ·) on Γi, u0 = 0 on Γr ∪ Γw,
u0 − us = η0

2(0, ·)~e2 on Γs, div u0 = 0 in Ω,
(5.2.20)

and
‖u0 − us‖H1(Ω) + ‖η0

2‖H2(0,`s) + ‖eωtgp‖H1(0,∞;H(Γi)) ≤ r, (5.2.21)

system (5.1.1) with a feedback control

f =
Nc∑
i=1
Ki(u ◦X−1 − us, η, ηt)wi, with K = (K1, . . . ,KNc),

admits a solution (u, p, η) belonging to the class (5.2.14) satisfying∥∥∥(u(t,X−1(t, ·))− us, η(t, ·), ηt(t, ·))
)∥∥∥

H
1
2 +α(Ω)×H3(0,`s)×H1(0,`s)

≤ Ce−ωt for all t > 0,

where C > 0 depends on α and r.

5.3 Analysis of the fluid-structure operator

In this section we study the linearized stationary fluid-structure system

λv− div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2 = Ff in Ω,
div v = A3η1 in Ω,
v = η2~e2 on Γs, v = 0 on Γd \ Γs, σ(v, q)n = 0 on Γn,
λη1 − η2 = F 1

s in (0, `s),
λη2 + α∆2η1 + γ(∆2

s)
1
2 η2 −A4η1 = −γ+

s q + γ−s q + F 2
s in (0, `s),

η1 = 0, ∂x1η1 = 0 on {0} and ∂2
x1η1 = 0, ∂3

x1η1 = 0 on {`s}.

(5.3.1)

Here, either λ ∈ C or λ ∈ R. The context will indicate in which case we shall be.

We choose λf > 0 large enough to guarantee the following coercivity condition:

λf

∫
Ω
|v|2 + 2ν

∫
Ω
|ε(v)|2 +

∫
Ω

((us · ∇)v + (v · ∇)us) · v ≥
ν

2‖v‖
2
H1

Γd
(Ω), (5.3.2)

for all v ∈ V1
Γd(Ω).

This section is organized as follows. First, in Subsection 5.3.1, we study the fluid system.
In Subsection 5.3.2, we introduce the structure operator. Finally, the fluid-structure operator is
introduced in Subsection 5.3.3.

5.3.1 Fluid operator

We consider the following fluid system:
λw− div σ(w, π) + (us · ∇)w + (w · ∇)us = F in Ω,
div w = h in Ω,
w = g on Γd, σ(w, π)n = 0 on Γn.

(5.3.3)

Let us assume that F ∈ H−1
Γd (Ω), h ∈ L2(Ω) and g ∈ H

1
2 (Γd). We will say that the pair

(w, π) ∈ H1(Ω)× L2(Ω) is a variational solution of the system (5.3.3), if and only if it satisfies
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the following mixed variational formulation:
a(w,φ)− b(φ, π) = 〈F,φ〉H−1

Γd
,H1

Γd
for all φ ∈ H1

Γd(Ω),

b(w, ψ) =
∫

Ω
hψ for all ψ ∈ L2(Ω),

w = g on Γd,

(5.3.4)

where
a(w,φ) =

∫
Ω

(λw · φ+ 2νε(w) : ε(φ)) +
∫

Ω
((us · ∇)w + (w · ∇)us) · φ

b(w, ψ) =
∫

Ω
(div w) ψ.

• Regularity result of the Oseen system (5.3.3). The following result is a consequence
of the coercivity condition (5.3.2) and Theorems 2.3.1 and 2.3.2 of Chapter 2.

Theorem 5.3.1. Let α ∈ (0, α∗), δ ∈ (δ∗, 1) and λ ≥ λf . Under the Assumption (5.3.2), the
following assertions hold:

(i) For all (F, h,g) ∈ H−1
Γd (Ω)×L2(Ω)×H

1
2 (Γd), system (5.3.3) admits a unique variational

solution (w, π) ∈ H1(Ω)× L2(Ω).

(ii) For all (F, h,g) ∈ H−
1
2 +α,0(Ω) × H

1
2 +α,1(Ω) ×H

3
2 (Γd), the variational solution (w, π)

of system (5.3.3) belongs to H
3
2 +α,2
δ (Ω) ×H

1
2 +α,1
δ (Ω). Moreover, there exists a constant

Cα > 0, such that

‖w‖
H

3
2 +α,2
δ

(Ω)
+ ‖π‖

H
1
2 +α,1
δ

(Ω)
≤ Cα

(
‖F‖

H−
1
2 +α,0(Ω)

+ ‖h‖
H

1
2 +α,1(Ω)

+ ‖g‖
H

3
2 (Γd)

)
.

(5.3.5)

• Oseen operator. Let α ∈ (0, α∗). Let us first recall that the Leray projector P ∈
L(L2(Ω)) can be continuously extended from H−

1
2 +α(Ω) into H−

1
2 +α(Ω), and from H−

1
2 +α,0(Ω)

into H−
1
2 +α,0(Ω) (see Subsection 2.4.1 of Chapter 2). For the precise definition of the operator

P , see Proposition 2.4.1 in Chapter 2.

The Oseen operator (A,D(A)) in V0
n,Γd(Ω) that we will consider is defined by

D(A; V0
n,Γd(Ω)) =

{
w ∈ H

3
2 +α(Ω) ∩H1

Γd(Ω) | ∃π ∈ H
1
2 +α(Ω) such that div σ(w, π) ∈ L2(Ω)

and σ(w, π)n = 0 on Γn
}
,

Aw = P div σ(w, π)− P ((us · ∇)w + (w · ∇)us) .
(5.3.6)

The analyticity of the semigroup generated by the Oseen operator (A,D(A; V0
n,Γd(Ω))) on

V0
n,Γd(Ω) is proved in [NR15, Theorem 2.8].

Using Lemma 3.3.1 presented in Chapter 3 and the factA is an isomorphism fromD(A; V0
n,Γd(Ω))

into V0
n,Γd(Ω) and from V1

Γd(Ω) into V−1
Γd (Ω) (this follows from the Lax-Milgram theorem), we

deduce that A is also an isomorphism from

D(A; V−
1
2 +α

n,Γd (Ω)) = [D(A; V0
n,Γd(Ω)),V1

Γd(Ω)] 1
2−α

into [V0
n,Γd(Ω),V−1

Γd (Ω)] 1
2−α

= V−
1
2 +α

n,Γd (Ω).
(5.3.7)

In the following theorem, we establish the analyticity of the semigroup generated by the Oseen
operator (A,D(A; V−

1
2 +α

n,Γd (Ω))) on V−
1
2 +α

n,Γd (Ω).
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Theorem 5.3.2. Let α ∈ (0, α∗). There exists θ0 ∈ (π/2, π) and C > 0 such that

‖(λI −A)−1‖
L(V

− 1
2 +α

n,Γd
(Ω))
≤ C

|λ|
, for all λ ∈ Σθ0 \ {0}. (5.3.8)

In particular, the unbounded operator (A,D(A; V−
1
2 +α

n,Γd (Ω))) is the infinitesimal generator of an

analytic semigroup on V−
1
2 +α

n,Γd (Ω).

The proof of Theorem 5.3.2 is presented in Appendix B at the end of this chapter.

• Expression of the pressure and operator equation. Let us consider the system
λw− div σ(w, π) + (us · ∇)w + (w · ∇)us = F in Ω,
div w = h in Ω,
w = gp on Γi, w = η2~e2 on Γs, w = 0 on Γd \ (Γi ∪ Γs),
σ(w, π)n = 0 on Γn.

(5.3.9)

The objective is to rewrite system (5.3.9) as an operator equation (see Theorem 5.3.3). To that
end, we begin by introducing a family of suitable operators that we will allow us to rewrite the
pressure π in system (5.3.9).

Let us first notice that, at least formally, the pressure π in system (5.3.9) is the solution of
the system

∆π = −λh+ 2ν div(div ε(w))− div((us · ∇)w + (w · ∇)us) + div F in Ω,
∂π

∂n = (−λw + 2ν div ε(w)− ((us · ∇)w + (w · ∇)us + F) · n on Γd,

π = 2νε(w)n · n on Γn.

(5.3.10)

We write π = q1 + q2 + q3 + q4, where qi, with i = 1, 2, 3, 4, satisfies

∆q1 = div F in Ω, ∂q1
∂n = F · n on Γd, q1 = 0 on Γn, (5.3.11)

∆q2 = −λh in Ω, ∂q2
∂n = 0 on Γd, q2 = 0 on Γn, (5.3.12)

∆q3 = 2ν div (div ε(w))− div ((us · ∇)w + (w · ∇)us) in Ω,
∂q3
∂n = 2ν div ε(w) · n− ((us · ∇)w + (w · ∇)us) · n on Γd,

q3 = 2νε(w)n · n on Γn,

(5.3.13)

and
∆q4 = 0 in Ω, ∂q4

∂n = −λw · n on Γd, q4 = 0 on Γn. (5.3.14)

Operator Np

We introduce the operator Np ∈ L(H−
1
2 +α,0(Ω), H

1
2 +α,1(Ω)), defined by

NpF = q1, (5.3.15)

where q1 solves system (5.3.11) in the sense of (2.4.21) introduced in Chapter 2. Let us notice
that the operator Np is well-defined thanks to Lemma 2.4.4.
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Operator Ndiv

Given h ∈ L2(Ω), let us consider the elliptic equation

∆q = h in Ω, ∂q

∂n
= 0 on Γd, q = 0 on Γn. (5.3.16)

We introduce the operator Ndiv, defined by

Ndiv ∈ L(L2(Ω), H1(Ω)), Ndivh = q, (5.3.17)

where q is the variational solution of system (5.3.16).

Operator Nv

We first define the variational problem satisfied by q3:

Find q3 ∈ L2(Ω) such that∫
Ω
q3ζ dx = 2ν〈ε(w),∇2χ〉

H
1
2−α,H−

1
2 +α − 2ν

∫
Γd
ε(w)n · ∇χ

+
∫

Ω
((us · ∇)w + (w · ∇)us) · ∇χ,

(5.3.18)

for all ζ ∈ L2(Ω), where χ is solution to

∆χ = ζ in Ω, ∂χ

∂n = 0 on Γd, χ = 0 on Γn. (5.3.19)

Lemma 5.3.1. The variational problem (5.3.18) admits a unique solution q3 ∈ L2(Ω).

Proof. Let us introduce the linear funcional L : L2(Ω)→ R given by

L(ζ) = 2ν〈ε(w),∇2χ〉
H

1
2−α
Γd

(Ω),H
− 1

2 +α
Γd

(Ω)
− 2ν

∫
Γd
ε(w)n · ∇χ

+
∫

Ω
((us · ∇)w + (w · ∇)us) · ∇χ

where χ is solution to (5.3.19) with source term ζ ∈ L2(Ω). Let us notice that

2ν〈ε(w),∇2ψ〉
H

1
2−α(Ω),H−

1
2 +α(Ω)

≤ C‖ε(w)‖
H

1
2−α(Ω)

‖∇2ψ‖
H−

1
2 +α(Ω)

≤ C‖w‖
H

3
2 +α(Ω)

‖ζ‖L2(Ω),

−2ν
∫

Γd
ε(w)n · ∇ψ ≤ C‖ε(w)‖L2(Γd)‖∇ψ‖L2(Γd)

≤ C‖w‖
H

3
2 +α(Ω)

‖ζ‖L2(Ω)

and ∫
Ω

((us · ∇)w + (w · ∇)us) · ∇χ ≤ C‖w‖H 3
2 +α(Ω)

‖∇χ‖L2(Ω)

≤ C‖w‖
H

3
2 +α(Ω)

‖ζ‖L2(Ω).

Since L ∈ L(L2(Ω),R), the conclusion follows from the Riesz Representation Theorem. �
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We now introduce the operator Nv:

Nv ∈ L(H
3
2 +α(Ω), L2(Ω)), Nvw = q3, (5.3.20)

where q3 is the solution to system (5.3.18).

Operator Ns

For a given η2 ∈ L2(0, `s), we consider the elliptic equation
∆q = 0 in Ω, ∂q

∂n = η2 on Γ+
s ,

∂q

∂n = −η2 on Γ−s ,
∂q

∂n = 0 on Γd \
(
Γ−s ∪ Γ+

s

)
, q = 0 on Γn.

(5.3.21)

Notice that the system (5.3.21) admits a unique variational solution q3 ∈ H1(Ω). Let us now
introduce the operator Ns:

Ns ∈ L(L2(0, `s), H1(Ω)), Nsη2 = q, (5.3.22)

where q is the variational solution to system (5.3.21).

Before stating the main result of this subsection, we introduce the lifting operators

L ∈ L(H2
{0}(0, `s)×H

1
2 +α,1(Ω),H

3
2 +α,2
δ (Ω)), L(η2, h) = w (5.3.23)

and
Lp ∈ L(H2

{0}(0, `s)×H
1
2 +α,1(Ω), H

1
2 +α,1
δ (Ω)), Lp(η2, h) = π, (5.3.24)

where (w, π) is the solution to system (5.3.9) when F = 0, gp = 0 and λ = λf .

Theorem 5.3.3. Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). Assume that F ∈ H−
1
2 +α,0(Ω), h ∈ H

1
2 +α,1(Ω),

η2 ∈ H2
{0}(0, `s) and gp = 0. A pair (w, π) ∈ H

3
2 +α,2
δ (Ω) ×H

1
2 +α,1
δ (Ω) is a variational solution

of (5.3.9) if and only if Pw, (I − P )w, and π are solutions to the system{
(λI −A)Pw + (A− λfI)PL(η2, h) = PF, (I − P )w = (I − P )L(η2, h),
π = λNsη2 − λNdivh+Nvw +NpF.

(5.3.25)

Proof. Let (w, π) ∈ H
3
2 +α,2
δ (Ω)×H

1
2 +α,1
δ (Ω) be the solution of (5.3.9). We set w = ŵ+L(η2, h)

and π = π̂ + Lp(η2, h), where the couple (ŵ, π̂) satisfies
λŵ− div σ(ŵ, π̂) + (us · ∇)ŵ + (ŵ · ∇)us = F− (λ− λf )L(η2, h) in Ω,
div ŵ = 0 in Ω,
ŵ = 0 on Γd, σ(ŵ, π)n = 0 on Γn.

(5.3.26)

We notice that the pair (ŵ, π̂) satisfies the system (5.3.9) for (η2, h) = (0, 0) and right-hand
side equals to F− (λ− λf )L(η2, h), and therefore ŵ ∈ D(A). Thus, λP ŵ−AP ŵ = PF− (λ−
λf )PL(η2, h). Then, since ŵ = w− L(η2, h), we get (λI − A)Pw + (A− λfI)PL(η2, h) = PF.
Furthermore, the algebraic constraint (I − P )w = (I − P )L(η2, h) holds.
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We now proceed to derive the expression of the pressure π. We first show the identity

I1︷ ︸︸ ︷
λ

∫
Ω

w · ∇χ

I2︷ ︸︸ ︷
−〈div σ(w, π),∇χ〉

H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)
+
∫

Ω
((us · ∇)w + (w · ∇)us) · ∇χ

= −λ
∫

Ω
Ndivhζ + λ

∫
Ω
Nsη2ζ −

∫
Ω
πζ +

∫
Ω
Nvwζ.

(5.3.27)

I1: After integrating by parts, we get

I1 = λ

∫
Ω

w · ∇χ = −λ
∫

Ω
(div w)χ+ λ

∫
∂Ω

w · nχ = −λ
∫

Ω
Ndivhζ + λ

∫
Ω
Nsη2ζ. (5.3.28)

I2: We will prove that
I2 = −

∫
Ω
πζ +

∫
Ω
Nvwζ. (5.3.29)

Let (wk)k be a sequence in H2(Ω) converging to w in H
3
2 +α(Ω) and let (πk)k be a sequence in

H1(Ω) converging to π in H
1
2 +α(Ω). Let us first observe that

− 〈div σ(wk, πk),∇χ〉
H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)
+
∫

Ω
((us · ∇)wk + (wk · ∇)us) · ∇χ

−−−−−→
k→+∞

− 〈div σ(w, π),∇χ〉
H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)
+
∫

Ω
((us · ∇)w + (w · ∇)us) · ∇χ,

where χ is the solution of (5.3.19). On the other hand, since Nv ∈ L(H
3
2 +α(Ω), L2(Ω)) and

σ(w, π)n = 0 on Γn, we have

− 〈div σ(wk, πk),∇χ〉
H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)
+
∫

Ω
((us · ∇)wk + (wk · ∇)us) · ∇χ

= −
∫

Ω
div σ(wk, πk) · ∇χ+

∫
Ω

((us · ∇)wk + (wk · ∇)us) · ∇χ

= 〈∇2χ, σ(wk, πk)〉
H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)
−
∫

Γ
σ(wk, πk)n · ∇χ

+
∫

Ω
((us · ∇)wk + (wk · ∇)us) · ∇χ

= −
∫

Ω
πk∆χ+ 2ν〈∇2χ, ε(wk)〉

H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)

+
∫

Ω
((us · ∇)wk + (wk · ∇)us) · ∇χ− 2ν

∫
Γd
ε(wk)n · ∇χ−

∫
Γn
σ(wk, πk)n · ∇χ

= −
∫

Ω
πkζ +

∫
Ω
Nvwkζ −

∫
Γn
σ(wk, πk)n · ∇χ

−−−−→
k→+∞

−
∫

Ω
πζ +

∫
Ω
Nvwζ −

∫
Γn
σ(w, π)n · ∇χ = −

∫
Ω
πζ +

∫
Ω
Nvwζ.

(5.3.30)
Thus, using (5.3.30) and the uniqueness of the limit, we deduce the identity (5.3.29).

On the other hand, from the definition of the operator Np (see (5.3.15)), we have that

〈F,∇χ〉
H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)
= −

∫
Ω
NpFζ. (5.3.31)



5.3. Analysis of the fluid-structure operator 164

Finally, since

λ

∫
Ω

w · ∇χ− 〈div σ(w, π),∇χ〉
H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)
+
∫

Ω
((us · ∇)w + (w · ∇)us) · ∇χ

= 〈F,∇χ〉
H
− 1

2 +α
Γd

(Ω),H
1
2−α
Γd

(Ω)
,

(5.3.32)

the identities (5.3.27) and (5.3.31) allow us to obtain∫
Ω
πζ = −λ

∫
Ω
Ndivhζ + λ

∫
Ω
Nsη2ζ +

∫
Ω
Nvwζ +

∫
Ω
NpFζ,

from where we deduce that π = −λNdivh + λNsη2 + Nvw + NpF. This concludes the proof of
the first implication.

Let us now prove the converse. Assume that the couple (w, π) ∈ H
3
2 +α,2
δ (Ω) × H

1
2 +α,1
δ (Ω)

satisfies (5.3.25). We claim that (5.3.25) admits a unique solution. Indeed, let us notice that
((λI − A)w,w)L2(Ω) = 0 implies that w = 0. Next, (λI − A)Pw = 0 and (I − P )w = 0, leads
to w = 0, thereby ensuring the uniqueness. This completes the proof. �

Remark 13. Since π = −λNdivh + λNsη2 + Nvw + NpF and π ∈ H
1
2 +α,1(Ω), Ndivh ∈ H1(Ω),

Nsη2 ∈ H1(Ω), NpF ∈ H
1
2 +α,1(Ω), we deduce that, indeed, Nvw ∈ H

1
2 +α,1(Ω).

5.3.2 Structure operator

In this subsection, we revisit some results established in Chapter 3 concerning the structure
operator (see Subsection 3.3.2).

We introduce the state space

Hs = H2
{0}(0, `s)× L

2(0, `s), (5.3.33)

which is endowed with the inner product

〈(η1, η2), (ζ1, ζ2)〉Hs =
∫ `s

0
(αη1,xxζ1,xx + η2ζ2) dx.

We consider the unbounded operator (∆2
s, D(∆2

s)) in L2(0, `s), where

D(∆2
s) = H4

{0,`s}(0, `s).

We now define the unbounded operator (As,D(As)) in Hs by

D(As) = D(∆2
s)×H2

{0}(0, `s), As =
(

0 I

−α∆2
s −γ(∆2

s)
1
2

)
. (5.3.34)

Theorem 5.3.4. The unbounded operator (As,D(As)) is the infinitesimal generator of an an-
alytic semigroup on Hs.

We consider the structure equation

η1,t = η2 in (0,∞)× (0, `s),
η2,t + α∆2

sη1 + γ(∆2
s)

1
2 η2 = 0 in (0,∞)× (0, `s),

η1 = 0 and η1,x = 0 on (0,∞)× {0},
η1,xx = 0 and η1,xxx = 0 on (0,∞)× {`s},
η(0) = 0 and η2(0) = η0

2 in (0, `s).

(5.3.35)
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Proposition 5.3.1. Let us assume that η0
2 ∈ H1

{0}(0, `s). Then, system (5.3.35) admits a unique
solution (η1, η2) ∈ H4,2

{0,`s}((0,∞)× (0, `s))×H2,1((0,∞)× (0, `s)).

5.3.3 Fluid-Structure operator

Let α ∈ (0, α∗). We introduce the spaces H = H−
1
2 +α(Ω) ×Hs and Z = V−

1
2 +α

n,Γd (Ω) ×Hs.
Both spaces are equipped with the inner product

〈
(u, η1, η2), (v, ζ1, ζ2)

〉
Z

=
〈
u,v

〉
H
− 1

2 +α
Γd

(Ω)
+
∫ `s

0
(αη1,xxζ1,xx + η2ζ2) dx. (5.3.36)

We also introduce the spaces

Z0 = V0
n,Γd(Ω)×Hs, H0 = L2(Ω)×Hs,

Hα
δ = H

3
2 +α,2
δ (Ω)×H

1
2 +α,1
δ (Ω)×H4

{0,`s}(0, `s)×H
2
{0}(0, `s),

which are equipped with the natural norms.

We begin by introducing some properties of the operators involved in the definition of the
fluid-structure operator. We start with the following proposition concerning the operators A1,
A2, A3 and A4.
Proposition 5.3.2. Let α ∈ (0, α∗). Let a0 ∈ (0, 1/2) be the parameter introduced in Proposi-
tion 5.2.1. The following assertions hold.

(i) A1 ∈ L(H2
{0}(0, `s),H

− 1
2 +α,0(Ω)),

(ii) A2 ∈ L(L2(0, `s),L2(Ω)),
(iii) A3 ∈ L(H2

{0}(0, `s), L
2(Ω))

(iv) A4 ∈ L(H2
{0}(0, `s), L

2(0, `s)).

Proof. The first assertion follows from [GS91, Proposition B1] and Lemma 3.5.3 of Chapter 3.
The assertions (ii), (iii) and (iv) follow from [GS91, Proposition B1]. �

Let us now introduce the so-called added mass operator M ∈ L(Z0), which is defined by

M =

I 0 0
0 I 0
0 −γ+,−

s NdivA3 I + γ+,−
s Ns

 , (5.3.37)

where γ+,−
s = γ+

s − γ−s . Thanks to Lemma 3.3.2, we have that M−1 ∈ L(Z0). Moreover,

M−1 =

I 0 0
0 I 0
0 (I + γ+,−

s Ns)−1γ+,−
s NdivA3 (I + γ+,−

s Ns)−1

 . (5.3.38)

We now introduce the fluid-structure operator (A,D(A)):

A = M−1

 A PA1 PA2 + (λfI −A)PL(·, 0)
0 0 I

−γ+,−
s Nv −α∆2

s +A4 −γB − γ+,−
s NpA2

+M−1Ap,

D(A) =
{

(Pv, η1, η2) ∈ V
1
2 +α
n,Γd (Ω)×D(As) | Pv− PL(η2, A3η1) ∈ D(A)

}
,

(5.3.39)

where

Ap

Pv
η1
η2

 =

 (λfI −A)PL(0, A3η1)
−γ+,−

s NpA1η1
−γ+,−

s Nv∇NdivA3η1 + γ+,−
s Nv∇Nsη2

 .
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In the next result, we provide an operator-based formulation of system (5.3.1), which follows as
a consequence of Theorem 5.3.3 and the fact that

∇Np = I − P, (I − P )L(0, A3η1) = ∇NdivA3η1, (I − P )L(η2, 0) = −∇Nsη2.

Theorem 5.3.5. Let us assume that (Ff , F
1
s , F

2
s ) ∈ H−

1
2 +α,0

Γd (Ω) × Hs and λ ∈ C. Then, the
quadruplet (v, q, η1, η2) is solution to system (5.3.1) if and only if,

λ(Pv, η1, η2)> = A(Pv, η1, η2)> +M−1(PFf , F
1
s , F

2
s − γ+,−

s NpFf ),
(I − P )v = ∇NdivA3η1 −∇Nsη2,

q = −λNdivA3η1 + λNsη2 +NpA1η1 +NpA2η2 +Nv(Pv−∇Nsη2 +∇NdivA3η1).
(5.3.40)

5.4 Characterization of the adjoint operator (A∗,D(A∗))
We remark that in this section the adjoint fluid-structure operator is obtained only through

formal computations. The justification of the well-posedness of the adjoint system involved in
these computations remains to be completed.

Let α ∈ (0, α∗). Given Gf ∈ L2(Ω) and ζ2 ∈ H2
{0}(0, `s), let us first consider the system

λΦ− div σ(Φ, ψ)− (us · ∇)Φ + (∇us)>Φ = Gf in Ω,
div Φ = 0 in Ω,
Φ = ζ2~e2 on Γs, Φ = 0 on Γd \ Γs, σ(Φ, ψ)n + us · nΦ = 0 on Γn.

(5.4.1)

The result below follows from [NR15, Theorem 2.11].

Theorem 5.4.1. The adjoint operator of (A,D(A; V0
n,Γd(Ω))) is defined by

D(A∗) =
{
Φ ∈ H

3
2 +α(Ω) ∩V1

Γd(Ω) | ∃ψ ∈ H
1
2 +α(Ω) such that

div σ(Φ, ψ) ∈ L2(Ω) and σ(Φ, ψ)n + us · nΦ = 0 on Γn
}
,

(5.4.2)

A∗Φ = P div σ(Φ, ψ)− P
(
(∇us)>Φ− (us · ∇)Φ

)
.

Let us now introduce the lifting operators D ∈ L(H2
{0}(0, `s),H

3
2 +α,2
δ (Ω)) and

Dp ∈ L(H2
{0}(0, `s), H

1
2 +α,1
δ (Ω)) for the adjoint system, defined by

Dζ2 = Φ and Dpζ2 = ψ, (5.4.3)

where the couple (Φ, ψ) is the solution of the system (5.4.1) with λ = λf and Gf = 0.

In order to characterize the pressure ψ in (5.4.1), we also introduce the operator
NΦ ∈ L(H

3
2 +α,2
δ (Ω), L2(Ω)), which is defined by NΦΦ = q, where q is such that∫

Ω
qζ = 2ν

〈
ε(Φ),∇2χ

〉
H

1
2−α
Γd

(Ω),H
− 1

2 +α
Γd

(Ω)
− 2ν

∫
Γd
ε(Φ)n · ∇χ

+
∫

Ω

(
−(us · ∇)w + (∇us)>Φ

)
· ∇χ+

∫
Γn

(us · n)(Φ · ∇χ),
(5.4.4)
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for all ζ ∈ L2(Ω), where χ is the solution of the system

∆χ = ζ in Ω, ∂χ

∂n = 0 on Γd, χ = 0 on Γn. (5.4.5)

The following result is a consequence of Theorem 5.3.3.

Theorem 5.4.2. Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). Assume that Gf ∈ L2(Ω) and ζ2 ∈ H2
{0}(0, `s).

Then, the pair (Φ, ψ) ∈ H
3
2 +α,2
δ (Ω) × H

1
2 +α,1
δ (Ω) is the solution of (5.4.1), if and only if, the

triple (PΦ, ζ1, ζ2) satisfies
(λI −A∗)PΦ + (A∗ − λfI)PDζ2 = PGf ,

(I − P )Φ = −∇Nsζ2,

ψ = λNsζ2 +NΦ (PΦ−∇Nsζ2) +NpGf .

(5.4.6)

Let us now consider the adjoint fluid-structure equation

λΦ− div σ(Φ, ψ)− (us · ∇)Φ + (∇us)>Φ = Gf in Ω,
div Φ = 0 in Ω,
Φ = ζ2~e2 on Γs, Φ = 0 on Γd \ Γs, σ(Φ, ψ)n + us · nΦ = 0 on Γn,
λζ1 + ζ2 − 1

α(∆s)−1(A∗4 − 2ν(γ±s A3)∗)ζ2 − 1
α(∆s)−1A∗1Φ + 1

α(∆s)−1A∗3ψ = G1
s in (0, `s),

λζ2 + α∆2
sζ1 + γ(∆2

s)
1
2 ζ2 −A∗2Φ = −γ+

s ψ + γ−s ψ +G2
s in (0, `s),

ζ1(0) = ∂xζ1(0) = 0 and ∂2
xζ1(`s) = 2νe

α
ζ2(`s), ∂3

xζ1(`s) = 2νe
α
ζ2,x(`s).

(5.4.7)
Remark 14. We warn the reader that the well-posedness of system (5.4.7) has not yet been
established. Thus, all the computations presented below are purely formal.

Proposition 5.4.1. The adjoint of the added mass operator M ∈ L(Z) introduced in (5.3.37)
is given by

M∗ =

I 0 0
0 I 1

α(∆s)−1A∗3Ns

0 0 I + γ+,−
s Ns

 .
Furthermore,

(M∗)−1 =

I 0 0
0 I − 1

α(∆s)−1A∗3Ns(I + γ+,−
s Ns)−1

0 0 (I + γ+,−
s Ns)−1

 .
Proof. Let us first observe that the operator I + γ+,−

s Ns ∈ L(L2(0, `s)) is symmetric. On the
other hand,

−
∫

Γs
γ+,−
s (Ndiv[A3η1])ζ2 = −

∫
Γs

(Ndiv[A3η1])∂Nsζ2
∂n

= −
∫

Ω
(∆Nsζ2)(Ndiv[A3η1])−

∫
Ω

(∇Nsζ2) · (∇Ndiv[A3η1])

=
∫

Ω
(Nsζ2)(∆Ndiv[A3η1])−

∫
∂Ω

(Nsζ2)∂NdivA3η1
∂n

=
∫

Ω
(Nsζ2)(A3η1)

=
(
η1, (1/α)(∆s)−1A∗3Nsζ2

)
L2(0,`s)

.
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Thus, for all (v, η1, η2) and (Φ, ζ1, ζ2) in Z, we obtain〈
M(v, η1, η2)>, (Φ, ζ1, ζ2)>

〉
Z′ ,Z

=
〈

(v, η1, η2)>,M∗(Φ, ζ1, ζ2)>
〉

Z′ ,Z
.

This conclude the proof of the first part. The second part follows from Lemma 3.3.2 stated in
Chapter 3. �

We introduce the space Es(0, `s) defined by

Es(0, `s) =
{

(ζ1, ζ2) ∈ (H4(0, `s) ∩H2
{0}(0, `s))×H

2
{0}(0, `s) | ζ1

′′(`s) = 2νe
α
ζ2(`s)

and ζ1
′′′(`s) = 2νe

α
ζ
′
2(`s)

}
.

Before presenting the characterization of the adjoint of the fluid-structure operator (A,D(A))
on Z, we introduce the unbounded operator (A#,D(A#)) on Z defined by

D(A#) =
{

(PΦ, ζ1, ζ2) ∈ V
1
2 +α
n,Γd (Ω)× Es(0, `s) | P (Φ−Dζ2) ∈ D(A∗)

}
,

A# =

 A∗ 0 (λfI −A∗)PD
1
α(∆s)−1A∗1 0 −I + 1

α(∆s)−1 (A∗4 −A∗1∇Ns)
A∗2 − γ+,−

s NΦ α∆2
s −δ(∆2

s)
1
2 −A∗2∇Ns + γ+,−

s NΦ∇Ns

+A#
p ,

where

A#
p

PΦ
ζ1
ζ2

 =

 0
− 1
α(∆s)−1A∗3NΦ (PΦ−∇Nsζ2)

0

 .
Theorem 5.4.3. Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). Let us assume that λ ∈ C and (Gf , G

1
s, G

2
s) ∈

H−
1
2 +α,0

Γd (Ω)×Hs. A quadruplet (Φ, ψ, ζ1, ζ2) ∈ H
3
2 +α,2
δ (Ω)×H

1
2 +α,1
δ (Ω)×Es(0, `s) is a solution

of system (5.4.7) if and only if,
λM∗


PΦ
ζ1

ζ2

 = A#


PΦ
ζ1

ζ2

+


PGf

G1
s − 1

α(∆s)−1A∗3NpGf

G2
s − γ+,−

s NpGf

 ,
(I − P )Φ = −∇Nsζ2,

ψ = λNsζ2 +NΦ (PΦ−∇Nsζ2) +NpGf .

(5.4.8)

Proof. From Theorem 5.4.2 it follows that the system (5.4.1) is equivalent to the system
λPΦ = A∗PΦ + (λfI −A∗)PDζ2 + PGf

(I − P )Φ = −∇Nsζ2,

ψ = λNsζ2 +NΦ (PΦ−∇NsDζ2) +NpGf .

(5.4.9)

Now, we will use the expression for the pressure ψ given in (5.4.9) to rewrite the fourth and fifth
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equations in system (5.4.7). The fourth equation in system (5.4.7) can be rewritten as

λζ1 =− ζ2 + 1
α

(∆s)−1A∗4ζ2 + 1
α

(∆s)−1A∗1PΦ− 1
α

(∆s)−1A∗1∇Nsζ2

− λ 1
α

(∆s)−1A∗3Nsζ2 −
1
α

(∆s)−1A∗3NΦ(PΦ−∇Nsζ2)− 1
α

(∆s)−1A∗3NpGf +G1
s

= 1
α

(∆s)−1A∗1PΦ +
[
−I + 1

α
(∆s)−1 (A∗4 −A∗1∇Ns)

]
ζ2

− λ

α
(∆s)−1A∗3Nsζ2 −

1
α

(∆s)−1A∗3NΦ [PΦ−∇Nsζ2]− 1
α

(∆s)−1A∗3NpGf +G1
s,

or equivalently,

λζ1 + λ
1
α

(∆s)−1A∗3Nsζ2 = 1
α

(∆s)−1A∗1PΦ +
[
−I + 1

α
(∆s)−1 (A∗4 −A∗1∇Ns)

]
ζ2

− 1
α

(∆s)−1A∗3NΦ [PΦ−∇Nsζ2]− 1
α

(∆s)−1A∗3NpGf +G1
s.

(5.4.10)

On the other hand, the fifth equation in system (5.4.7) can be rewritten as

λζ2 = α∆2
sζ1 − δ(∆s)

1
2 ζ2 +A∗2PΦ−A∗2∇Nsζ2 − λγ+

s Nsζ2 − γ+
s NΦPΦ

− γ+,−
s (NΦPΦ + λNsζ2 −NΦ∇Nsζ +NpGf )

= A∗2PΦ− γ+,−
s NΦPΦ + α∆2

sζ1 − δ(∆s)
1
2 ζ2 −A∗2∇Nsζ2

− λγ+,−
s Nsζ2 + γ+,−

s NΦ∇Nsζ2 − γ+,−
s NpGf +G2

s

or equivalently,

λ
[
I + γ+,−

s Ns

]
ζ2 = A∗2PΦ− γ+,−

s NΦPΦ + α∆2
sζ1 − δ(∆2

s)
1
2 ζ2 −A∗2∇Nsζ2

+ γ+,−
s NΦ∇Nsζ2 − γ+,−

s NpGf +G2
s.

(5.4.11)

Then, the result follows from the identities (5.4.9), (5.4.10) and (5.4.11). �

Theorem 5.4.4. Let α ∈ (0, α∗). Then, the adjoint of (A,D(A)) on Z is defined by

D(A∗) =
{
M∗(PΦ, ζ1, ζ2) | (PΦ, ζ1, ζ2) ∈ D(A#)

}
and A∗ = A#M−∗.

Proof. Let Ff ∈ L2(Ω), F 1
s ∈ H2

{0}(0, `s) and F 2
s ∈ L2(0, `s). Let us consider the system

λv− div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2 = Ff in Ω,
div v = A3η1 in Ω,
v = η2~e2 on Γs, v = 0 on Γd \ Γs, σ(v, q)n = 0 on Γn,
λη1 − η2 = F 1

s on (0, `s),
λη2 + α∆2η1 + γ(∆2

s)
1
2 η2 −A4η1 = −γ+

s q + γ−s q + F 2
s on (0, `s),

η1(0) = ∂xη(0) = 0 and ∂2
xη1(`s) = ∂3

xη1(`s) = 0.

(5.4.12)
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For a given Gf ∈ L2(Ω), G1
s ∈ H2

{0}(0, `s) and G2
s ∈ L2(0, `s), let us consider the system

λΦ− div σ(Φ, ψ)− (us · ∇)Φ + (∇us)>Φ = Gf in Ω,
div Φ = 0 in Ω,
Φ = ζ2~e2 on Γs, Φ = 0 on Γd \ Γs, σ(Φ, ψ)n + us · nΦ = 0 on Γn,
λζ1 + ζ2 − 1

α(∆s)−1(A∗4 − 2ν(γ±s A3)∗)ζ2 − 1
α(∆s)−1A∗1Φ + 1

α(∆s)−1A∗3ψ = G1
s in (0, `s),

λζ2 + α∆2
sζ1 + γ(∆2

s)
1
2 ζ2 −A∗2Φ = −γ+

s ψ + γ−s ψ +G2
s in (0, `s),

ζ1(0) = ∂xζ1(0) = 0 and ∂2
xζ1(`s) = 2νe

α
ζ2(`s), ∂3

xζ1(`s) = 2νe
α
ζ2,x(`s).

(5.4.13)
After integrating by parts, we obtain the identity (see Appendix C at the end of this chapter)

〈
Ff ,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

+ α

∫ `s

0
∆F 1

s ·∆ζ1 +
∫ `s

0
F 2
s ζ2

=
〈
Gf ,v

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

+ α

∫ `s

0
∆G1

s ·∆η1 +
∫ `s

0
G2
sη2.

(5.4.14)

where (v, η1, η2) and (Φ, ζ1, ζ2) represent the solutions to systems (5.4.12) and (5.4.13), respec-
tively. Then, the identity (5.4.14) can be rewritten as follows:〈

(Ff , F
1
s , F

2
s )>, (Φ, ζ1, ζ2)>

〉
Z′ ,Z

=
〈

(Gf , G
1
s, G

2
s)>, (v, η1, η2)>

〉
Z′ ,Z

(5.4.15)

Let us notice that from Theorem 5.3.5 we have that the triple (Pv, η1, η2) satisfies

M(λI −A)(Pv, η1, η2)> = (PFf , F
1
s , F

2
s )> = (Ff , F

1
s , F

2
s )>, (5.4.16)

while on the other hand, according Theorem 5.4.3, we have that the triple (PΦ, ζ1, ζ2) satisfies

(λM∗ −A#)(PΦ, ζ1, ζ2)> = (PGf , G
1
s, G

2
s)> = (Gf , G

1
s, G

2
s)>. (5.4.17)

Then, using (5.4.16) and (5.4.17) in the identity (5.4.15), we get〈
M(λI −A)(Pv, η1, η2)>, (PΦ, ζ1, ζ2)>

〉
Z′ ,Z

=
〈

(λM∗ − Â#)(PΦ, ζ1, ζ2)>, (Pv, η1, η2)>
〉

Z′ ,Z
,

(5.4.18)

from where we deduce that A∗ = A#M−∗. �

The following result is a consequence of Theorem 5.4.2.

Theorem 5.4.5. Let α ∈ (0, α∗) and δ ∈ (δ∗, 1). Let us assume that λ ∈ C and (Gf , G
1
s, G

2
s) ∈

H−
1
2 +α,0

Γd (Ω)×Hs. Then, a quadruple (Φ, ψ, ζ1, ζ2) ∈ H
3
2 +α,2
δ (Ω)×H

1
2 +α,1
δ (Ω)×H4

{0,`s}(0, `s)×
H2
{0}(0, `s) is a solution of system (5.4.7), if and only if,


λM∗


PΦ
ζ1

ζ2

 = A∗M∗


PΦ
ζ1

ζ2

+


PGf

G1
s − 1

α(∆2
s)−1A∗3NpGf

G2
s − γ+,−

s NpGf

 ,
(I − P )Φ = −∇Nsζ2,

ψ = λNsζ2 +NΦ (PΦ−∇Nsζ2) +NpGf .

(5.4.19)
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5.5 Resolvent of (A,D(A)) and analyticity of the underlying semi-
group

We first decompose the unbounded operator (A,D(A)) as A = A1 + B1 + B2 + B3 + B4,
where

A1 =

A (λfI −A)PL(0, A3·) (λfI −A)PL(·, 0)
0 0 I
0 −α∆2

s −γB

 , D(A1) = D(A),

B1

Pv
η1
η2

 =

 0
0

−(K−1
s − I)α∆2

sη1

 , D(B1) = D(A),

B2

Pv
η1
η2

 =

 0
0

−(K−1
s − I)γBη2

 , D(B2) = D(A),

B3

Pv
η1
η2

 =

 PA1η1 + PA2η2
0

K−1
s

(
A4η1 − γ+,−

s NpA1η1 − γ+,−
s NpA2η2 + γ+,−

s NdivA3η2
)
 , D(B3) = D(A),

B4

Pv
η1
η2

 =

 0
0

K−1
s γ+,−

s [ΨNv (Pv +∇Nsη2 −∇NdivA3η1)]

 , D(B4) = D(A).

We now state some useful properties of the operators A1 and Bj (j = 1, . . . , 4).

For a ∈ R and θ ∈ (0, π), we define the sector Σa,θ by

Σa,θ = {λ ∈ C | | arg(λ− a)| < θ}.

The proof of the following result can be adapted from the proof of Theorem 3.3.8 presented in
Chapter 3.
Theorem 5.5.1. The following assertions hold:

(i) There exists a ∈ R and θ ∈ (π/2, π) such that the sector Σa,θ is contained in the resol-
vent set ρ(A1) of the unbounded operator (A1,D(A1)). Moreover, there exists a positive
constant C such that

‖(λI −A1)−1‖L(Z) ≤
C

|λ− a|
, for all λ ∈ Σa,θ \ {0}. (5.5.1)

(ii) The domain D(A) of the fluid-structure operator defined in (5.3.39) is dense in Z.
(iii) The unbounded operator (A1,D(A1)) is the infinitesimal generator of an analytic semi-

group on Z.
Adapting the proof from [Ray10, Lemma 3.9] and subsequently applying [Paz83, Chapter 2,

Corollary 6.11], we obtain the following result:
Proposition 5.5.1. The operator (B1,D(A)) and (B2,D(A)) are A1−bounded with A1−bound
equal to zero.
Proposition 5.5.2. The operator (B3,D(A)) is A1−bounded with A1−bound equal to zero.

Proof. Let us assume that the assertion is false. Then, there exist ε > 0 and a sequence
(Pvk, η1,k, η2,k)k in D(A) such that∥∥∥B3(Pvk, η1,k, η2,k)>

∥∥∥
Z
> ε

∥∥∥A1(Pvk, η1,k, η2,k)>
∥∥∥

Z
+ k

∥∥∥(Pvk, η1,k, η2,k)>
∥∥∥

Z
. (5.5.2)
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Let us assume without loss of generality that
∥∥∥B3(Pvk, η1,k, η2,k)>

∥∥∥
Z

= 1. From (5.5.2) it follows
that ∥∥∥(Pvk, η1,k, η2,k)>

∥∥∥
Z
−−−−−→
k→+∞

0 in Z. (5.5.3)

Then, thanks to the continuity of the Leray projector P from H−
1
2 +α,0(Ω) into V−

1
2 +α,0

n,Γd (Ω),
along with Proposition 5.3.2, Lemma 3.3.2 and the fact that Ndiv ∈ L(L2(Ω), H1(Ω)), Np ∈
L(H−

1
2 +α,0(Ω), H

1
2 +α,1(Ω)), we have∥∥∥B3(Pvk, η1,k, η2,k)>

∥∥∥
Z
≤ ‖PA1η1 + PA2η2‖H− 1

2 +α,0(Ω)

+
∥∥∥K−1

s

(
A4η1,k − γ+,−

s NpA1η1,k
)∥∥∥

Hα(0,`s)

+
∥∥∥K−1

s

(
−γ+,−

s NpA2η2 + γ+,−
s NdivA3η2

)∥∥∥
Hα(0,`s)

≤ C ‖(η1,k, η2,k)‖H2
{0}(0,`s)×L

2(0,`s) .

Finally, we notice that the last estimate yields a contradiction with the fact that∥∥∥B3(Pvk, η1,k, η2,k)>
∥∥∥

Z
= 1.

This completes the proof. �

The proof of the next proposition can be adapted from the proof of Theorem 3.3.9 of Chapter
3.

Proposition 5.5.3. The operator (B4,D(A)) is compact on Z. Furthermore, the operator B4
is A1−bounded with A1−bound equal to zero.

We now state the main theorem of this section.

Theorem 5.5.2. The following assertions hold:
(i) There exist a ∈ R and θ ∈ (π/2, π) such that sector Σa,θ is contained in the resolvent set

ρ(A) of the fluid-structure operator (5.3.39) and the following estimate holds:

‖(λI −A)−1‖L(Z) ≤
C

|λ|
, for all λ ∈ Σa,θ \ {0}, (5.5.4)

for a certain positive constant C. Moreover, the fluid-structure operator (A,D(A)) is the
infinitesimal generator of an analytic semigroup on Z.

(ii) The resolvent of the fluid-structure operator (A,D(A)) is compact on Z.

Proof.
(i) The first part of the assertion is a direct application of [EN06, Lemma 2.6, p.127] in

combination with Propositions 5.5.1, 5.5.2 and 5.5.3.

The fact that the fluid-structure operator (A,D(A)) is the infinitesimal generator of
an analytic semigroup follows from the assertion (iii) of Theorem 5.5.1, Propositions
5.5.1, 5.5.2 and 5.5.3 and [Paz83, Chapter 3, Theorem 2.1] (see also [EN06, Chapter III,
Theorem 2]).

(ii) The compactness of the resolvent is a consequence of the compact embedding
V

1
2 +α
n,Γd (Ω)×D(As) ↪→ Z.

�
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5.6 Eigenvalue problems

5.6.1 Direct eigenvalue problem

Let us consider the direct eigenvalue problem

λ ∈ C, (v, q, η1, η2) ∈ Hα
δ ,

λv− div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2 = 0 in Ω,
div v = A3η1 in Ω,
v = η2~e2 on Γs, v = 0 on Γd \ Γs, σ(v, q)n = 0 on Γn,
λη1 − η2 = F 1

s in (0, `s),
λη2 + α∆2η1 + γ(∆2

s)
1
2 η2 −A4η1 + γ+

s q − γ−s q = 0 in (0, `s),
η1 = 0, ∂x1η1 = 0 on {0} and ∂2

x1η1 = 0, ∂3
x1η1 = 0 on {`s},

(5.6.1)

and the eigenvalue problem associated to the fluid-structure operator A, namely,

λ ∈ C, (Pv, η1, η2) ∈ D(A), λ(Pv, η1, η2)> = A(Pv, η1, η2)>. (5.6.2)

The following result is a consequence of Theorem 5.3.5.
Theorem 5.6.1. A couple (λ, (v, q, η1, η2)) ∈ C ×Hα

δ is a solution of the eigenvalue problem
(5.6.1) if and only if, (λ, (Pv, η1, η2)) ∈ C×D(A) is a solution of (5.6.2) and

(I − P )v = ∇NdivA3η1 −∇Nsη2,

q = −λNdivA3η1 + λNsη2 +NpA1η1 +NpA2η2 +Nv(Pv−∇Nsη2 +∇NdivA3η1).

Definition 5.6.1. A triplet (Pvk, η1,k, η2,k) ∈ D(A) is a generalized eigenfunction for problem
(5.6.2) of order k ≥ 1 associated to a solution (λ, (Pv0, η1,0, η2,0)) of (5.6.2) if (λ, (Pvk, η1,k, η2,k))
is obtained by solving the chain of equations

(λI −A)(Pvj , η1,j , η2,j)> = −(Pvj−1, η1,j−1, η2,j−1)> for 1 ≤ j ≤ k.

Definition 5.6.2. A quadruplet (vk, qk, η1,k, η2,k) ∈ Hα
δ is a generalized eigenfunction for prob-

lem (5.6.1) of order k ≥ 1 associated to a solution (λ, (v0, q0, η1,0, η2,0)) of (5.6.1) if (vk, qk, η1,k, η2,k)
is obtained by solving, for 1 ≤ j ≤ k, the chain of systems

λvj − div σ(vj , qj) + (us · ∇)vj + (vj · ∇)us −A1η1,j −A2η2,j = −vj−1 in Ω,
div vj = A3η1,j in Ω,
vj = η2,j~e2 on Γs, vj = 0 on Γd \ Γs, σ(vj , qj)n = 0 on Γn,
λη1,j − η2,j = −η1,j−1 in (0, `s),
λη2,j + α∆2η1,j + γ(∆2

s)
1
2 η2,j −A4η1,j + γ+

s qj − γ−s qj = −η2,j−1 in (0, `s),
η1,j = 0, ∂x1η1,j = 0 on {0} and ∂2

x1η1,j = 0, ∂3
x1η1,j = 0 on {`s}.

(5.6.3)

Theorem 5.6.2. A quadruplet (vk, qk, η1,k, η2,k) ∈ Hα
δ is a generalized eigenfunction associated

with a solution (λ, (v0, q0, η1,0, η2,0)) of (5.6.1) if and only if the triplet (Pvk, η1,k, η2,k) ∈ D(A)
is a generalized eigenfuncion for (5.6.2), which is associated with a solution (λ, (Pv0, η1,0, η2,0)
and

(I − P )vk = ∇NdivA3η1,k −∇Nsη2,k,

qk = −λNdivA3η1,k + λNsη2,k +NpA1η1,k +NpA2η2,k

+Nv(Pvk −∇Nsη2,k +∇NdivA3η1,k) +Nsη2,k−1 −NdivA3η1,k−1.

Proof. According to Theorem 5.3.5, we first observe that (vk, qk, η1,k, η2,k) ∈ Hα
δ is a generalized

eigenfunction of order k ≥ 1 associated with a solution (λ, (v0, q0, η1,0, η2,0)) of (5.6.1) if and
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only if

(λI −A)

Pvk
η1,k
η2,k

 = −M−1

 Pvk−1
η1,k−1

−γ+,−
s Npvk−1

 ,
(I − P )vk = ∇NdivA3η1,k −∇Nsη2,k,

qk = −λNdivA3η1,k + λNsη2,k +NpA1η1,k +NpA2η2,k

+Nv(Pvk −∇Nsη2,k +∇NdivA3η1,k)−Npvk−1,

where (vk−1, qk−1, η1,k−1, η2,k−1) is a generalized eigenfunction of order k − 1. Then, using the
identity Npvk−1 = NdivA3η1,k−1−Nsη2,k−1 and the explicit expression ofM−1 given in (5.3.38),
we get

(λI −A)

Pvk
η1,k
η2,k

 = −

Pvk−1
η1,k−1
η2,k−1,


(I − P )vk = ∇NdivA3η1,k −∇Nsη2,k,

qk = −λNdivA3η1,k + λNsη2,k +NpA1η1,k +NpA2η2,k

+Nv(Pvk −∇Nsη2,k +∇NdivA3η1,k)
+Nsη2,k−1 −NdivA3η1,k−1.

This completes the proof. �

5.6.2 Adjoint eigenvalue problem

We consider the adjoint eigenvalue problem

λ ∈ C, (Φ,Ψ, ζ1, ζ2) ∈ Hα
δ ,

λΦ− div σ(Φ, ψ)− (us · ∇)Φ + (∇us)>Φ = 0 in Ω,
div Φ = 0 in Ω,
Φ = ζ2~e2 on Γs, Φ = 0 on Γd \ Γs, σ(Φ, ψ)n + us · nΦ = 0 on Γn,
λζ1 + ζ2 − 1

α(∆s)−1(A∗4 − 2ν(γ±s A3)∗)ζ2 − 1
α(∆s)−1A∗1Φ + 1

α(∆s)−1A∗3ψ = G1
s in (0, `s),

λζ2 + α∆2
sζ1 + γ(∆2

s)
1
2 ζ2 −A∗2Φ = −γ+

s ψ + γ−s ψ +G2
s in (0, `s),

ζ1(0) = ∂xζ1(0) = 0 and ∂2
xζ1(`s) = 2νe

α
ζ2(`s), ∂3

xζ1(`s) = 2νe
α
ζ2,x(`s),

(5.6.4)
and the adjoint eigenvalue problem associated to the adjoint of the fluid-strucure operator

λ ∈ C, (PΦ, ζ1, ζ2) ∈ D(A∗), λ(PΦ, ζ1, ζ2)> = A∗(PΦ, ζ1, ζ2)>. (5.6.5)

The following result is a consequence of Theorem 5.4.5.

Theorem 5.6.3. A couple (λ, (Φ, ψ, ζ1, ζ2)) ∈ C ×Hα
δ is a solution of the eigenvalue problem

(5.6.4) if and only if (λ,M∗(PΦ, ψ, ζ1, ζ2)) ∈ C×D(A∗) is a solution of (5.6.5) and

(I − P )Φ = −∇Nsζ2,

ψ = λNsζ2 +NΦ (PΦ−∇Nsζ2) .

Definition 5.6.3. A triplet (PΦk, ζ1,k, ζ2,k) ∈ D(A) is a generalized eigenfunction for problem
(5.6.5) of order k ≥ 1 associated to a solution (λ, (PΦ0, ζ1,0, ζ2,0)) of (5.6.5) if (λ, (PΦk, ζ1,k, ζ2,k))
is obtained by solving the chain of equations

(λI −A∗)(PΦj , ζ1,j , ζ2,j)> = −(PΦj−1, ζ1,j−1, ζ2,j−1)> for 1 ≤ j ≤ k.
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Definition 5.6.4. A quadruplet (Φj , ψj , ζ1,j , ζ2,j) ∈ Hα
δ is a generalized eigenfunction for

problem (5.6.4) of order k ≥ 1 associated to a solution (λ, (Φ0, ψ0, ζ1,0, ζ2,0)) of (5.6.4) if
(Φk, ψk, ζ1,k, ζ2,k) is obtained by solving, for 1 ≤ j ≤ k, the chain of systems

λΦj − div σ(Φj , ψj)− (us · ∇)Φj + (∇us)>Φj = −Φj−1 in Ω,
div Φj = 0 in Ω,
Φj = ζ2,j~e2 on Γs, Φj = 0 on Γd \ Γs, σ(Φj , ψj)n + us · nΦj = 0 on Γn,
λζ1,j + ζ2,j − 1

α(∆s)−1(A∗4 − 2ν(γ±s A3)∗)ζ2,j − 1
α(∆s)−1A∗1Φ + 1

α(∆s)−1A∗3ψj = −ζj−1 in (0, `s),
λζ2,j − α∆2

sζ1,j + γ(∆2
s)

1
2 ζ2,j −A∗2Φj + γ+

s ψj − γ−s ψj = −ζ2,j−1 in (0, `s),

ζ1,j(0) = ∂xζ1,j(`s) = 0, ∂2
xζ1,j(`s) = 2νe

α
ζ2,j(`s) and ∂3

xζ1,j(`s) = 2νe
α
∂xζ2,j(`s).

(5.6.6)

Theorem 5.6.4. A quadruplet (Φk, ψk, ζ1,k, ζ2,k) ∈ Hα
δ is a generalized eigenfunction of order

k ≥ 1 associated with a solution (λ, (Φ0, ψ0, ζ1,0, ζ2,0)) of (5.6.4), if and only if,M∗(PΦk, ψk, ζ1,k, ζ2,k) ∈
D(A∗) is a generalized eigenfunction of order k ≥ 1 associated with a solution (λ, (PΦ0, ζ1,0, ζ2,0))
of (5.6.5) and

(I − P )Φk = −∇Nsζ2,k,

ψk = λNsζ2,k +NΦ (PΦk −∇Nsζ2,k) +Nsζ2,k−1.

Proof. According to Theorem 5.4.5, we have that (Φk, ψk, ζ1,k, ζ2,k) ∈ Hα
δ is a generalized

eigenfunction of order k ≥ 1 with a solution (λ, (Φ0, ψ0, ζ1,0, ζ2,0)) of (5.6.4), if and only if,

(λI −A∗)M∗
PΦk

ζ1,k
ζ2,k

 =

 −PΦk−1
−ζ1,k−1 − 1

α(∆s)−1A∗3Np(−Φk−1)
−Φk−1 + γ+,−

s Np(−Φk−1)

 ,
(I − P )Φk = −∇Nsζ2,k,

ψk = λNsζ2,k +NΦ (PΦk −∇Nsζ2,k)−NpΦk,

(5.6.7)

where (Φk−1, ψk−1, ζ1,k−1, ζ2,k−1) ∈ Hα
δ is a generalized eigenfunction of order k−1. Then, using

the identity Np(−Φk) = Nsζ2,k and the explicit expression of M∗ (see Proposition 5.4.1), the
right-hand side of the first equation in (5.6.7) can be rewritten as −PΦk−1

−ζ1,k−1 + 1
α(∆s)−1A∗3NpΦk−1

−Φk−1 + γ+,−
s NpΦk−1

 = M∗M−∗

 −PΦk−1
−ζ1,k−1 + 1

α(∆s)−1A∗3NpΦk−1
−ζ2,k−1 + γ+,−

s NpΦk−1


= −M∗

PΦk−1
ζ1,k−1
ζ2,k−1

 .
Finally, using the last equality together with the fact that Np(−Φk) = Nsζ2,k in (5.6.7), we
conclude the result. �

5.7 Stabilization of the linearized system

Thanks to assertion (ii) of Theorem 5.5.2 we know that the spectrum of A is only pointwise
spectrum. Let (λj)j∈N∗ be the eigenvalues of A. For a given eigenvalue λj of A,

GR(λj) = span{<GC(λj) ∪ =GC(λj)} and G∗R(λj) = span{<G∗C(λj) ∪ =G∗C(λj)}
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denote the real generalized eigenspaces of A and A∗, respectively. Here, GC(λj) and G∗C(λj)
denote the complex generalized eigenspaces of A and A∗, respectively. Let ω be a real number
such that −ω /∈ {<λj | j ∈ N∗}. We define the unstable spaces

Zu =
⊕
j∈Ju

GR(λj) and Z∗u =
⊕
j∈Ju

G∗R(λj),

where Ju is a finite subset of N∗ given by Ju := {j ∈ N∗ | <λj ≥ −ω}. Let us notice that
Zu ⊂ D(A). There exist two subspaces Zs and Z∗s, invariant under (etA)t≥0 and (etA∗)t≥0,
respectively, such that

Z = Zu ⊕ Zs and Z∗ = Z∗u ⊕ Z∗s.

We denote by Πu the projection from Z onto Zu along Zs and by Πs the projection from Z onto
Zs along Zu. We also denote by Nu the dimension of the subspace Zu.

We recall that Z0 = V0
n,Γd(Ω) ×Hs and H0 = L2(Ω) ×Hs, which are endowed with the inner

product

〈
(u, η1, η2)>, (v, ζ1, ζ2)>

〉
H0

= 〈u,v〉L2(Ω) +
∫ `s

0
(αη1,xxζ1,xx + η2ζ2) dx. (5.7.1)

The following proposition plays an important role in our analysis, as it allows us to establish
the link between the operator equation and the PDE formulation (see Proposition 5.7.4). The
proof is presented in the Appendix D at the end of this chapter.

Proposition 5.7.1. For all ṽ = Pv + ∇NdivA3η1 − ∇Nsη2 and Φ̃ = PΦ − ∇Nsζ2, with
(Pv, η1, η2) ∈ Z0 and (PΦ, ζ1, ζ2) ∈ Z∗0, we have〈

(ṽ, η1, η2)>, (Φ̃, ζ1, ζ2)>
〉

Z0
=
〈

(Pv, η1, η2)>,M∗(PΦ, ζ1, ζ2)>
〉

Z0
. (5.7.2)

The following result establishes the existence of biorthogonal bases of Zu and Z∗u, which
allow us to obtain an expression for the projection Πu.

Proposition 5.7.2. There exists two families {(vi, η1,i, η2,i)}1≤i≤Nu and {(Φi, ζ1,i, ζ2,i)}1≤i≤Nu
belonging to H

3
2 +α,2
δ (Ω)×H4

{0,`s}(0, `s)×H
2
{0}(0, `s) satisfying the following assertions:

(a) The families {(Pvi, η1,i, η2,i)}1≤i≤Nu and
{
M∗(PΦi, ζ1,i, ζ2,i)>

}
1≤i≤Nu

are basis of Zu
and Z∗u, respectively. Moreover,〈

(vi, η1,i, η2,i)>, (Φj , ζ1,j , ζ2,j)>
〉

Z0
= δi,j ,〈

(Pvi, η1,i, η2,i)>,M∗(PΦj , ζ1,j , ζ2,j)>
〉

Z0
= δi,j .

(b) For all (v, η1, η2)> ∈ Z0, we have that

Πu(v, η1, η2)> =
Nu∑
i=1

〈
(v, η1, η2)>,M∗(PΦi, ζ1,i, ζ2,i)>

〉
Z0

(Pvi, η1,i, η2,i)>.

Furthermore, if (v, η1, η2)> ∈ Z,

Πu(v, η1, η2)> =
Nu∑
i=1

〈
(v, η1, η2)>,M∗(PΦi, ζ1,i, ζ2,i)>

〉
Z,Z′

(Pvi, η1,i, η2,i)>.

(c) For all 1 ≤ i ≤ Nu, there exists qi ∈ H
1
2 +α,1
δ (Ω) such that (vi, qi, η1,i, η2,i) ∈ Hα

δ is a real
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or imaginary part of a generalized eigenfunction of (5.6.1). Similarly, there exists ψi ∈
H

1
2 +α,1
δ (Ω) such that (Φi, ψi, ζ1,i, ζ2,i) ∈ Hα

δ is a real or imaginary part of a generalized
eigenfunction of (5.6.4).

Proof. Let us first notice that, since A is the infinitesimal generator of an analytic semigroup
(see assertion (i) of Theorem 5.5.2) with compact resolvent (see assertion (ii) of Theorem 5.5.2),
the following assertions hold (see [Fur01, Lemma 6.2]):

• There exists a basis {(ṽi, η1,i, η2,i)}1≤i≤Nu ⊂ Z0 of Zu consisting of the real or imaginary
parts of eigenfunctions or generalized eigenfunctions of A.
• There exists a basis

{
M∗(Φ̃i, ζ1,i, ζ2,i)>

}
1≤i≤Nu

⊂ Z∗0 of Z∗u consisting of the real or
imaginary parts of eigenfunctions or generalized eigenfunctions of A∗.
• The families {(ṽi, η1,i, η2,i)}1≤i≤Nu and

{
M∗(Φ̃i, ζ1,i, ζ2,i)>

}
1≤i≤Nu

satisfy:

〈
(ṽi, η1,i, η2,i)>,M∗(Φ̃j , ζ1,j , ζ2,j)>

〉
Z0

= δi,j ,

Πu(v, η1, η2)> =
Nu∑
i=1

〈
(v, η1, η2)>,M∗(Φ̃i, ζ1,i, ζ2,i)

〉
Z0

(ṽi, η1,i, η2,i)>.

Then, by setting vi = v̂i + ∇NdivA2η1,i − ∇Nsη2,i and Φi = Φ̂i − ∇Nsζ2,i, we obtain that
Pvi = v̂i and PΦi = Φ̂i. This fact, together with Proposition 5.7.1, allows us to deduce
assertion (a) and the first part of assertion (b). The second part of assertion (b) follows from
the density of Z0 in Z. The assertion (c) is a consequence of Theorems 5.6.2 and 5.6.4. �

For a given j ∈ Ju, we set

E(λj) := {(Φ, ψ, ζ1, ζ2) ∈ Hα
δ | (λj , (Φ, ψ, ζ1, ζ2)) is solution to the problem (5.6.4)} .

We denote by
{

(Φk
j , ψ

k
j , ζ

k
1,j , ζ

k
2,j)
}

1≤k≤Nj
a basis of E(λj). Here, Nj = dimE(λj). We assume

that (wi)1≤i≤Nc ⊂ H2
{0}(0, `s) is such that

span {wi | 1 ≤ i ≤ Nc} = span
{
<ζk2,j ,=ζk2,j | j ∈ Ju, 1 ≤ k ≤ Nj

}
. (5.7.3)

Let us now consider the system

∂tv− div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2 − ωv = 0 in Q∞,
div v = A3η1 in Q∞,
v = η2~e2 on Σ∞s , v = 0 on Σ∞d \ Σ∞s , σ(v, q)n = 0 on Σ∞n ,
∂tη1 − η2 − ωη1 = 0 in (0,∞)× (0, `s),
∂tη2 + α∆2η1 + γ(∆2

s)
1
2 η2 −A4η1 − ωη2 = −γ+

s q + γ−s q

+
∑Nc
i=1 fiwi in (0,∞)× (0, `s),

η1 = 0, ∂x1η1 = 0 on (0,∞)× {0} and ∂2
x1η1 = 0, ∂3

x1η1 = 0 on (0,∞)× {`s}.

(5.7.4)

From Theorem 5.3.5 we deduce that system (5.7.4) can be rewritten as follows:
d

dt


Pv
η1

η2

 = (A+ ωI)


Pv
η1

η2

+ Bf ,


Pv
η1

η2

 (0) =


Pv0

0
η0

2

 ,
(I − P )v = ∇NdivA3η1 −∇Nsη2,

(5.7.5)



5.7. Stabilization of the linearized system 178

where Bf =
Nc∑
i=1

fi(0, 0, (I + γ+,−
s Ns)−1wi)>. We now introduce the matrix Bu:

Bu =
[
Bi,ju

]
1≤i≤Nu,
1≤j≤Nc

, Bi,ju =
∫ `s

0
wiζ2,j , (5.7.6)

where ζ2,j is such that (Φj , ζ1,j , ζ2,j)1≤j≤Nu is the family defined in Proposition 5.7.2. Let us
notice that for As,ω = Πs(A+ ωI), we have

‖etAs,ω‖L(Z) ≤ Ce−εst ∀t > 0, 0 < εs < dist(< spec(As,ω), 0).

The following proposition, whose proof is presented in Appendix E, allows us to reduce the
analysis of the stabilization of the linearized system (5.2.13) to the study of the stabilization of
the projected system onto Zu.

Proposition 5.7.3. The triplet (Pv, η1, η2)> ∈ D(A) is the solution of the first equation of
(5.7.5), if and only if,

ζu =

〈
Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0


1≤j≤Nu

and (vs, η1,s, η2,s) := Πs(Pv, η1, η2)>,

satisfy 

d

dt
ζu = (Λu + ωIRNu )ζu + Buf , ζu(0) = ζ0

u,

d

dt


vs
η1,s

η2,s

 = As,ω


vs
η1,s

η2,s

+ Bsf ,


vs
η1,s

η2,s

 (0) = Πs


v0

0
η0

2

 , (5.7.7)

where the matrix Λu is given by

Λu = [Λi,j ]1≤i,j≤Nu , Λi,j =
〈
A(Pvi, η1,i, η2,i)>,M∗(PΦj , ζ1,j , ζ2,j)>

〉
Z,Z′

,

ζ0
u =

〈
Pv0

0
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0


1≤j≤Nu

and Bs = ΠsB.

5.7.1 Stabilizability of (Λu + ωIRNu ,Bu)
In order to prove that the pair (Λu+ωIRNu ,Bu) is stabilizable, we must make two additional

assumptions. Let us first consider the system

λΦ− div σ(Φ, ψ)− (us · ∇)Φ + (∇us)>Φ = 0 in Ω,
div Φ = 0 in Ω,
Φ = ζ2~e2 on Γs, Φ = 0 on Γd \ Γs, σ(Φ, ψ)n + us · nΦ = 0 on Γn,
λζ1 + ζ2 − 1

α(∆s)−1(A∗4 − 2ν(γ+,−
s A3)∗)ζ2 − 1

α(∆s)−1A∗1Φ + 1
α(∆s)−1A∗3ψ = 0 in (0, `s),

λζ2 + α∆2
sζ1 + γ(∆2

s)
1
2 ζ2 −A∗2Φ = −γ+

s ψ + γ−s ψ in (0, `s),

ζ1(0) = ∂xζ1(0) = 0 and ∂2
xζ1(`s) = 2νe

α
ζ2(`s), ∂3

xζ1(`s) = 2νe
α
ζ2,x(`s).

(5.7.8)
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Notice that the last three equations in (5.7.8) can be rewritten as

(λI −A∗s)
(
ζ1
ζ2

)
=

 1
α

(∆s)−1(A∗1Φ−A∗3Ψ)
A∗2Φ− γ+,−

s Ψ,

 (5.7.9)

where (A∗s,D(A∗s)) is an unbounded operator in H2
{0}(0, `s)× L

2(0, `s) defined by

D(A∗s) = Es(0, `s), A∗s =

 0 −I + 1
α

(∆s)−1

α∆2
s −δ(∆2

s)
1
2

 .
Here,

Es(0, `s) =
{

(ζ1, ζ2) ∈ (H4(0, `s) ∩H2
{0}(0, `s))×H

2
{0}(0, `s) | ζ1

′′(`s) = 2νe
α
ζ2(`s)

and ζ1
′′′(`s) = 2νe

α
ζ
′
2(`s)

}
.

We now proceed to state the two remaining assumptions.

Assumption 2 : We assume that −ω /∈ spec(A), 0 /∈ spec(A) and
{λ ∈ spec(A∗) | <λ ≥ −ω} ∩ {λ ∈ spec(A∗s) | <λ ≥ −ω} = ∅.

(A2)

For a given λ ∈ C satisfying <λ ≥ −ω, let us consider the following system:
λΦ− div σ(Φ, ψ)− (us · ∇)Φ + (∇us)>Φ = 0 in Ω,
div Φ = 0 in Ω,
Φ = 0 on Γd, σ(Φ, ψ)n + us · nΦ = 0 on Γn.

(5.7.10)

Assumption 3 : We assume that if (λ,Φ, ψ) is solution to (5.7.10) and
λ(A∗2Φ− γ+,−

s ψ) = A∗3ψ −A∗1Φ holds, then (Φ, ψ) = (0, 0).
(A3)

Theorem 5.7.1. Let us suppose that Assumptions A1, A2 and A3 are satisfied and that (wi)1≤i≤Nc
is given by (5.7.3). Then, the pair (Λu + ωIRNu ,Bu) is stabilizable.

Proof. From [BDDM07, Proposition 3.3, p.492], we know that the pair (Λu + ωIRNu ,Bu) is
stabilizable, if and only if,

ker(λI −A∗) ∩ ker(B∗) = {0} for all λ ∈ C such that <λ ≥ −ω.

Let us assume that M∗(PΦ, ζ1, ζ2)> ∈ ker(λI −A∗)∩ ker(B∗). By setting (I −P )Φ = −∇Nsζ2,
from Theorem 5.4.5 we deduce that there exists ψ ∈ H

1
2 +α,1
δ (Ω) such that the quadruplet

(Φ, ψ, ζ1, ζ2) is solution to (5.7.8). On the other hand, since

B∗M∗

PΦ
ζ1
ζ2

 = 0,

then (∫ `s

0
wiζ2

)
1≤i≤Nc

= 0. (5.7.11)

In what follows, we will demonstrate that (Φ, ψ, ζ1, ζ2) = (0, 0, 0, 0). Let us first notice that
thanks to the fact that the family (wi)1≤i≤Nc satisfies the condition (5.7.3), the equality (5.7.11)
implies that ζ2 = 0. Now, we will distinguish two cases:
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• Case 1: λ /∈ spec(A∗). Under this assumption, we have that (Φ, ψ) = (0, 0). Next, us-
ing this fact in the fourth equation in (5.7.8), we obtain that ζ1 = 0.

• Case 2: λ ∈ spec(A∗). The Assumption A2 implies that λ /∈ spec(A∗s), and thus, the last
three equations in (5.7.8), together with identity (5.7.9), allow us to deduce that

λ(A∗2Φ− γ+,−
s ψ) = A∗3ψ −A∗1Φ.

From Assumption A3, it follows that (Φ, ψ) = (0, 0). Finally, using the fourth equation in
(5.7.8), we infer that ζ1 = 0. This completes the proof. �

5.7.2 Feedback control law

We are now interested in finding a finite-dimensional feedback law that allows us to stabilize
the linearized fluid-structure system (5.2.11). Based on the results of the previous subsection,
it is sufficient to find a feedback law that stabilizes system (5.9.71). To achieve this, let us note
that, since the pair (Λu +ωIRNu ,Bu) is stabilizable and −(Λu +ωIRNu ) is stable, it follows from
[KR09, Theorem 3] that the algebraic Riccati equation

Qu ∈ L(RNu), Qu = Q>u > 0,
(Λ>u + ωIRNu )Qu +Qu(Λu + ωIRNu )−QuBuB>uQu = 0

(5.7.12)

admits a unique solution. Consequently, the operator Ku = (Ki,j
u )1≤i≤Nc,1≤j≤Nu defined by

Ku = −B>uQu, serves as a feedback law for the pair (Λu +ωIRNu ,Bu). Let us now introduce the
operator Kp ∈ L(Z0,RNc) defined by

Kp

Pv
η1
η2

 =

Nu∑
j=1

Ki,j
u

〈Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0


1≤i≤Nc

. (5.7.13)

As a consequence of the fact that the stability of A+ ωI + BKp is equivalent to the stability of
Λu + ωIRNu + BuKu, we obtain the following result, whose proof can be adapted from [Ndi16,
Theorem 2.7.7, p. 89].

Theorem 5.7.2. Under Assumptions A1, A2 and A3, the operator Kp introduced in (5.7.13)
provides a feedback law for the pair (A + ωI,B). Moreover, the operator A + ωI + BKp, with
domain D(A+ωI+BKp) = D(A), is the generator of an exponentially stable analytic semigroup
on Z.

Let us consider the feedback law K ∈ L(H0,RNc) defined by

K

v
η1
η2

 =

Ki
Pv
η1
η2




1≤i≤Nc

, (5.7.14)

where

Ki

Pv
η1
η2

 =
Nu∑
j=1

Ki,j
u

〈v
η1
η2

 ,
Φj

ζ1,j
ζ2,j

〉
H0

, (5.7.15)

for each 1 ≤ i ≤ Nc. From Proposition 5.7.1, we deduce the following result that allows us to
establish the link between the feedback laws (5.7.13) and (5.7.14).
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Proposition 5.7.4. For all (Pv, η1, η2) ∈ Z0, if we choose (I − P )v = ∇NdivA2η2 −∇Nsη2 ∈
L2(Ω), we obtain

Kp

Pv
η1
η2

 = K

v
η1
η2

 . (5.7.16)

5.8 Stabilization of the nonhomogeneous linearized system

In this section, we will prove that the feedback law K defined in (5.7.14) stabilizes the
nonhomogeneous linear system

∂tv− div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2 − ωv = Ff in Q∞,
div v = A3η1 + div Gdiv in Q∞,
v = gp on Σ∞i , v = η2~e2 on Σ∞s , v = 0 on Σ∞r ∪ Σ∞w , σ(v, q)n = 0 on Σ∞n ,
∂tη1 − η2 − ωη1 = 0 in (0,∞)× (0, `s),
∂tη2 + α∆2η1 + γ(∆2

s)
1
2 η2 −A4η1 − ωη2 = −γ+

s q + γ−s q + Fs

+
∑Nc
i=1[K(v, η1, η2)>]wi in (0,∞)× (0, `s),

η1 = 0, ∂x1η1 = 0 on (0,∞)× {0} and ∂2
x1η1 = 0, ∂3

x1η1 = 0 on (0,∞)× {`s},
η1(0) = 0 and η2(0) = η0

2 in (0, `s).
(5.8.1)

Before stating the main result of this section, we begin by recalling two useful results established
in Section 3.4 of Chapter 3 concerning the lifiting of the Dirichlet boundary data gp and the
divergence constraint data Gdiv.

We first state the result related to the lifting of the non-homogeneous Dirichlet data gp in
system (5.8.1). Let us consider the following system:

−div σ(z(t), π(t)) = 0 in Ω,
div z(t) = 0 in Ω,
z(t) = gp(t) on Γi, z(t) = 0 on Γr ∪ Γs ∪ Γw,
σ(z(t), π(t))n = 0 on Γn.

(5.8.2)

Proposition 5.8.1. Let α ∈ (0, α∗), δ ∈ (δ∗, 1). For all gp ∈ H1
{0}(0,∞; H(Γi)), system (5.8.2)

admits unique solution (z, π) ∈ H1(0,∞; H
3
2 +α,2
δ (Ω)) × H1(0,∞;H

1
2 +α,1
δ (Ω)). Moreover, there

exists a positive constant Cα,δ, such that

‖z‖
H1(0,∞;H

3
2 +α,2
δ

(Ω))
+ ‖π‖

H1(0,∞;H
1
2 +α,1
δ

(Ω))
≤ Cα,δ‖gp‖H1

{0}(0,∞;H(Γi)). (5.8.3)

Before presenting the result concerning the lifting for the divergence constraint data Gdiv,
we introduce some preliminary notation. We consider the following decomposition of Gdiv:

Gdiv = θ̃Gdiv + (1− θ̃)Gdiv, (5.8.4)

where θ̃ is the cut-off function introduced in (3.4.7).

Let (wL(t), pL(t)) be the solution of system{
−div σ(wL(t), pL(t)) = 0 in Ω, div wL(t) = div(θ̃Gdiv) in Ω,
wL(t) = 0 on Γd, σ(wL(t), pL(t))n = 0 on Γn,

(5.8.5)
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with θ̃Gdiv satisfying
div(θ̃Gdiv) ∈ L2(0,∞;H

1
2 +α,1(Ω)) (5.8.6)

and
θ̃Gdiv ∈ H1(0,∞; H−

1
2 +α,0(Ω)). (5.8.7)

Let wR := (1− θ̃)Gdiv, with (1− θ̃)Gdiv satisfying

(1− θ̃)Gdiv ∈ L2(0,∞; H
3
2 +α,2
δ (Ω)) ∩H1(0,∞; H−

1
2 +α,0(Ω)),

(1− θ̃)Gdiv = 0 in Ω2,

(1− θ̃)Gdiv = 0 on Σ∞d , ε((1− θ̃)Gdiv)n = 0 on Σ∞n .

(5.8.8)

Let us now set
w := wL + wR. (5.8.9)

Proposition 5.8.2. Let α ∈ (0, α∗), δ ∈ (δ∗, 1). Under the assumptions (5.8.6) and (5.8.7),
along with condition (5.8.8), the function w defined in (5.8.9) belongs to L2(0,∞; H

3
2 +α,2
δ (Ω))∩

H1(0,∞; H−
1
2 +α,0(Ω)). Moreover, there exists a constant Cα,δ > 0, such that

‖w‖
L2(0,∞;H

3
2 +α,2
δ

(Ω))
+ ‖w‖

H1(0,∞;H−
1
2 +α,0(Ω))

≤ Cα,δ
(∥∥∥div

(
θ̃Gdiv

)∥∥∥
L2(0,∞;H

1
2 +α,1(Ω))

+ ‖θ̃Gdiv‖
H1(0,∞;H−

1
2 +α,0(Ω))

+
∥∥∥(1− θ̃)Gdiv

∥∥∥
L2(0,∞;H

3
2 +α,2
δ

(Ω))∩H1(0,∞;H−
1
2 +α,0(Ω))

)
.

(5.8.10)

We are now in position to state the main result of this section.

Theorem 5.8.1. Let α ∈ (0, α∗), δ ∈ (δ∗, 1). We suppose that Assumptions A1, A2 and A3 are
satisfied. Let us assume that v0 ∈ H1(Ω), η0

2 ∈ H1
{0}(0, `s), Ff ∈ L2(0,∞; H−

1
2 +α,0(Ω)), gp ∈

H1
{0}(0,∞; H(Γi)) and Fs ∈ L2(0,∞;L2(0, `s)). Let us assume that Gdiv satisfies assumptions

(5.8.6) and (5.8.7), along with condition (5.8.8) and Gdiv|t=0 = 0, and let w denotes its lifting
defined as in (5.8.9). We assume in addition the following conditions:

v0 = 0 on Γi, v0 = 0 on Γr ∪ Γw,
v0 = η2(0, ·)~e2 on Γs, div v0 = 0 in Ω,
(Pv0, 0, η0

2) ∈ [D(A),Z]1/2, Pv0 ∈ [D(A; V0
n,Γd(Ω)),V0

n,Γd(Ω)]1/2.
(5.8.11)

Then, system (5.8.1) admits a unique solution (v, p, η1, η2) belonging to L2(0,∞; H
3
2 +α,2
δ (Ω)) ∩

H1(0,∞; H−
1
2 +α,0(Ω)) × L2(0,∞;H

1
2 +α,1
δ (Ω)) × H4,2((0,∞) × (0, `s)) × H2,1((0,∞) × (0, `s)),

satisfying the estimate

‖v‖
L2(0,∞;H

3
2 +α,2
δ

(Ω))
+ ‖v‖

H1(0,∞;H−
1
2 +α,0(Ω))

+ ‖p‖
L2(0,∞;H

1
2 +α,1
δ

(Ω))

+ ‖ζ1‖H4,2((0,∞)×(0,`s)) + ‖ζ2‖H2,1((0,∞)×(0,`s))

≤ CL
(
‖v0‖H1(Ω) + ‖gp‖L2(0,∞;H(Γi)) + ‖∂tgp‖L2(0,∞;H(Γi)) + ‖η0

2‖H1(0,`s)

+ ‖Ff‖
L2(0,∞;H−

1
2 +α,0(Ω))

+ ‖Fs‖L2((0,∞)×(0,`s))

+
∥∥∥div

(
θ̃Gdiv

)∥∥∥
L2(0,∞;H

1
2 +α,1(Ω))

+ ‖θ̃Gdiv‖
H1(0,∞;H−

1
2 +α,0(Ω))

+
∥∥∥(1− θ̃)Gdiv

∥∥∥
L2(0,∞;H

3
2 +α,2
δ

(Ω))∩H1(0,∞;H−
1
2 +α,0(Ω))

)
,

(5.8.12)
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where CL is a positive constant.

Proof. We split the proof in five steps.

• Step 1. Reformulation of the system (5.8.1).

Let (z(t), π(t)) be the solution to system (5.8.2). Let w be the vector field given in (5.8.9).
We set ṽ = v−w− z and p̃ = p− pL − π. The couple (ṽ, p̃) satisfies

∂tṽ− div σ(ṽ, p̃) + (us · ∇)ṽ + (ṽ · ∇)us −A1η1 −A2η2 − ωṽ = F̃f in Q∞,
div ṽ = A3η1 in Q∞,
ṽ = 0 on Σ∞i , ṽ = η2~e2 on Σ∞s , ṽ = 0 on Σ∞r ∪ Σ∞w , σ(ṽ, p̃)n = 0 on Σ∞n ,
∂tη1 − η2 − ωη1 = 0 in (0,∞)× (0, `s),
∂tη2 + α∆2η1 + γ(∆2

s)
1
2 η2 −A4η1 − ωη2 = −γ+

s p̃+ γ−s p̃+ F̃s in (0,∞)× (0, `s),
η1 = 0, ∂x1η1 = 0 on (0,∞)× {0} and ∂2

x1η1 = 0, ∂3
x1η1 = 0 on (0,∞)× {`s},

η1(0) = 0 and η2(0) = η0
2 in (0, `s),

(5.8.13)

where

F̃ = Ff − ∂tw− ∂tz + 2ν div ε(w)− (us · ∇)w− (w · ∇)us + ωw + λfz + ωz,

F̃s = Fs − γ+
s π + γ−s π +

Nc∑
i=1
Ki(w + z, η1, η2)>wi.

(5.8.14)

Thus, following the same idea used to prove Theorem 5.3.5 we deduce that the solution (ṽ, p̃, η1, η2)
of (5.8.13) satisfies

d

dt


P ṽ
η1

η2

 = A


P ṽ
η1

η2

+


P F̃
0
H̃

 ,

P ṽ(0)
η1(0)
η2(0)

 =


Pv0

0
η0

2

 ,
(I − P )ṽ = ∇NdivA3η1 −∇Nsη2,

(5.8.15)

where H̃ = (I + γ+,−
s Ns)−1

(
F̃s − γ+,−

s NpF̃
)
.

• Step 2. Regularity of (P ṽ, η1, η2).

Let us first observe that, thanks to Propositions 5.8.1 and 5.8.2, Assumption A1 and [GS91,
Proposition B.1], we obtain

‖P F̃f‖
L2(0,∞;V

− 1
2 +α,0

n,Γd
(Ω))
≤ C‖F̃f‖

L2(0,∞;H−
1
2 +α,0(Ω))

≤ C
(
‖Ff‖

L2(0,∞;H−
1
2 +α,0(Ω))

+
∥∥∥div

(
θ̃Gdiv

)∥∥∥
L2(0,∞;H

1
2 +α,1(Ω))

+ ‖θ̃Gdiv‖
H1(0,∞;H−

1
2 +α,0(Ω))

+
∥∥∥(1− θ̃)Gdiv

∥∥∥
L2(0,∞;H

3
2 +α,2
δ

(Ω))∩H1(0,∞;H−
1
2 +α,0(Ω))

+ ‖gp‖L2(0,∞;H(Γi)) + ‖∂tgp‖L2(0,∞;H(Γi))
)

(5.8.16)
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and

‖F̃s‖L2(0,∞;L2(0,`s)) ≤ C
(
‖Ff‖

L2(0,∞;H−
1
2 +α,0)

+
∥∥∥div

(
θ̃Gdiv

)∥∥∥
L2(0,∞;H

1
2 +α,1(Ω))

+ ‖θ̃Gdiv‖
H1(0,∞;H−

1
2 +α,0(Ω))

+
∥∥∥(1− θ̃)Gdiv

∥∥∥
L2(0,∞;H

3
2 +α,2
δ

(Ω))∩H1(0,∞;H−
1
2 +α,0(Ω))

+ ‖gp‖L2(0,∞;H(Γi)) + ‖∂tgp‖L2(0,∞;H(Γi)) + ‖F̃s‖L2(0,∞;L2(0,`s))
)
.

(5.8.17)

Since A + ωI + BK is the infinitesimal generator of an exponentially stable analytic semi-
group on Z (see Theorem 5.7.2), (P F̃, 0, F̃s)> ∈ Z (see estimates (5.8.16) and (5.8.17)) and
(Pv0, 0, η0

2) ∈ [D(A),Z]1/2, the maximal regularity result [BDDM07, Theorem 3.1, p. 143]
implies that (P ṽ, η1, η2) belongs to L2(0,∞;D(A)) ∩H1(0,∞; Z) and satisfies

‖P ṽ‖
H1(0,∞;V

− 1
2 +α

n,Γd
(Ω))

+ ‖η1‖H4,2((0,∞)×(0,`s)) + ‖η2‖H2,1((0,∞)×(0,`s))

≤ C
(
‖v0‖H1(Ω) + ‖η0

2‖H1(0,`s) + ‖P F̃‖
L2(0,∞;V

− 1
2 +α,0

n,Γd
(Ω))

+ ‖F̃s‖L2(0,∞;L2(0,`s))

)
.

Furthermore, using again estimates (5.8.16) and (5.8.17) to bound the right-hand side in the
previous estimate, we obtain

‖P ṽ‖
H1(0,∞;V

− 1
2 +α

n,Γd
(Ω))

+ ‖η1‖H4,2((0,∞)×(0,`s)) + ‖η2‖H2,1((0,∞)×(0,`s))

≤ C
(
‖v0‖H1(Ω) + ‖η0

2‖H1(0,`s) + ‖Ff‖
L2(0,∞;H−

1
2 +α,0)

+
∥∥∥div

(
θ̃Gdiv

)∥∥∥
L2(0,∞;H

1
2 +α,1(Ω))

+ ‖θ̃Gdiv‖
H1(0,∞;H−

1
2 +α,0(Ω))

+
∥∥∥(1− θ̃)Gdiv

∥∥∥
L2(0,∞;H

3
2 +α,2
δ

(Ω))∩H1(0,∞;H−
1
2 +α,0(Ω))

+ ‖gp‖L2(0,∞;H(Γi)) + ‖∂tgp‖L2(0,∞;H(Γi)) + ‖F̃s‖L2(0,∞;L2(0,`s))
)
.

(5.8.18)
• Step 3. Estimate of ṽ in the H1(0,∞; H−

1
2 +α,0(Ω))−norm.

Using the fact that ∇NdivA3η1 − ∇Nsη2 = (I − P )L(η2, A3η1), where L ∈ L(H2
{0}(0, `s) ×

H
1
2 +α,1(Ω),H

3
2 +α,2
δ (Ω)) is the lifting operator defined in (5.3.23), along with Theorem 5.3.1 (ii)

and the transposition method, we have that L ∈ L(L2(0, `s)×H
1
2 +α,1(Ω),L2(Ω)). Then, there

exists a positive constant C such that

‖(I − P )ṽ‖
H1(0,∞;H−

1
2 +α(Ω))

= ‖(I − P )L(η2, A3η1)‖
H1(0,∞;H−

1
2 +α(Ω))

≤ C‖(I − P )L(η2, A3η1)‖H1(0,∞;L2(Ω))

≤ C(‖η1‖H4,2((0,∞)×(0,`s)) + ‖η2‖H2,1((0,∞)×(0,`s))).

(5.8.19)

Then, after combining the estimates (5.8.18) and (5.8.19), we get

‖ṽ‖
H1(0,∞;H−

1
2 +α(Ω))

≤ ‖P ṽ‖
H1(0,∞;H−

1
2 +α(Ω))

+ ‖(I − P )ṽ‖
H1(0,∞;H−

1
2 +α(Ω))

≤ C
(
‖v0‖H1(Ω) + ‖η0

2‖H1(0,`s) + ‖Ff‖
L2(0,∞;H−

1
2 +α,0)

+
∥∥∥div

(
θ̃Gdiv

)∥∥∥
L2(0,∞;H

1
2 +α,1(Ω))

+ ‖θ̃Gdiv‖
H1(0,∞;H−

1
2 +α,0(Ω))

+
∥∥∥(1− θ̃)Gdiv

∥∥∥
L2(0,∞;H

3
2 +α,2
δ

(Ω))∩H1(0,∞;H−
1
2 +α,0(Ω))

+ ‖gp‖L2(0,∞;H(Γi)) + ‖∂tgp‖L2(0,∞;H(Γi)) + ‖F̃s‖L2(0,∞;L2(0,`s))
)
.

(5.8.20)
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• Step 4. Estimates of ṽ in the
(
L2(0,∞; H

3
2 +α,2
δ (Ω)) ∩H1(0,∞; H−

1
2 +α,0(Ω))

)
−norm

and p̃ in the L2(0,∞;H
1
2 +α,1
δ (Ω))−norm.

We will show that

ṽ ∈ L2(0,∞; H
3
2 +α,2
δ (Ω)) ∩H1(0,∞; H−

1
2 +α,0(Ω)) and p̃ ∈ L2(0,∞;H

1
2 +α,1
δ (Ω)). (5.8.21)

Let us first consider the system
λf ṽ− div σ(ṽ, p̃) + (us · ∇)ṽ + (ṽ · ∇)us = A1η1 +A2η2 + ωṽ + F− ∂tṽ + λf ṽ in Ω,
div ṽ = A3η1 in Ω,
ṽ = η2~e2 on Γs, ṽ = 0 on Γi ∪ Γr ∪ Γw, σ(ṽ, p̃)n = 0 on Γn,

where λf is the parameter appearing in Theorem 5.3.1.

Since A1η1, A2η2,F, ṽ, ∂tṽ ∈ L2(0,∞; H−
1
2 +α,0(Ω)) we deduce that

A1η1 +A2η2 + ωṽ + F− ∂tṽ + λf ṽ ∈ L2(0,∞; H−
1
2 +α,0(Ω)).

Then, since in addition A3η1 ∈ L2(0,∞;H
1
2 +α,1(Ω)) and η2 ∈ H2,1((0,∞) × (0, `s)), Theorem

5.3.1 (i) implies that

ṽ ∈ L2(0,∞; H1(Ω)) and p̃ ∈ L2(0,∞;L2(Ω)). (5.8.22)

Let us set (ṽ1, p̃1) := (Ψṽ,Ψp̃) and (ṽ2, p̃2) := ((1 − Ψ)ṽ, (1 − Ψ)p̃). To show (5.8.21), it is
suffices to prove that

ṽ1 ∈ L2(0,∞; H
3
2 +α(Ω)) ∩H1(0,∞; H−

1
2 +α(Ω)) and p̃1 ∈ L2(0,∞;H

1
2 +α(Ω)) (5.8.23)

and
ṽ2 ∈ L2(0,∞; H2

δ(Ω)) ∩H1(0,∞; L2(Ω)) and p̃2 ∈ L2(0,∞;H1
δ (Ω)). (5.8.24)

(i) Proof of (5.8.23). Firstly, since ṽ ∈ H1(0,∞; H−
1
2 +α

Γd (Ω)), then ṽ1 ∈ H1(0,∞; H−
1
2 +α

Γd (Ω)).
Let us show that

ṽ1 ∈ L2(0,∞; H
3
2 +α(Ω)) and p̃1 ∈ L2(0,∞;H

1
2 +α(Ω)). (5.8.25)

We first set
F = A1η1 +A2η2 + ωṽ + F + (us · ∇)ṽ. (5.8.26)

Let us observe that the couple (ṽ1, p̃1) solves
−div σ(ṽ1, p̃1) = F1 − ∂tṽ1 − (us · ∇)ṽ1 − (ṽ1 · ∇)us in Q∞,
div ṽ1 = h1 in Q∞,
ṽ1 = Ψη2~e2 on Σ∞s , ṽ1 = 0 on Σ∞i ∪ Σ∞r ∪ Σ∞w ∪ Σ∞n ,

where

F1 = ΨF + p̃∇Ψ− ν [ṽ∆Ψ + 2(∇Ψ · ∇)ṽ− (div ṽ)∇Ψ +∇(ṽ · ∇Ψ)] + [(∇Ψ)ṽ>]us

and
h1 = Ψ(A3η1) +∇Ψ · ṽ.

We claim that (us · ∇)ṽ1 and (ṽ1 · ∇)us belongs to L2(0,∞; L2(Ω)). Indeed, using
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Assumption A1, the continuous embedding H
3
2 +α(Ω) ↪→ L∞(Ω) and the fact that ṽ1 ∈

L2(0,∞; H1(Ω)), we obtain∫ ∞
0
‖(us · ∇)ṽ1‖2L2(Ω) ≤ C‖us‖

2
L∞(Ω)

∫ ∞
0
‖∇ṽ1‖2L2(Ω) <∞, (5.8.27)

from where we deduce that (us · ∇)ṽ1 ∈ L2(0,∞; L2(Ω)). On the other hand, us-
ing again the Assumption A1, the Cauchy-Schwarz inequality, the continuous embed-
dings H

1
2 +α(Ω) ↪→ L4(Ω) and H1(Ω) ↪→ L4(Ω), together with the fact that ṽ1 ∈

L2(0,∞; H1(Ω)), we obtain∫ ∞
0
‖(ṽ1 · ∇)us‖2L2(Ω) ≤

∫ ∞
0
‖∇us‖2L4(Ω)‖ṽ1‖2L4(Ω)

≤ C‖∇us‖2
H

1
2 +α(Ω)

∫ ∞
0
‖ṽ1‖2H1(Ω)

<∞,

(5.8.28)

and thus, (ṽ1 · ∇)us ∈ L2(0,∞; L2(Ω)).

Then, using (5.8.22), the fact that ṽ1 ∈ H1(0,∞; H−
1
2 +α

Γd (Ω)) along with estimates
(5.8.27) and (5.8.28), we obtain that

F1 − ∂tṽ1 − (us · ∇)ṽ1 − (ṽ1 · ∇)us ∈ L2(0,∞; H−
1
2 +α(Ω)).

On the other hand, since Ψ(A3η1) ∈ L2(0,∞;H
1
2 +α(Ω)) and ṽ1 ∈ L2(0,∞; H1(Ω)), we

get
h1 ∈ L2(0,∞;H

1
2 +α(Ω)).

Finally, after applying [Dau89, Theorem 5.5(a)] and [BR, Theorem 3.2 and Corollary 3.3],
we obtain (5.8.25).

(ii) Proof of (5.8.24). Let us first observe that the couple (ṽ2, p̃2) solves
−div σ(ṽ2, p̃2) = F2 − ∂tṽ2 − (us · ∇)ṽ2 − (ṽ2 · ∇)us in Q∞,
div ṽ2 = h2 in Q∞,
ṽ2 = (1−Ψ)η2~e2 on Σ∞s , ṽ1 = 0 on Σ∞d \ Σ∞s , σ(ṽ1, p̃2)n = 0 on Σ∞n ,

where

F2 = (1−Ψ)F− p̃∇Ψ + ν [ṽ∆Ψ + 2(∇Ψ · ∇)ṽ− (div ṽ)∇Ψ +∇(ṽ · ∇Ψ)] + [(∇Ψ)ṽ>]us

and
h2 = (1−Ψ)A3η1 −∇Ψ · ṽ.

We will now construct two lifting functions: one corresponding to the boundary data
(1−Ψ)η2~e2, and another corresponding to the divergence data h2.

• Lifting for the boundary data. Let us consider the system{
−div σ(w̃1, π̃1) = 0, div w̃1 = 0 in Ω,
w̃1 = (1−Ψ)η2~e2 on Γs, w̃1 = 0 on Γd \ Γs σ(w̃1, π̃1)n = 0 on Γn.

(5.8.29)

Since η2 ∈ H2,1((0,∞)× (0, `s)), thanks to [MR10, Theorem 9.4.5] and the transposition
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method, we deduce that

w̃1 ∈ L2(0,∞; H2
δ(Ω)) ∩H1(0,∞; L2(Ω)) and π̃1 ∈ L2(0,∞;H1

δ (Ω)). (5.8.30)

• Lifting for the divergence data. Let us consider the system{
−div σ(w̃2, π̃2) = 0, div w̃2 = h2 in Ω,
w̃2 = 0 on Γd, σ(w̃2, π̃2)n = 0 on Γn.

(5.8.31)

Since h2 ∈ L2(0,∞;H1(Ω)) ∩ H1(0,∞; H−
1
2 +α

Γd (Ω)), from [MR10, Theorem 9.4.5] and
Lemma 3.6.1 we deduce that

w̃2 ∈ L2(0,∞; H2
δ(Ω)) ∩H1(0,∞; L2(Ω)) and π̃2 ∈ L2(0,∞;H1

δ (Ω)). (5.8.32)

Setting w̃ := w̃1 + w̃2 and π̃ := π̃1 + π̃2, we deduce from (5.8.29) and (5.8.31) that

w̃ ∈ L2(0,∞; H2
δ(Ω)) ∩H1(0,∞; L2(Ω)) and π̃ ∈ L2(0,∞;H1

δ (Ω)). (5.8.33)

After setting ṽ2 = w̃ + z̃ and p̃2 = π̃ + q̃, we observe that (z̃, q̃) solves{
∂tz̃− div σ(z̃, q̃) = F2 − ∂tṽ2 − (us · ∇)ṽ2 − (ṽ2 · ∇)us − ∂tw̃, div z̃ = 0 in Q∞,
z̃ = 0 on Σ∞d , σ(z̃, q̃)n = 0 on Σ∞n .

After using (5.8.22) and applying a similar argument to that used in (5.8.27) and (5.8.28)
to estimate the convective terms, we deduce that

F2 − ∂tṽ2 − (us · ∇)ṽ2 − (ṽ2 · ∇)us − ∂tw̃ ∈ L2(0,∞; L2(Ω)).

Since the semigroup generated by the Stokes operator (A0; V0
n,Γd(Ω)) on V0

n,Γd(Ω) is an-
alytic and exponentially stable, the maximal regularity result [BDDM07, Theorem 3.1(i),
p. 143], together with the constraint (I − P )z̃ = 0, implies in particular that

z̃ ∈ H1(0,∞; L2(Ω)). (5.8.34)

Then, from [MR10, Theorem 9.4.5] we deduce that the system{
−div σ(z̃, q̃) = F2 − ∂tṽ2 − (us · ∇)ṽ2 − (ṽ2 · ∇)us − ∂tw̃− ∂tz̃, div z̃ = 0 in Q∞,
z̃ = 0 on Σ∞d , σ(z̃, q̃)n = 0 on Σ∞n ,

admits a unique solution

z̃ ∈ L2(0,∞; H2
δ(Ω)) and q̃ ∈ L2(0,∞;H1

δ (Ω)). (5.8.35)

Thus, since ṽ2 = w̃ + z̃ and p̃2 = π̃ + q̃, from (5.8.33), (5.8.34) and (5.8.35) we deduce
that

ṽ2 ∈ L2(0,∞; H2
δ(Ω)) ∩H1(0,∞; L2(Ω)) and p̃2 ∈ L2(0,∞;H1

δ (Ω)).

This concludes the proof of (5.8.24).
As a consequence of (5.8.23) and (5.8.24), we obtain (5.8.21).

• Step 5. Conclusion.

Finally, using the fact that v = ṽ+w+z and p = p̃+π, together with (5.8.21) and Propositions
5.8.1 and 5.8.2, we obtain (5.8.12). This completes the proof. �
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5.9 Stabilization of the nonlinear system

This section is divided into two parts. We first derive the estimates for the nonlinear terms
F̂f , Ĝdiv and F̂s in Subsection 5.9.1. Then, in Subsection 5.9.2, we prove Theorem 5.2.1.

Let us first establish an auxiliary result that will be used throughout Subsection 5.9.1. This
result is a direct consequence of Definition 5.2.6.

Lemma 5.9.1. There exists a positive constant C such that for all η ∈ E(0,∞), the extensions
η± defined in (5.2.6) satisfy

‖∂z1η±‖L∞((0,∞)×(−L/2,L)) + ‖∂tη±‖L∞(0,∞;H2+a0 (−L/2,L))

+ ‖∂2
z1tη

±‖L∞((0,∞)×(−L/2,L)) ≤ C‖η‖H4,2((0,∞)×0,L)).
(5.9.1)

5.9.1 Estimate of nonlinear terms

In this subsection, we derive the estimates for the nonlinear terms F̂f , Ĝdiv and F̂s.

We first recall that the space Z∞ is defined

Z∞ =
(
L2(0,∞; H

3
2 +α,2
δ (Ω)) ∩H1(0,∞; H−

1
2 +α,0(Ω))

)
× L2(0,∞;H

1
2 +α,1
δ (Ω))×H4,2

{0,`s}((0,∞)× (0, `s)),

endowed with its natural norm.

Let R > 0, to be determined later (see (5.9.26)). Let us recall the definition of the set
B∞(R,u0, η

0
2):

B∞(R,u0, η
0
2) :=

{
(û, p̂, η) ∈ Z∞ | ‖(û, p̂, η̂)‖Z∞ ≤ R, η̂ ∈ E(0,∞)

and û(0) = u0, η̂(0) = 0, η̂t(0) = η0
2

}
.

(5.9.2)

Estimate of F̂f

Lemma 5.9.2. There exists CF̂f
> 0 such that for all (û, p̂, η̂) ∈ B∞(R,u0, η

0
2), we have

‖F̂f (û, p̂, η̂)‖
L2(0,∞;H−

1
2 +α,0(Ω))

≤ CF̂f
(1 +R)R3. (5.9.3)

Furthermore, for all (û1, p̂1, η̂1), (û2, p̂2, η̂2) ∈ B∞(R,u0, η
0
2), we have

‖F̂f (û1, p̂1, η̂1)− F̂f (û2, p̂2, η̂2)‖
L2(0,∞;H−

1
2 +α,0(Ω))

≤ CF̂f
(1 +R)R3‖(û1, p̂1, η̂1)− (û2, p̂2, η̂2)‖Z∞ .

(5.9.4)

Proof. Due to the similarity between some of the terms present in F̂f , we will only show the
estimates (5.9.3) and (5.9.4) for some of them. In particular, we selected the following terms:

• F̃1
f := det(J)(∂z1 η̂±)(η̂±χ )∂ûi

∂z1
û1,

• F̃2
f := det(J)(η̂±t )(η̂±χ )∂ûi

∂z2
,

• F̃3
f := (det(J))2(∂z1 η̂±)2 ∂2ûi

∂z2∂z1
,
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• F̃4
f := det(J)(∂z1 η̂±)(∂2

z1 η̂
±)∂ûi
∂z2

,

where

η+(t, ·, e) := (Eη)(t, ·) on [−L/2, L], η−(t, ·,−e) := (Eη)(t, ·) on [−L/2, L],

and det(J) = `−e
`−e+η±χ (t,z) , with η

±
χ (t, z) := (∓χ± + (`∓ z2)∂z2χ±) η̂±(t, z1), (t, z) ∈ [0,∞) × Ω.

Secondly, let us observe that in order to show the estimate (5.9.3), it is sufficient to prove

‖F̂f (û, p̂, η̂)‖
L2(0,∞;H−

1
2 +α(Ω))

≤ CF̂f
(1 +R)2R4 (5.9.5)

and
‖F̂f (û, p̂, η̂)|Ω2‖L2(0,∞;L2(Ω2)) ≤ CF̂f

(1 +R)2R4. (5.9.6)

The Lipschitz estimate (5.9.4) can be obtained in a similar way to how we will proceed to prove
(5.9.3).

• F̃1
f : Using Hölder’s inequality, Lemma 5.9.1, the continuous embedding H

1
2 +α(Ω) ↪→ L4(Ω)

and [MRR20, Lemma A.4], we obtain∥∥∥∥det(J)(∂z1 η̂±)∂ûi
∂z1

û1

∥∥∥∥
L2(L2(Ω))

≤ C ‖det(J)‖L∞((0,∞)×Ω) ‖∂z1 η̂
±‖L∞((0,∞)×(−L/2,L))‖η̂±‖L∞((0,T )×(−L/2,L))

× ‖û1‖
L∞(H

1
2 +α(Ω))

×
∥∥∥∥∂ûi∂z1

∥∥∥∥
L2(H

1
2 +α(Ω))

≤ C
(
1 + ‖η̂±‖L∞(H2(−L/2,L))

)
‖η̂±‖L∞(H2(−L/2,L))‖∂z1 η̂±‖L∞((0,∞)×(−L/2,L))

× ‖η̂±‖L∞((0,T )×(−L/2,L))‖û1‖
L∞(H

1
2 +α(Ω))

×
∥∥∥∥∂ûi∂z1

∥∥∥∥
L2(H

1
2 +α(Ω))

≤ C (1 +R)R5.

• F̃2
f : After using Lemma 5.9.1 and [MRR20, Lemma A.4], we obtain∥∥∥∥det(J)(η̂±t )(η̂±χ )∂ûi

∂z2

∥∥∥∥
L2(L2(Ω))

≤ C ‖det(J)‖L∞((0,∞)×Ω) ‖η
±
t ‖L∞((0,∞)×(−L/2,L))‖η̂±‖L∞((0,T )×(−L/2,L))

∥∥∥∥∂ûi∂z2

∥∥∥∥
L2(L2(Ω))

≤ C
(
1 + ‖η̂±‖L∞(H2(−L/2,L))

)
‖η̂±‖L∞(H2(−L/2,L))

× ‖η±t ‖L∞((0,∞)×(−L/2,L))‖η̂±‖L∞((0,T )×(−L/2,L))

∥∥∥∥∂ûi∂z2

∥∥∥∥
L2(L2(Ω))

≤ C (1 +R)R4.

• F̃3
f : From Lemma 5.9.1 and [MRR20, Lemma A.4], we get∥∥∥∥∥(det(J))2(∂z1 η̂±)2 ∂2ûi

∂z2∂z1

∥∥∥∥∥
L2(H−

1
2 +α(Ω))

≤ C ‖det(J)‖2L∞((0,∞)×Ω) ‖∂z1 η̂
±‖2L∞((0,∞)×(−L/2,L))

∥∥∥∥∥ ∂2ûi
∂z2∂z1

∥∥∥∥∥
L2(H−

1
2 +α(Ω))

≤ C (1 +R)2R5.
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• F̃4
f : After using Hölder’s inequality together with the continuous injections H

1
2 +α(Ω) ↪→ L4(Ω)

and Ha0(−L/2, L) ↪→ L4(−L/2, L) (with a0 ∈ (1/4, 1/2) being the parameter that appears in
Proposition 5.2.2), and Lemma 5.9.1 and [MRR20, Lemma A.4], we obtain∥∥∥∥det(J)(∂z1 η̂±)(∂2

z1 η̂
±)∂ûi
∂z2

∥∥∥∥
L2(L2(Ω))

≤ C ‖det(J)‖L∞((0,∞)×Ω) ‖∂z1 η̂
±‖L∞((0,∞)×(−L/2,L))‖∂2

z1 η̂
±‖L∞(Ha0 (−L/2,L))

∥∥∥∥∂ûi∂z2

∥∥∥∥
L2(L2(Ω))

≤ C (1 +R)R4.

This completes the proof. �

Estimate of Ĝdiv

Lemma 5.9.3. There exists CĜdiv
> 0 such that for all (û, p̂, η̂) ∈ B∞(R,u0, η

0
2), we have∥∥∥div

(
θ̃Ĝdiv

)
(û, η̂)

∥∥∥
L2(0,∞;H

1
2 +α,1(Ω))

+ ‖θ̃Ĝdiv(û, η̂)‖
H1(0,∞;H−

1
2 +α,0(Ω))

≤ CĜdiv
(1 +R)R2

(5.9.7)
and ∥∥∥(1− θ̃)Ĝdiv(û, η̂)

∥∥∥
L2(0,∞;H

3
2 +α,2
δ

(Ω))∩H1(0,∞;H−
1
2 +α,0(Ω))

≤ CĜdiv
(1 +R)R2, (5.9.8)

where θ̃ is introduced in (3.4.7). Furthermore, for all (û1, p̂1, η̂1) and (û2, p̂2, η̂2) ∈ B∞(R,u0, η
0
2),

we have∥∥∥(div
(
θ̃Ĝdiv

)
(û1, η̂1)− div

(
θ̃Ĝdiv

)
(û2, η̂2)

)∥∥∥
L2(0,∞;H

1
2 +α,1(Ω))

+
∥∥∥θ̃Ĝdiv(û1, η̂1)− θ̃Ĝdiv(û2, η̂2)

∥∥∥
H1(0,∞;H−

1
2 +α,0(Ω))

+
∥∥∥(1− θ̃) (Ĝdiv(û1, η̂1)− Ĝdiv(û2, η̂2)

)∥∥∥
L2(0,∞;H

3
2 +α
2,δ (Ω))∩H1(0,∞;H−

1
2 +α,0(Ω))

≤ CĜdiv
(1 +R)R2‖(û1, p̂1, η̂1)− (û2, p̂2, η̂2)‖Z∞ .

(5.9.9)

Proof. Let us recall that Ĝdiv is given by

Ĝdiv(û, η̂) = −
η±χ
`− e

û1~e1 + (`∓ z)χ±∂z1 η̂±

`− e
û1~e2 (5.9.10)

and
div Ĝdiv(û, η̂) = −

η±χ
`− e

∂û1
∂z1

+ (`∓ z)χ±∂z1 η̂±

`− e
∂û1
∂z2

. (5.9.11)

We will only present the proof of the estimates (5.9.7) and (5.9.8). The proof of the Lipschitz
estimate (5.9.9) can be proved in a similar way. The proof of estimates (5.9.7) and (5.9.8) is
divided into three steps.

• Step 1: Proof of estimate
∥∥∥div

(
θ̃Ĝdiv

)
(û, η̂)

∥∥∥
L2(H

1
2 +α,1)

≤ CR2.

We will only consider the term (∂z1 η̂±)∂û1
∂z2

. To estimate the remaining terms we can proceed in
a similar way. Let us notice that it suffices to show that∥∥∥∥(∂z1 η̂±)∂û1

∂z2

∥∥∥∥
L2(L2)

+
∥∥∥∥∇((∂z1 η̂±)∂û1

∂z2

)∥∥∥∥
L2(H−

1
2 +α,0)

≤ CR2. (5.9.12)
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The proof of (5.9.12) is similar to the one presented in the proof of Lemma 5.9.2.

• Step 2: Proof of estimate ‖θ̃Ĝdiv(û, η̂)‖
H1(H−

1
2 +α,0)

≤ CR2.

It suffices to show that ∥∥(∂z1 η̂±)û1
∥∥
L2(H−

1
2 +α)

≤ CR2 (5.9.13)

and ∥∥∂t((∂z1 η̂±)û1)
∥∥
L2(H−

1
2 +α)

≤ CR2. (5.9.14)

The arguments used to prove estimates (5.9.13) and (5.9.14) are similar to those presented in
the proof of Lemma 5.9.3.

Thus, from steps 1 and 2, we deduce estimate (5.9.7).

• Step 3: Proof of estimate (5.9.8).
From Lemma 5.9.1, we obtain

‖(1− θ̃)(∂z1 η̂±)û1‖
L2(H

3
2 +α)

≤ C‖∂z1 η̂±‖L∞((0,∞)×(ε0,L))‖û1‖
L2(H

3
2 +α)

≤ CR2.
(5.9.15)

The estimate of (1−θ̃)(∂z1 η̂±)û1 in theH1(H−
1
2 +α)−norm can be done using the same argument

used in step 2. This completes the proof estimate (5.9.8). �

Estimate of F̂s.

Lemma 5.9.4. There exist C
F̂s
> 0 such that for all (û, p̂, η̂) ∈ B∞(R,u0, η

0
2), we have

‖F̂s(û, η̂)‖L2(0,∞;Hα(0,`s)) ≤ CF̂s(1 +R)R4. (5.9.16)

Furthermore, for all (û1, p̂1, η̂1), (û2, p̂2, η̂2) ∈ B∞(R,u0, η
0
2), we have

‖F̂s(û1, η̂1)− F̂s(û2, η̂2)‖L2(0,∞;Hα(0,`s))

≤ C
F̂s

(1 +R)R4‖(û1, p̂1, η̂1)− (û2, p̂2, η̂2)‖Z∞ .
(5.9.17)

Proof. We will only consider the term

γ+
s

(
det(J)(∂z1 η̂±)2(η̂±χ )∂ûs,2

∂z2

)
.

The Lipschitz estimate (5.9.17) can be proved in a similar way as estimate (5.9.16). Let us start
by proving the following estimate:∥∥∥∥det(J)(∂z1 η̂±)2(η̂±χ )∂ûs,2

∂z2

∥∥∥∥
L2(H

1
2 +α)

≤ C(1 +R)R4. (5.9.18)

To prove the estimate (5.9.18), we will show that∥∥∥∥det(J)(∂z1 η̂±)2(η̂±χ )∂ûs,2
∂z2

∥∥∥∥
L2(L2)

≤ C(1 +R)R4 (5.9.19)

and ∥∥∥∥∇(det(J)(∂z1 η̂±)2(η̂±χ )∂ûs,2
∂z2

)∥∥∥∥
L2(H−

1
2 +α)

≤ C(1 +R)R4 (5.9.20)
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Estimates (5.9.19) and (5.9.20) follow by arguments similar to those used in the proof of Lemma
5.9.2. This completes the proof. �

5.9.2 Proof of Theorem 5.2.1

Let us first recall the definition of the space Z∞:

Z =
(
L2(0,∞; H

3
2 +α,2
δ (Ω)) ∩H1(0,∞; H−

1
2 +α,0(Ω))

)
× L2(0,∞;H

1
2 +α,1
δ (Ω))×H4,2

{0,`s}((0,∞)× (0, `s)),

We now introduce the mapping N from Z∞ into itself, defined by

N (Φ̂, ψ̂, k̂) = (û, p̂, η̂) for all (Φ̂, ψ̂, k̂) ∈ Z∞, (5.9.21)

where (û, p̂, η̂) is the solution of the system

∂tû− div σ(û, p̂)−A1η̂ −A2η̂t = e−ωtF̂f (Φ̂, ψ̂, k̂) in Q∞,
div û = A3η̂1 + e−ωt div Ĝdiv(Φ̂, k̂) in Q∞,
û = ĝp on Σ∞i , û = 0 on Σ∞w ∪ Σ∞r , û = η̂t~e2 on Σ∞s ,
σ(û, p̂)n = 0 on Σ∞n , û(0) = û0 in Ω,
∂2
t η̂ + α∆2

s η̂ + γ(∆2
s)

1
2 η̂t = −γ+,−

s p̂+ e−ωtF̂s(Φ̂, k̂) +
∑Nc
i=1Ki(û, η̂, η̂t)wi in (0,∞)× (0, `s),

η̂ = 0 and ∂x1 η̂ = 0 on (0,∞)× {0},
∂2
x1 η̂ = 0 and ∂3

x1 η̂ = 0 on (0,∞)× {`s},
η̂(0) = 0 and η̂t(0) = η0

2 in (0, `s).
(5.9.22)

Proposition 5.9.1. There exists a constant C > 0 such that for all u0 ∈ H1(Ω), η0
2 ∈ H2

{0}(0, `s)
and ĝp ∈ H1

{0}(0,∞; H(Γi)), the mapping N is well-defined. Moreover, for all (Φ̂, ψ̂, k̂) ∈
B∞(R,u0, η

0
2) and all (Φ̂1, ψ̂1, k̂1), (Φ̂2, ψ̂2, k̂2) ∈ B∞(R,u0, η

0
2), we have

‖N (Φ̂, ψ̂, k̂)‖Z∞ ≤ C
(
‖û0‖H1(Ω) + ‖η0

2‖H1(0,`s) + ‖ĝp‖H1(0,∞;H(Γi)) + p(R)
)

(5.9.23)

and

‖N (Φ̂1, ψ̂1, k̂1) −N (Φ̂2, ψ̂2, k̂2)‖Z∞ ≤ Cp(R)‖(Φ̂1, ψ̂1, k̂1)− (Φ̂2, ψ̂2, k̂2)‖Z∞ , (5.9.24)

where p = p(R) is a polynomial of degree greater than 1 such that p(0) = 0.

Proof. From Theorem 5.8.1 and Proposition 5.8.2, we obtain

‖(û, p̂, η̂)‖Z∞ ≤ CL
(
‖û0‖H1(Ω) + ‖η0

2‖H1(0,`s) + ‖ĝp‖H1
{0}(0,∞;H(Γi))

+ ‖F̂f (Φ̂, ψ̂, k̂)‖
L2(0,∞;H−

1
2 +α,0(Ω))

+ ‖F̂s(Φ̂, k̂)‖L2((0,∞)×(0,`s))

+
∥∥∥div

(
θ̃Ĝdiv(Φ̂, k̂)

)∥∥∥
L2(0,∞;H

1
2 +α,1(Ω))

+ ‖θ̃Ĝdiv(Φ̂, k̂)‖
H1(0,∞;H−

1
2 +α,0(Ω))

+
∥∥∥(1− θ̃)Ĝdiv(Φ̂, k̂)

∥∥∥
L2(0,∞;H

3
2 +α,2
δ

(Ω))∩H1(0,∞;H−
1
2 +α,0(Ω))

)
,

(5.9.25)
where CL > 0 is the constant appearing in estimate (5.8.12). After using Lemmas 5.9.2, 5.9.3
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and 5.9.4, we obtain

‖(û, p̂, η̂)‖Z∞ ≤ CL
(
‖û0‖H1(Ω) + ‖η0

2‖H1(0,`s) + ‖ĝp‖H1(0,∞;H(Γi)) + p(R)
)
.

The proof of the Lipschitz estimate (5.9.24) can be established by a similar argument. �

We are now in position to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. We first choose R > 0 small enough such that

Cp(R) < min
{
R

2 , 1
}

and CR <
`− e

2 , (5.9.26)

where p = p(R) is the polynomial of degree greater than 1 appearing in Proposition 5.9.1
satisfying p(0) = 0. Then, by choosing r > 0 such that CLr < R

2 , Proposition 5.9.1 allows
us to deduce that the operator N , defined in (5.9.21), maps B∞(R,u0, η

0
2) into itself and is a

strict contraction. Finally, thanks to the Banach fixed point Theorem, system (5.9.22) admits
a unique solution (û, p̂, η̂) ∈ B∞(R,u0, η

0
2). This completes the proof of Theorem 5.2.1.
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Appendix A: Nonlinear terms coming from the geometric trans-
formation (5.2.8)

In this section, we present the explicit formulas of the terms F̂f , Ĝdiv and F̂s that we obtain
for the geometric transformation given in (5.2.8).

F̂f,i(û, p̂, η̂1, η̂2) = −e−ωt (û1ûi,z1 + û2ûi,z2) +
e−2ωtη̂±χ
`− e

û2ûi,z2 +
e−ωtη̂±χ
`− e

û2us,i,z2

+
e−ωtη̂±χ
`− e

ûi,z2us,2 +
e−ωt(η̂±χ )2

`− e

(
e−2ωtû2ûi,z2 + e−ωtû2us,i,z2 + e−ωtus,2ûi,z2 + us,2us,i,z2

)
+

e−ωt(`∓ z2)χ±η̂±1,z1 η̂
±
χ

(`− e)(`− e+ e−ωtη̂±χ )

(
e−ωtû1 + us,1

) (
e−ωtûi,z2 + us,i,z2

)
+ e−ωt(`∓ z2)χ±η̂±2

`− e
ûi,z2

−
e−2ωt(`∓ z2)χ±η̂±2 η̂±χ

`− e+ e−ωtη̂±χ
ûi,z2 − 2ν

e−ωt(`∓ z2)χ±η̂±χ
`− e

ûi,z1z2 + 2ν
e−2ωt(`∓ z2)χ±η̂±1,z1 η̂

±
χ

`− e+ e−ωtη̂±χ
ûi,z1z2

−
e−ωt(`∓ z2)η̂±2 η̂±χ
`− e+ e−ωtη̂±χ

us,i,z2 + 2ν
e−ωt(`∓ z2)χ±η̂±1,z1 η̂

±
χ

`− e+ e−ωtη̂±χ
us,i,z1z2

+ ν
e−ωt

(
(`∓ z2)χ±η̂±1,z1

)2

(`− e+ e−ωtη̂±χ )2

(
e−ωtûi,z1z2 + us,i,z1z2

)
− 2ν

e−ωtη̂±χ
`− e

ûi,z2z2

− ν
e−ωt(η̂±χ )2

(`− e)2

(
e−ωtûi,z2z2 + us,z2z2

)
+ 2ν

e−ωt(2(`− e) + e−ωtη̂±χ )(η̂±χ )2

(`− e)3

(
e−ωtûi,z2z2 + us,i,z2z2

)
+ 2ν

e−2ωt(2(`− e) + e−ωtη̂±χ )(η̂±χ )3

(`− e)3(`− e+ e−ωtη̂±χ )

(
e−ωtûi,z2z2 + us,i,z2z2

)
− ν

e−ωtη̂±χ
`− e

ûi,z2

− ν
e−2ωt(2(`− e) + e−ωtη̂±χ )(η̂±χ )3

(`− e)2(`− e+ e−ωtη̂±χ )2

(
e−ωtûi,z2z2 + us,i,z2z2

)
− ν

e−ωt(`∓ z2)χ±η̂±1,z1z1
`− e

us,i,z2

+ ν
e−ωt(`∓ z2)χ±η̂±1,z1 η̂

±
1,z1z1

(`− e)(`− e+ e−ωtη̂±χ )

(
e−ωtûi,z2 + us,i,z2

)
− ν

e−ωt(`∓ z2)χ±η̂±1,z1 η̂
±
χ,z1

(`− e)(`− e+ e−ωtη̂±χ )

(
e−ωtûi,z2 + us,i,z2

)
+ ν

e−ωt(`∓ z2)χ±η̂±1,z1 η̂
±
χ,z1

`− e+ e−ωtη̂±χ

(
e−ωtûi,z2 + us,i,z2

)
− ν

e−2ωt(`∓ z2)2(χη̂±1,z1)2η̂±χ,z2
(`− e+ e−ωtη̂±χ )3

(
e−ωtûi,z2 + us,i,z2

)
+ ν

(
2e−ωt(η̂±χ )2

(`− e)2 −
2e−ωt(η̂±χ )3

(`− e)2(`− e+ e−ωtη̂±χ )
−

e−2ωt(η̂±χ )3

(`− e)(`− e+ e−ωtη̂±χ )2

)(
e−ωtûi,z2 + us,i,z2

)
+ ν

η̂±χ

(`− e)(`− e+ e−ωtη̂±χ )

(
e−ωtη̂±χ
(`− e)2 −

2e−ωt(η̂±χ )2

(`− e)3

)(
e−ωtûi,z2 + us,i,z2

)

+ ν
η̂±χ

(`− e)(`− e+ e−ωtη̂±χ )

(
2e−ωt(η̂±χ )3

(`− e)3(`− e+ e−ωtη̂±χ )
+

e−3ωt(η̂±χ )3

(`− e)2(`− e+ e−ωtη̂±χ )2

)(
e−ωtûi,z2 + us,i,z2

)

ν

(
e−ωtη̂±χ,zi
`− e

û1,z1 +
e−ωtη̂±χ
`− e

û1,z1zi

)
− νe−ωt

(
∂zi

(
(`∓ z2)χ±

`− e

)
η̂±1,z1 −

(
(`∓ z2)χ±

`− e

)
η̂±1,z1zi

)
û1,z2

− νe−ωt
(

(`∓ z2)χ±

`− e

)
η̂±1,z1 û1,z1zi +

e−ωt(`∓ z2)χ±η̂±1,z1
`− e

p̂z2δ1,i

−
e−ωt(`∓ z2)χ±η̂±1,z1 η̂

±
χ

(`− e)(`− e+ e−ωtη̂±χ )

(
e−ωtp̂z2 + ps,z2

)
δ1,i +

e−ωtη̂±χ
`− e

p̂z2δ2,i

−
e−ωt(η̂±χ )2

(`− e)(`− e+ e−ωtη̂±χ )

(
e−ωtp̂z2 + ps,z2

)
δi,2

(5.9.27)
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and

Gdiv(û, η̂1) = −
e−ωtη̂±χ
`− e

û1~e1 +
e−ωt(`∓ z2)χ±η̂±1,z1

`− e
û1~e2,

F̂s(û, η̂1) = −νe−ωtη̂±1,z1γ
±
s û1,z2 + ν

e−2ωtη̂±1,z1 η̂
±
χ γ
±
s û1,z2

`− e+ e−ωtη̂±χ
− νe−ωtη̂±1,z1γ

±
s û2,z1

+ ν
e−2ωt(`∓ z2)(η̂±1,z1)2

`− e
γ±s û2,z2 − ν

e−2ωt(`∓ z2)(η̂±1,z1)2η̂±χ

(`− e)(`− e+ e−ωtη̂±χ )
γ±s us,2,z2

+ ν
e−ωtη̂±1,z1 η̂

±
χ

`− e+ e−ωtη̂±χ
γ±s us,1,z2 + ν

e−ωt(`∓ z2)(η̂±1,z1)2

`− e
γ±s us,2,z2

− ν
e−2ωt(`∓ z2)(η̂±1,z1)2η̂±χ

(`− e)(`− e+ e−ωtη̂±χ )
γ±s us,2,z2 + 2ν `− e

`− e+ e−ωtη̂±χ
γ±s û2,z2 ,

(5.9.28)

where δi,j denotes the Kronecker delta.
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Appendix B: Proof of Theorem 5.3.2

Let us first notice notice that the domain D(A; V−
1
2 +α

n,Γd (Ω)) of the Oseen operator is dense

in V−
1
2 +α

n,Γd (Ω), since D(A; V−
1
2 +α

n,Γd (Ω)) = D(A0; V−
1
2 +α

n,Γd (Ω)) and D(A0; V−
1
2 +α

n,Γd (Ω)) is dense in

V−
1
2 +α

n,Γd (Ω) (see Proposition 2.4.8 of Chapter 2). Then, thanks to [EN06, Theorem 4.6, p. 95],

it suffices to verify that (A,D(A; V−
1
2 +α

n,Γd (Ω))) is sectorial.

We split the proof into three steps.

Step 1: (Estimate in V0
n,Γd(Ω)−norm). Since (A0,D(A; V0

n,Γd(Ω))) is the infinitesimal gener-
ator of an analytic semigroup on V0

n,Γd(Ω) (see [NR15, Theorem 2.8]), there exist C0 > 0 and
θ0 ∈ (π/2, π) such that

‖(λI −A)−1F‖L2 ≤
C0
|λ|
‖F‖L2 , (5.9.29)

for all λ ∈ Σθ0 \ {0} and all F ∈ V0
n,Γd(Ω).

Step 2: (Estimate in V−1
Γd (Ω)−norm). We claim that there exists C1 > 0 such that

‖(λI −A)−1F‖V−1
Γd
≤ C1
|λ|
‖F‖V−1

Γd
(5.9.30)

for all λ ∈ Σθ0 \ {0} and all F ∈ V0
n,Γd(Ω). Indeed, let u := (λI −A)−1F. Then,

λu− div σ(u, q) + (u · ∇)us + (us · ∇)u = F in Ω,
div u = 0 in Ω,
u = 0 on Γd, σ(u, q)n = 0 on Γn.

(5.9.31)

Thus, u satisfies in particular

λ

∫
Ω

u ·ϕ = −2ν
∫

Ω
ε(u) : ε(ϕ)−

∫
Ω

((us · ∇)u + (u · ∇)us) ·ϕ+ 〈F,ϕ〉V−1
Γd
,V1

Γd
, (5.9.32)

for all ϕ ∈ V1
Γd(Ω).

After properly adapting the argument of the proof of Theorem 2.4.4 presented at the end of
Chapter 2 (possibly after modifiying the sector Σθ0), we can show that there exists a constant
C > 0, independent of λ, such that

‖u‖V1
Γd
≤ C‖F‖V−1

Γd
. (5.9.33)

We now introduce the set

D :=
{
ϕ ∈ V1

Γd(Ω) | ‖ϕ‖V1
Γd
≤ 1

}
.
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Using the Cauchy-Schwarz inequality, estimate (5.9.33), Assumption A1 and [BH21, Theo-
rem 7.4] in identity (5.9.32), we obtain

|λ|‖u‖V−1
Γd

= |λ| sup
ϕ∈D

∣∣∣∣〈u,ϕ〉V−1
Γd
,V1

Γd

∣∣∣∣
≤ 2ν sup

ϕ∈D

∫
Ω
|ε(u)||ε(ϕ)|+ sup

ϕ∈D

∫
Ω
|((us · ∇)u + (u · ∇)us)| |ϕ|+ sup

ϕ∈D

∣∣∣∣〈F,ϕ〉V−1
Γd
,V1

Γd

∣∣∣∣
≤ C‖F‖V−1

Γd
,

(5.9.34)
from where we deduce the estimate (5.9.30) with a constant C > 0 independent of λ.

Step 3. (Conclusion). From Lemma 3.3.1 of Chapter 3 and the interpolation between (5.9.29)
and (5.9.30) we deduce that for any ε ∈ (0, 1/2)

‖(λI −A)−1F‖V−εΓd
≤ C0

(
C1
C0

)ε 1
|λ|
‖F‖V−εΓd

for all λ ∈ Σθ0 \ {0}. (5.9.35)

Now, taking ε = 1/2 − α ∈ (0, 1/2) in (5.9.35) and using the fact that V0
n,Γd(Ω) is dense in

V−
1
2 +α

n,Γd (Ω) we deduce that

‖(λI −A)−1F‖
V
− 1

2 +α
Γd

≤ C

|λ|
‖F‖

V
− 1

2 +α
Γd

for all λ ∈ Σθ0 \ {0}. (5.9.36)
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Appendix C: Justification of the identity (5.4.14) (formal compu-
tations)

The aim of this appendix is to present the formal computations that lead to identity (5.4.14).

Let Ff ,Gf ∈ L2(Ω), F 1
s , G

1
s ∈ H2

{0}(0, `s) and F 2
s , G

2
s ∈ L2(0, `s). Let us consider the following

two systems:

λv− div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2 = Ff in Ω,
div v = A3η1 in Ω,
v = η2~e2 on Γs, v = 0 on Γd \ Γs, σ(v, q)n = 0 on Γn,
λη1 − η2 = F 1

s on (0, `s),
λη2 + α∆2η1 + γ(∆2

s)
1
2 η2 −A4η1 = −γ+

s q + γ−s q + F 2
s on (0, `s),

η1(0) = ∂xη(0) = 0 and ∂2
xη1(`s) = ∂3

xη1(`s) = 0,

(5.9.37)

and

λΦ− div σ(Φ, ψ)− (us · ∇)Φ + (∇us)>Φ = Gf in Ω,
div Φ = 0 in Ω,
Φ = ζ2~e2 on Γs, Φ = 0 on Γd \ Γs, σ(Φ, ψ)n + us · nΦ = 0 on Γn,
λζ1 + ζ2 − 1

α(∆s)−1(A∗4 − 2ν(γ±s A3)∗)ζ2 − 1
α(∆s)−1A∗1Φ + 1

α(∆s)−1A∗3ψ = G1
s in (0, `s),

λζ2 + α∆2
sζ1 + γ(∆2

s)
1
2 ζ2 −A∗2Φ = −γ+

s ψ + γ−s ψ +G2
s in (0, `s),

ζ1(0) = ∂xζ1(0) = 0 and ∂2
xζ1(`s) = 2νe

α
ζ2(`s), ∂3

xζ1(`s) = 2νe
α
ζ2,x(`s).

(5.9.38)
Fluid equations

After integrating by parts, we get〈
Ff ,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

=
〈
λv− div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

=
〈
Gf ,v

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

−
∫

Γs
σ(v, q)n ·Φ +

∫
Γs
σ(Φ, ψ)n · v

−
〈
A1η1,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

−
〈
A2η2,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

+
∫

Ω
ψ div v.

(5.9.39)

The previous integration by parts identities hold for all v,Φ ∈ H2(Ω) and q, ψ ∈ H1(Ω). Never-
theless, by a density argument, it can be shown that they remain valid for all v,Φ ∈ H

3
2 +α(Ω)

and q, ψ ∈ H
1
2 +α(Ω).

Let us compute the terms −
∫

Γs
σ(v, q)n ·Φ︸ ︷︷ ︸
I1

and
∫

Γs
σ(Φ, ψ)n · v︸ ︷︷ ︸

I2

.

• I1 = −
∫

Γ+
s

σ(v, q)n+ ·Φ︸ ︷︷ ︸
I11

−
∫

Γ−s
σ(v, q)n− ·Φ︸ ︷︷ ︸
I12

−
∫

Γ`s
σ(v, q)n` ·Φ︸ ︷︷ ︸
I13
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I11. Since n+ = −~e2 and Φ = (0, ζ2)> on Γ+
s , we get

σ(v, q)n+ ·Φ =
(
σ11 σ12
σ21 σ22

)(
0
−1

)
·
(

0
ζ2

)
= −σ22ζ2

= qζ2 − 2νv2,yζ2.

Thus,
I11 = −

∫
Γ+
s

qζ2 + 2ν
∫

Γ+
s

v2,yζ2

= −
∫ `s

0
[γ+
s q]ζ2 + 2ν

∫ `s

0
[γ+
s v2,y]ζ2

But, since (v1,x + v2,y)|Γ+
s

= γ+
s A3η1 and v1 = 0 on Γ+

s , we obtain

I11 = −
∫ `s

0
[γ+
s q]ζ2 + 2ν

∫ `s

0
[γ+
s A3η1]ζ2.

I12. Since n− = ~e2 = −n+,

I12 =
∫ `s

0
[γ−s q]ζ2 − 2ν

∫ `s

0
[γ−s A3η1]ζ2.

I13. Since n` = −~e1 and Φ2 = ζ2 on Γ`s, we have

σ(v, q)n` ·Φ =
(
σ11 σ12
σ21 σ22

)(
−1
0

)
·
(

0
ζ2

)
= −σ21ζ2

= −ν(v1,y + v2,x)ζ2.

Then, since v1|Γ`ss = 0, we get

I13 = ν

∫
Γ`s
v2,xζ2.

Therefore,

I1 = −
∫ `s

0
[γ+,−
s q]ζ2 + 2ν

∫ `s

0
[γ+,−
s A3η1]ζ2 + ν

∫
Γ`s
v2,xζ2. (5.9.40)

• I2 =
∫

Γ+
s

σ(Φ, ψ)n · v︸ ︷︷ ︸
I21

+
∫

Γ−s
σ(Φ, ψ)n · v︸ ︷︷ ︸

I22

+
∫

Γ`ss
σ(Φ, ψ)n · v︸ ︷︷ ︸

I23

I21. Since n+ = −~e2, we have

I21 =
∫ `s

0
[γ+
s ψ]η2 − 2ν

∫ `s

0
[γ+
s Φ2,y]η2.

But, since (Φ1,x + Φ2,y)|Γ+
s

= 0 and Φ1 = 0 on Γ+
s , we obtain

I21 = −
∫ `s

0
[γ+
s ψ]η2

I22. Similarly, ∫
Γ−s
σ(Φ, ψ)n+ · v =

∫ `s

0
[γ−s ψ]η2.



Appendix C: Justification of the identity (5.4.14) (formal computations) 201

I23. Since n` = −~e1 and v2 = η2 on Γ`s, we have

σ(Φ, ψ)n` · v =
(
σ11 σ12
σ21 σ22

)(
−1
0

)
·
(

0
η2

)
= −σ21η2

= −(νv2,x + νv1,y)η2,

Then, from the equality v1 = 0 on Γ`ss , we get

I23 = −ν
∫

Γ`s
Φ2,xη2.

Therefore,

I2 =
∫ `s

0
[γ+,−
s ψ]η2 − ν

∫
Γ`s

Φ2,xη2, (5.9.41)

and thus,

I1 + I2 =−
∫ `s

0
[γ+,−
s q]ζ2 + 2ν

∫ `s

0
[γ+,−
s A3η1]ζ2 + ν

∫
Γ`s
v2,xζ2

+
∫ `s

0
[γ+,−
s ψ]η2 − ν

∫
Γ`s

Φ2,xη2.

(5.9.42)

Substituting (5.9.42) into (5.9.39), we get〈
Ff ,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

=
〈
Gf ,v

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

−
∫ `s

0
[γ+,−
s q]ζ2 + 2ν

∫ `s

0
[γ+,−
s A3η1]ζ2

+ ν

∫
Γ`s
v2,xζ2 +

∫ `s

0
[γ+,−
s ψ]η2 − ν

∫
Γ`s

Φ2,xη2

−
〈
A1η1,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

−
〈
A2η2,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

+
∫

Ω
ψA3η1.

(5.9.43)

Structure equations

In the computations developed in this subsection, we consider the space H2
{0}(0, `s) endowed

with the inner product

〈η, µ〉H2
{0}

= α

∫ `s

0
∆η ·∆µ, for all η, µ ∈ H2

{0}(0, `s).

• Taking the inner product 〈·, ·〉H2
{0}

of both sides of the equality

λζ1 + ζ2 −
1
α

(∆s)−1(A∗4 − 2ν(γ±s A3)∗)ζ2 −
1
α

(∆s)−1A∗1Φ + 1
α

(∆s)−1A∗3ψ = G1
s,

with η1, we get

αλ

∫ `s

0
∆ζ1 ·∆η1 + α

∫ `s

0
∆ζ2 ·∆η1 −

∫ `s

0
[A∗4ζ2] · η1 + 2ν

∫ `s

0
[(γ+,−

s A3)∗ζ2] · η1

+
∫ `s

0
[A∗1Φ] · η1 +

∫ `s

0
[A∗3Ψ] · η1 = α

∫ `s

0
∆G1

s ·∆η1.

(5.9.44)
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• Applying the L2 inner product with η2 to both sides of the equality

λζ2 + α∆2
sζ1 + γ(∆2

s)
1
2 ζ2 −A∗2Φ = −γ+

s ψ + γ−s ψ +G2
s in (0, `s),

we obtain

λ

∫ `s

0
ζ2η2 − α

∫ `s

0
∆ζ1 ·∆η2 + γ

∫ `s

0
[(∆2

s)
1
2 ζ2] · η2 −

∫ `s

0
A∗2Φ · η1

=
∫ `s

0
G2
sη2 + α

2νe
α
ζ2,x(`s)η2(`s)− α

2νe
α
ζ2(`s)η2,x(`s).

(5.9.45)

• By taking the inner product 〈·, ·〉H2
{0}

in both sides of the equality

λη1 − η2 = F 1
s on (0, `s),

with ζ1, we get

αλ

∫ `s

0
∆η1 ·∆ζ1 − α

∫ `s

0
∆η2 ·∆ζ1 = α

∫ `s

0
∆F 1

s ·∆ζ1. (5.9.46)

• Applying the L2 inner product with ζ2 to both sides of the equality

λη2 + α∆2η1 + γ(∆2
s)1/2η2 −A4η1 = −γ+

s q + γ−s q + F 2
s ,

we obtain

λ

∫ `s

0
η2ζ2 + α

∫ `s

0
∆η1 ·∆ζ2 + γ

∫ `s

0
[(∆2

s)1/2η2]ζ2 −
∫ `s

0
[A4η1]ζ2

=−
∫ `s

0
[γ+
s q]ζ2 +

∫ `s

0
[γ−s q]ζ2 +

∫ `s

0
F 2
s ζ2.

(5.9.47)

By adding the identities (5.9.44), (5.9.45), (5.9.46) and (5.9.47), we obtain

α

∫ `s

0
∆F 1

s ·∆ζ1 −
∫ `s

0
[γ+
s q]ζ2 +

∫ `s

0
[γ−s q]ζ2 +

∫ `s

0
F 2
s ζ2

αλ

∫ `s

0
∆ζ1 ·∆η1 + α

∫ `s

0
∆ζ2 ·∆η1 −

∫ `s

0
[A∗4ζ2] · η1 + 2ν

∫ `s

0
[(γ+,−

s A3)∗ζ2] · η1

+
∫ `s

0
[A∗1Φ] · η1 +

∫ `s

0
[A∗3Ψ] · η1 + λ

∫ `s

0
ζ2η2 − α

∫ `s

0
∆ζ1 ·∆η2

+ γ

∫ `s

0
[(∆2

s)1/2ζ2] · η2 −
∫ `s

0
A∗2Φ · η1

=αλ
∫ `s

0
∆η1 ·∆ζ1 − α

∫ `s

0
∆η2 ·∆ζ1

λ

∫ `s

0
η2ζ2 + α

∫ `s

0
∆η1 ·∆ζ2 + γ

∫ `s

0
[(∆2

s)1/2η2]ζ2 −
∫ `s

0
[A4η1]ζ2 + α

∫ `s

0
∆G1

s ·∆η1

+
∫ `s

0
G2
sη2 + α

2νe
α
ζ2,x(`s)η2(`s)− α

2νe
α
ζ2(`s)η2,x(`s),

(5.9.48)
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or equivalently

α

∫ `s

0
∆F 1

s ·∆ζ1 −
∫ `s

0
[γ+
s q]ζ2 +

∫ `s

0
[γ−s q]ζ2 +

∫ `s

0
F 2
s ζ2

−
∫ `s

0
[A∗4ζ2] · η1 + 2ν

∫ `s

0
[(γ+,−

s A3)∗ζ2] · η1

+
∫ `s

0
[A∗1Φ] · η1 +

∫ `s

0
[A∗3Ψ] · η1 −

∫ `s

0
A∗2Φ · η1

=−
∫ `s

0
[A4η1]ζ2 + α

∫ `s

0
∆G1

s ·∆η1 +
∫ `s

0
G2
sη2 + α

2νe
α
ζ2,x(`s)η2(`s)− α

2νe
α
ζ2(`s)η2,x(`s).

(5.9.49)
Finally, after adding up identities (5.9.43) and (5.9.49), we get

〈
Ff ,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

+ α

∫ `s

0
∆F 1

s ·∆ζ1 −
∫ `s

0
[γ+
s q]ζ2 +

∫ `s

0
[γ−s q]ζ2 +

∫ `s

0
F 2
s ζ2

−
∫ `s

0
[A∗4ζ2] · η1 + 2ν

∫ `s

0
[(γ+,−

s A3)∗ζ2] · η1

+
∫ `s

0
[A∗1Φ] · η1 +

∫ `s

0
[A∗3Ψ] · η1 −

∫ `s

0
[A∗2Φ] · η1

=
〈
Gf ,v

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

−
∫ `s

0
[γ+,−
s q]ζ2 + 2ν

∫ `s

0
[γ+,−
s A3η1]ζ2

+ ν

∫
Γ`s
v2,xζ2 +

∫ `s

0
[γ+,−
s ψ]η2 − ν

∫
Γ`s

Φ2,xη2

−
〈
A1η1,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

−
〈
A2η2,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

+
∫

Ω
ψA3η1

−
∫ `s

0
[A4η1]ζ2 + α

∫ `s

0
∆G1

s ·∆η1 +
∫ `s

0
G2
sη2 + α

2νe
α
ζ2,x(`s)η2(`s)− α

2νe
α
ζ2(`s)η2,x(`s),

(5.9.50)
or equivalently,

〈
Ff ,Φ

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

+ α

∫ `s

0
∆F 1

s ·∆ζ1 +
∫ `s

0
F 2
s ζ2

=
〈
Gf ,v

〉
H−

1
2 +α(Ω),H

1
2−α(Ω)

+ α

∫ `s

0
∆G1

s ·∆η1 +
∫ `s

0
G2
sη2.

(5.9.51)
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Appendix D: Proof of Proposition 5.7.1

Let ṽ = Pv + ∇NdivA3η1 − ∇Nsη2 and Φ̃ = PΦ − ∇Nsζ2, with (Pv, η1, η2) ∈ Z0 and
(PΦ, ζ1, ζ2) ∈ Z∗0. Then,〈

ṽ, Φ̃
〉

L2(Ω)
=
〈
Pv, PΦ

〉
L2(Ω)

−
∫

Ω
Pv · ∇Nsζ2︸ ︷︷ ︸

I1

+
∫

Ω
∇NdivA3η1 · PΦ︸ ︷︷ ︸

I2

−
∫

Ω
∇NdivA3η1 · ∇Nsζ2︸ ︷︷ ︸

I3

−
∫

Ω
∇Nsη2 · PΦ︸ ︷︷ ︸

I4

+
∫

Ω
∇Nsη2 · ∇Nsζ2︸ ︷︷ ︸

I5

.
(5.9.52)

We now compute each term of the preceding identity.

• I1

Let us first notice that q = Nsζ2 satisfies
∆q = 0 in Ω, ∂q

∂n = ζ2 on Γ+
s ,

∂q

∂n = −ζ2 on Γ−s ,
∂q

∂n = 0 on Γd \
(
Γ−s ∪ Γ+

s

)
, q = 0 on Γn.

(5.9.53)

Then,
I1 = −

∫
Ω
Pv · ∇Nsζ2 =

∫
Ω

div(Pv)q −
∫

Γ
qPv · n = 0. (5.9.54)

• I2

Since q = NdivA3η1 satisfies

∆q = A3η1 in Ω, ∂q

∂n = 0 on Γd, q = 0 on Γn, (5.9.55)

then,
I2 = −

∫
Ω
Pv · ∇Nsζ2 =

∫
Ω

div(Pv)q −
∫

Γ
qPv · n = 0. (5.9.56)

• I3

Let us first notice that q = NdivA3η1 and q̃ = Nsζ2 satisfy

∆q = A3η1 in Ω, ∂q

∂n = 0 on Γd, q = 0 on Γn, (5.9.57)

and 
∆q̃ = 0 in Ω, ∂q̃

∂n = ζ2 on Γ+
s ,

∂q̃

∂n = −ζ2 on Γ−s ,
∂q̃

∂n = 0 on Γd \
(
Γ−s ∪ Γ+

s

)
, q̃ = 0 on Γn,

(5.9.58)

respectively. Let us now observe that

I3 = −
∫

Ω
∇q q̃ −

∫
Γ

∂q

∂n q̃

=
∫

Ω
(A3η1)(Nsζ2)

=
〈
η1,

1
α

(∆s)−1A∗3Nsζ2
〉
H2
{0}(0,`s),(H

2
{0}(0,`s))

′ .

(5.9.59)
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• I4

The calculations are similar to those performed to compute I1 in (5.9.54). Thus,

I4 = 0. (5.9.60)

• I5

We first notice that q = Nsη2 and q̃ = Nsζ2 are the solutions to
∆q = 0 in Ω, ∂q

∂n = η2 on Γ+
s ,

∂q

∂n = −η2 on Γ−s ,
∂q

∂n = 0 on Γd \
(
Γ−s ∪ Γ+

s

)
, q = 0 on Γn.

(5.9.61)

and 
∆q̃ = 0 in Ω, ∂q̃

∂n = ζ2 on Γ+
s ,

∂q̃

∂n = −ζ2 on Γ−s ,
∂q̃

∂n = 0 on Γd \
(
Γ−s ∪ Γ+

s

)
, q̃ = 0 on Γn,

(5.9.62)

respectively. Then,

I5 =
∫

Ω
∇q · ∇q̃ = −

∫
Ω

∆q q̃ +
∫

Γ

∂q

∂n q̃ =
〈
η2, γ

+,−
s Nsζ2

〉
L2(0,`s)

. (5.9.63)

Thus, using (5.9.54), (5.9.56), (5.9.59), (5.9.60) and (5.9.63) in the identity (5.9.52), we get〈
ṽ, Φ̃

〉
L2(Ω)

=
〈
Pv, PΦ

〉
L2(Ω)

+
〈
η1,

1
α

(∆s)−1A∗3Nsζ2
〉
H2
{0}(0,`s),(H

2
{0}(0,`s))

′

+
〈
η2, γ

+,−
s Nsζ2

〉
L2(0,`s)

.

(5.9.64)

Hence, after adding 〈
η1, ζ1

〉
H2
{0}(0,`s),(H

2
{0}(0,`s))

′ +
〈
η2, ζ2

〉
L2(0,`s)

to both sides of identity (5.9.64), we obtain〈
ṽ, Φ̃

〉
L2(Ω)

=
〈
Pv, PΦ

〉
L2(Ω)

+
〈
η1, ζ1

1
α

(∆s)−1A∗3Nsζ2
〉
H2
{0}(0,`s),(H

2
{0}(0,`s))

′

+
〈
η2, ζ2 + γ+,−

s Nsζ2
〉
L2(0,`s)

.

(5.9.65)

Finally, using the expression of M∗ (see Proposition 5.4.1) we conclude the proof of Proposition
5.7.1.
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Let us notice that for all j = 1, . . . , Nu, we have

J1︷ ︸︸ ︷
d

dt

〈Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z,Z′

=

J2︷ ︸︸ ︷〈
ΠuA

Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z,Z′

+ ω

〈
Πu

Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z,Z′︸ ︷︷ ︸

J3

+
〈

ΠuBf ,M∗

PΦj

ζ1,j
ζ2,j

〉
Z,Z′︸ ︷︷ ︸

J4

.

(5.9.66)

Let us analyze each of the terms appearing in the previous identity.

• J1:

J1 = d

dt

〈Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z,Z′

= d

dt

〈
Nu∑
i=1

〈Pv
η1
η2

 ,M∗
PΦi

ζ1,i
ζ2,i

〉
Z,Z′

Pvi
η1,i
η2,i

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z,Z′

= d

dt

〈
Nu∑
i=1

〈Pv
η1
η2

 ,M∗
PΦi

ζ1,i
ζ2,i

〉
Z0

Pvi
η1,i
η2,i

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0

= d

dt

Nu∑
i=1

〈Pv
η1
η2

 ,M∗
PΦi

ζ1,i
ζ2,i

〉
Z0

〈Pvi
η1,i
η2,i

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0

= d

dt

Nu∑
i=1

〈Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0

δi,j .

(5.9.67)

• J2:

J2 =
〈

ΠuA

Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z,Z′

=
〈
AΠu

Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z,Z′

=
〈
A

Nu∑
i=1

〈Pv
η1
η2

 ,M∗
PΦi

ζ1,i
ζ2,i

〉
Z,Z′

Pvi
η1,i
η2,i


 ,M∗

PΦj

ζ1,j
ζ2,j

〉
Z,Z′

=
Nu∑
i=1

〈Pv
η1
η2

 ,M∗
PΦi

ζ1,i
ζ2,i

〉
Z0

〈
A

Pvi
η1,i
η2,i

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z,Z′

.

(5.9.68)
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• J3:

J3 = ω

〈
Πu

Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z,Z′

= ω

〈
Πu

Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0

= ω

〈
Nu∑
i=1

〈Pv
η1
η2

 ,M∗
PΦi

ζ1,i
ζ2,i

〉
Z0

Pvi
η1,i
η2,i

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0

=
Nu∑
i=1

〈Pv
η1
η2

 ,M∗
PΦi

ζ1,i
ζ2,i

〉
Z0

〈Pvi
η1,i
η2,i

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0

=
Nu∑
i=1

〈Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0

δi,j .

(5.9.69)

• J4:

J4 =
〈

ΠuBf ,M∗

PΦj

ζ1,j
ζ2,j

〉
Z,Z′

=
〈

ΠuBf ,M∗

PΦj

ζ1,j
ζ2,j

〉
Z0

=
〈

Πu

 Nc∑
k=1

fk

 0
0

(I + γ+,−
s Ns)−1wk


 ,M∗

PΦj

ζ1,j
ζ2,j

〉
Z0

=
Nc∑
k=1

〈
fk

Nu∑
i=1

〈 0
0

(I + γ+,−
s Ns)−1wk

 ,M∗
PΦi

ζ1,i
ζ2,i

〉
Z0

Pvi
η1,i
η2,i

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0

=
Nc∑
k=1

fk

Nu∑
i=1

wkζ2,i

〈Pvi
η1,i
η2,i

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0

=
Nc∑
k=1

fk

Nu∑
i=1

wkζ2,iδi,j .

(5.9.70)

Then, by setting

ζu =

〈
Pv
η1
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0


1≤j≤Nu

,

we observe from identities (5.9.67), (5.9.68), (5.9.69) and (5.9.70) that system (5.9.66) can be
rewritten as follows:

ζ ′u = (Λu + ωI)ζu + Buf , ζu(0) = ζ0
u, (5.9.71)
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where

ζ0
u =

〈
Pv0

0
η2

 ,M∗
PΦj

ζ1,j
ζ2,j

〉
Z0


1≤j≤Nu

.

The second equation in (5.7.7) is obtained by applying the operator Πs to both sides of the first
equation in (5.7.5). This completes the proof.
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Numerical simulations of the stabilization
problem of the fluid-structure interaction
system

Abstract of the current chapter

In this chapter, we study the numerical stabilization of the fluid-structure interaction system.
More precisely, we study the stabilization of the system corresponding to the semi-discretization
in space of the fluid-structure interaction system. Numerical simulations for different parameter
values are presented.
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6.1 Introduction

Thoughout this chapter, the notation used to describe the reference domain Ω and the phys-
ical domain Ωη(t), as well as their boundaries, will be the same as that introduced in Subsection
3.1.1 of Chapter 3.

Let us first recall the stabilization problem. Let (us, ps) be a solution of the stationary Navier-
Stokes equations 

(us · ∇)us − div σ(us, ps) = 0, in Ω,
div us = 0 in Ω,
us = gis, on Γi, us = 0 on Γ \ Γi,
σ(us, ps)n = 0 on Γn.

(6.1.1)

Let us consider the system

∂tu + (u · ∇)u− div σ(u, p) = 0 in Q∞η ,
div u = 0 in Q∞η ,
u = gi on Σ∞i , u = 0 on Σ∞w , u = 0 on Σ∞r ,
u = ηt~e2 on Σ∞η , σ(u, p)n = 0 on Σ∞n ,
u(0) = u0 in Ω,
∂2
t η + α∆2

sη + γBηt = H(u, p, η) + fs + f in (0,∞)× (0, `s),
η = 0 and ∂x1η = 0 on (0,∞)× {0},
∂2
x1η = 0 and ∂3

x1η = 0 on (0,∞)× {`s},
η(0) = 0 and ∂tη(0) = η0

2 in (0, `s),

(6.1.2)

where u and p respresent the fluid velocity and pressure. The Cauchy stress tensor σ(u, p) is
given by

σ(u, p) = 2νε(u)− pI, ε(u) = 1
2(∇u + (∇u)>),

with ν > 0 denoting the fluid viscosity. Here, the inflow boundary condition gi = gis + βgip,
where gis is assumed to be time independent, gip is a time dependent perturbation, while β
denotes the amplitude perturbation. The parameters α > 0 and γ > 0 are constants relative to
the structure. The damping operator B is given by

B = ∆2
s = ∂4

x1 , D(B) = H4
{0,`s}(0, `s).

The expression of the force exerted by the fluid on Γ+
η(t) ∪ Γ−η(t) is given by

H(u, p, η) = −
(
σ+(u, p)n+

η(t) + σ−(u, p)n−η(t)

)√
1 + (∂x1η)2 · ~e2, (6.1.3)

where
σ±(u, p) = σ(u(t, x, η(t, x)± e), p(t, x, η(t, x)± e)),

and n+
η(t) (resp. n+

η(t)) is the unit normal to Γ+
η(t) (resp. Γ−η(t)) exterior to Ωη(t).

The function fs is time-independent and is chosen in such a way that the triplet (u, η, ηt) =
(us, 0, 0) constitutes a stationary solution of system (6.1.2). Thus,

fs = σ(us, ps)n+ · ~e2 + σ(us, ps)n− · ~e2, (6.1.4)
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where n+ (resp. n−) represents the outward unit normal to Γ+
s (resp. Γ−s ).

The control f take the form

f =
Nc∑
j=1

fj(t)wj(z1), (6.1.5)

where the family (wj)1≤j≤Nc is defined in (5.7.3).

The objective is to find a control f = (f1, . . . , fNc) given in a feedback form, able to stabi-
lize, with any decay rate ω ≥ 0, the system (6.1.2) around the stationary solution (us, 0, 0),
provided gip, u0 − us and η0

2 are small enough in appropriate funcional spaces.

The starting point of the analysis lies in the ideas presented in [FNR], where the authors study
the numerical stabilization problem of a fluid-structure interaction model. In that work, the
strategy used is similar to the one presented in Chapter 5: we first seek a feedback law that
stabilizes the semi-discretized system in space, and then prove that this feedback law also locally
stabilizes the nonlinear system, under certain smallness conditions on the initial and boundary
data. Two important elements underlie the analysis carried out in [FNR]:

(1) The first important aspect is that, to rewrite the fluid-structure system in the reference
domain, the authors employ an explicit geometric transformation, similar to the one de-
fined in [FNR19] or the one used Chapter 3. Then, the linearization of the resulting
system is performed "manually." Once this step is completed, the calculation of the feed-
back law aimed at stabilizing the linearized system is performed in the reference domain
Ω.

(2) The second important point is that, once the feedback law for the linearized system is
computed in the fixed reference domain Ω, it is injected into the nonlinear system, which
is then solved in the reference domain.

In summary, the numerical stabilization analysis carried out in the cited paper [FNR] was con-
ducted entirely within a fixed reference framework Ω.

Let us now compare the strategy adopted in [FNR] with the one employed in this chapter.
(1b) To rewrite the fluid-structure interaction system in the reference domain, we do not

employ an explicit geometric transformation as in [FNR]. Instead, we consider a trans-
formation defined in terms of the harmonic extension over Ω of the trace of the structure’s
displacement. Then, once the nonlinear system has been reformulated in its weak form
on the fixed reference domain Ω, the linearization is carried out using a routine provided
by GetFEM++ library. Next, and similarly to the approach in [FNR], the feedback law
that stabilizes the system is computed on the fixed reference domain Ω.

(2b) Analogously to the approach adopted in [FNR], the feedback law computed on the fixed
reference domain Ω is applied to the nonlinear system, which, unlike in [FNR], is solved
on the moving physical domain Ωη(t) by using the semi-implicit algorithm 3.

In summary, the two main differences between the strategies (1b) − (2b) used in this chapter
compared to those implemented in [FNR] (1)− (2) are the following. Firstly, the tranformations
employed to rewrite the system in the reference configuration are not the same. Secondly, the
approach used to solve the direct problem differs in both cases. Regarding the previous remark,
it is important to highlight that solving the direct problem in the actual fluid domain is an
approach that has also been employed, for instance, in [Del18].

Let us now recall the variational formulation of system (6.1.2) introduced in Section 4.2 of
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Chapter 4. By setting η1 := η and η2 := η1,t, system (6.1.2) takes the form

∂tu + (u · ∇)u− div σ(u, p) = 0 in Q∞η1 ,

div u = 0 in Q∞η1 ,

u = gi on Σ∞i , u = 0 on Σ∞r ∪ Σ∞w ,
u = η2~e2 on Σ∞η1 , σ(u, p)n = 0 on Σ∞n ,
u(0) = u0 in Ω,
η2 = η1,t in (0,∞)× (0, `s),
∂tη2 + α∆2

sη1 + γBη2 = H(u, p, η1) + fs + f in (0,∞)× (0, `s),
η1 = 0 and ∂x1η1 = 0 on (0, T )× {0},
∂2
x1η1 = 0 and ∂3

x1η1 = 0 on (0,∞)× {`s},
η1(0) = 0 and ∂2η(0) = η0

2 in (0, `s).

(6.1.6)

We set Γ0 = Γr ∪Γw. In order to take into account the Dirichlet boundary conditions on Γd, we
introduce the Lagrange multiplier λu = (λi,λ0,λs,top,λs,bot,λs,lat)>, where:

λi is the multiplier associated to the boundary data gi prescribed on Γi,
λ0 is the multiplier associated to the null boundary data prescribed on Γr ∪ Γw,

λs,top is the multiplier associated to the kinematic condition imposed on Γ+
η1(t),

λs,bot is the multiplier associated to the kinematic condition imposed on Γ−η1(t),

λs,lat is the multiplier associated to the kinematic condition imposed on Γ`η1(t).

(6.1.7)

Then, the variational formulation of system (6.1.6) reads as follows:

Find η1, η2 ∈ L2
loc(0,∞;H2

{0}(0, `s)), u ∈ H1
loc(0,∞; H−

1
2 +α(Ωη1(t))) ∩ L2

loc(0,∞; H1(Ωη1(t))),
p ∈ L2

loc(0,∞;L2(Ωη1(t))) and λu ∈ L2
loc(0,∞; H−

1
2 (Γd)) such that

∫
Ωη1(t)

∂tu · φ = af (u,φ) + b(φ, p) + c(u,u,φ) +
∫

Γi
λi · φ+

∫
Γ0
λ0 · φ

+
∫

Γ+
η1(t)

λs,top · φ+
∫

Γ−
η1(t)

λs,bot · φ,+
∫

Γ`
η1(t)

λs,lat · φ, ∀φ ∈ H1(Ωη1(t)),

b(u, ψ) = 0, ∀ψ ∈ L2(Ωη1(t)),∫
Γi

u · τ =
∫

Γi
gi · τ , ∀τ ∈ H−

1
2 (Γi),

∫
Γ0

u · τ = 0, ∀τ ∈ H−
1
2 (Γ0),∫

Γ+
η1(t)

u · τ =
∫

Γ+
η1(t)

η2~e2 · τ , ∀τ ∈ H−
1
2 (Γ+

η1(t)),∫
Γ−
η1(t)

u · τ =
∫

Γ−
η1(t)

η2~e2 · τ , ∀τ ∈ H−
1
2 (Γ−η1(t)),∫

Γ`
η1(t)

u · τ =
∫

Γ`
η1(t)

η2~e2 · τ , ∀τ ∈ H−
1
2 (Γ`η1(t)),∫ `s

0
(∂tη1)ζ =

∫ `s

0
η2ζ, ∀ζ ∈ H2

{0}(0, `s),∫ `s

0
(∂tη2)ζ = a1

s(η1, ζ) + a2
s(η2, ζ)−

∫
Γ+
η1(t)

λs,top · ~e2ζ −
∫

Γ−
η1(t)

λs,bot · ~e2ζ,

+
Nc∑
j=1

∫ `s

0
wj(z1)fj(t)ζ(z1) +

∫ `s

0
fsζ, ∀ζ ∈ H2

{0}(0, `s),

(6.1.8)
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where the bilinear forms af , b, a1
s and a2

s are given by

af (v,φ) = −2ν
∫

Ωη1(t)

ε(v) : ε(φ), b(φ, q) =
∫

Ωη1(t)

(divφ)q,

a1
s(η1, ζ) = −α

∫ `s

0
∆η1 ·∆ζ, a2

s(η2, ζ) = −γ
∫ `s

0
∆η2 ·∆ζ,

(6.1.9)

while the trilinear form c is defined by

c(u,v,φ) = −
∫

Ωη1(t)

(u · ∇)v · φ. (6.1.10)

System (6.1.8) has to be completed with initial conditions.

The remainder of this chapter is organized as follows. In Section 6.2, we present the main
ideas of the stabilization of the semi-discrete system in space associated to (6.1.8). Next, in
Section 6.3, we recall the time-marching process described in Section 4.3 of Chapter 4. Then,
in Section 6.4, we present numerical experiments.

6.2 Stabilization of the semi-discrete system

The goal of this section is to present the main ideas about the stabilization of the semi-
discrete system obtained by approximating by a finite element the system (6.1.8) rewritten in
a reference configuration. In this section we consider the system without perturbation at the
inflow and fs = 0.
We first introduce the mapping A(t, ·) : Ω −→ Ωη1(t) defined by

A(t, ·) = I + d(t, ·), (6.2.1)

where the displacement d(t, ·) is solution of the elliptic equation

∆d = 0 in Ω, d = η1~e2 on Γs, d = 0 on Γ \ Γs. (6.2.2)

Let us notice that, since η1,t = η2 on Γs, the auxiliar variable w(t, ·) := ∂tA(t, ·) satisfies the
elliptic equation

∆w = 0 in Ω, w = η2~e2 on Γs, w = 0 on Γ \ Γs. (6.2.3)

In order to take into account the Dirichlet boundary conditions on Γ in systems (6.2.2) and
(6.2.3), we introduce the Lagrange multipliers λd = (λds ,λdf )> and λw = (λws ,λwf )>, where:

λds is the multiplier associated to the boundary data prescribed on Γs,
λdf is the multiplier associated to the null boundary data prescribed on Γ \ Γs,
λws is the multiplier associated to the boundary data prescribed on Γs,
λwf is the multiplier associated to the null boundary data prescribed on Γ \ Γs.

(6.2.4)

Using the transformation A defined in (6.2.1), we obtain that the linearization of system (6.1.8)
around the stationary solution (u, p,λ, η1, η2,d,λd,w,λw) = (us, ps,λs, 0, 0,0,0,0,0), where
the triple (us, ps,λs) is a stationary solution of system (6.1.1), with λs representing the Lagrange
multiplier associated with the Dirichlet boundary condition, reads as follows:
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Find v ∈ H1
loc(0,∞; H−

1
2 +α(Ω)) ∩ L2

loc(0,∞; H1(Ω)), p ∈ L2
loc(0,∞;L2(Ω)),

η1, η2 ∈ L2
loc(0,∞;H2

{0}(0, `s)), λ
u ∈ L2

loc(0,∞; H−
1
2 (Γd)),

d,w ∈ L2
loc(0;∞; H1(Ω)), λd,λw ∈ L2

loc(0,∞; H−
1
2 (Γ)) such that

d

dt

∫
Ω

v · φ = ãf (v,φ) + b(φ, p) +
∫

Γi
λi · φ+

∫
Γ0
λ0 · φ+

∫
Γ+
λs,top · φ+

∫
Γ−
λs,bot · φ

+
∫

Γ`
λs,lat · φ+

∫
Ω
A1w · φ+

∫
Ω
A2d · φ, ∀φ ∈ H1(Ω),

b(v, ψ) =
∫

Ω
A3dψ, ∀ψ ∈ L2(Ω),∫

Γi
v · τ = 0, ∀τ ∈ H−

1
2 (Γi),∫

Γ0
v · τ = 0, ∀τ ∈ H−

1
2 (Γ0),∫

Γ+
v · τ =

∫
Γ+
η2~e2 · τ , ∀τ ∈ H−

1
2 (Γ+),∫

Γ−
v · τ =

∫
Γ−
η2~e2 · τ , ∀τ ∈ H−

1
2 (Γ−),∫

Γ`
v · τ =

∫
Γ`
η2~e2 · τ , ∀τ ∈ H−

1
2 (Γ`),

d

dt

∫ `s

0
η1ζ =

∫ `s

0
η2ζ, ∀ζ ∈ H2

{0}(0, `s),
d

dt

∫ `s

0
η2ζ = a1

s(η1, ζ) + a2
s(η2, ζ)−

∫
Γ+
λs,top · ~e2ζ −

∫
Γ−
λs,bot · ~e2ζ +

∫ `s

0
A4dζ

+
Nc∑
j=1

∫ `s

0
wj(z1)fj(t)ζ(z1), ∀ζ ∈ H2

{0}(0, `s),∫
Ω
∇d : ∇ϕ−

∫
Γs
λds ·ϕ−

∫
Γ\Γs

λdf ·ϕ = 0, for all ϕ ∈ H1(Ω),∫
Γs

d · τ s −
∫

Γs
η1~e2 · τ s = 0, for all τ s ∈ H−

1
2 (Γs),∫

Γ\Γs
d · τ f = 0, for all τ f ∈ H−

1
2 (Γ \ Γs),∫

Ω
∇w : ∇ϕ−

∫
Γs
λws ·ϕ−

∫
Γ\Γs

λwf ·ϕ = 0, for all ϕ ∈ H1(Ω),∫
Γs

w · τ s −
∫

Γs
η2~e2 · τ s = 0, for all τ s ∈ H−

1
2 (Γs),∫

Γ\Γs
w · τ f = 0, for all τ f ∈ H−

1
2 (Γ \ Γs),

(6.2.5)
where

ãf (v,φ) = −2ν
∫

Ω
ε(v) : ε(φ)−

∫
Ω

((us · ∇)v + (v · ∇)us) · φ,

while the bilinear forms b, a1
s and a2

s are defined in (6.1.9). System (6.2.5) has to be com-
pleted with initial conditions. The linear operators A1, A2, A3 and A4 are determined (in their
discretized form) using a GetFEM++ library [RP] routine.

6.2.1 Semi-discrete approximation

We introduce the finite-dimensional spaces Vh ⊂ H1(Ω) for the velocity, Ph ⊂ L2(Ω) for
the pressure, Dv

h ⊂ L2(Γd) and Ddw
h ⊂ L2(Γ) for the multipliers associated to v and (d,w),

respectively, and Sh ⊂ H2
{0}(0, `s) for the structure’s displacement and its velocity. We denote

by (φi)1≤i≤Nv a basis of Vh, (qi)1≤i≤Np a basis of Ph, (µvi )1≤i≤Nv
λ
a basis of Dv

h, (µdwi )1≤i≤Ndw
λ

a basis of Ddw
h and (ζi)1≤i≤Ns a basis of Sh. We then set
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v =
Nv∑
i=1

viφi, u0 =
Nv∑
i=1

u0
iφi, p =

Np∑
i=1

piqi, η1 =
Ns∑
i=1

ηi1ζi, η2 =
Ns∑
i=1

ηi2ζi,

η0
1 =

Ns∑
i=1

ηi1,0ζi, η
0
2 =

Ns∑
i=1

η2,0ζi, λ
v
f =

Nv
λ∑

i=1
λvf,iµ

v
i , λ

v
s =

Nv
λ∑

i=1
λvs,iµ

v
i ,

d =
Nv∑
i=1

diφi, λ
d
f =

Ndw
λ∑
i=1

λdf,iµ
dw
i , λds =

Ndw
λ∑
i=1

λds,iµ
dw
i ,

w =
Nv∑
i=1

wiφi, λ
w
f =

Ndw
λ∑
i=1

λwf,iµ
dw
i , λws =

Ndw
λ∑
i=1

λws,iµ
dw
i .

We also introduce the corresponding coordinate vectors,

V = (v1, · · · , vNv)>, V0 = (u0
1, · · · , u0

Nv)
>, P = (p1, · · · , pNp)>, N1 = (η1

1, · · · , η
Ns
1 )>,

N2 = (η1
2, · · · , η

Ns
2 )>, N0

1 = (η1
1,0, · · · , η

Ns
1,0)>, N0

2 = (η1
2,0, · · · , η

Ns
2,0)>,

Λv
f = (λvf,1, · · · , λvf,Nv

λ
)>, Λv

s = (λvs,1, · · · , λvs,Nv
λ
)>, Λd

f = (λdf,1, · · · , λdf,Ndw
λ

)>,

Λd
s = (λds,1, · · · , λds,Ndw

λ
)>, Λw

f = (λwf,1, · · · , λwf,Ndw
λ

)>, Λw
s = (λws,1, · · · , λws,Ndw

λ
)>.

For all 1 ≤ i, j ≤ Nv, 1 ≤ k ≤ Np, 1 ≤ `,m ≤ Nv
λ , 1 ≤ r, t ≤ Ns, 1 ≤ o ≤ Ndw

λ , we introduce the
matrices

(Avv)ij = ãf (φi,φj), (Avp)ik = b(φi, pk), (Avλv
f
)i` =

∫
Γd\Γs

µv` · φi, (Avλvs )i` =
∫

Γs
µv` · φi,

(Mvv)ij =
∫

Ω
φj · φi, (Ãη2λvs )ro = −

∫
Γ+
s ∪Γ−s

µvo · ~e2ζr, (Aλvsη2)or = −
∫

Γs
µvo · ~e2ζr,

(Avw)ij =
∫

Ω
A1φj · φi, (Avd)ij =

∫
Ω
A2φj · φi, (Adp)ik = −

∫
Ω
A3φi pk,

(Mλvλv)m` =
∫

Γd
µv` · µvm, (Aη1η2)rt = (Mηη)rt =

∫ `s

0
ζr · ζt, (Aη2η1)rt = −α

∫ `s

0
∆ζr ·∆ζt,

(Aη2η2)rt = −γ
∫ `s

0
∆ζr ·∆ζt, (Aη2d)ir =

∫ `s

0
A4φiζr,

(Add)ij = (Aww)ij =
∫

Ω
∇φi : ∇φj , (Adλd

f
)io = (Awλw

f
)io = −

∫
Γ\Γs

φi · µdwo ,

(Adλds )io = (Awλws )io = −
∫

Γs
φi · µdwo , (Aλdsη1)or = (Aλws η2)or =

∫
Γs
µdwo · ~e2ζr.

We also set

Nz = Nv + 2Ns, Nθ = Np +Nλv , Nw = Nd = Nv +Nλdw and N = Nz +Nθ +Nw +Nd,

and define the vectors

Z = (V N1 N2)>, Λv = (Λv
f Λv

s)>, Θ = (P Λv)>,
W = (w1, · · · , wNv)>, Λw = (Λw

f Λw
s )>, W = (W Λw)>,

D = (d1, · · · , dNv)>, Λd = (Λd
f Λd

s)>, D = (D Λd)>, F = (f1, · · · , fNc)>.
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We now introduce the mass matrix M ∈ L(RN ,RN ), the stiffness matrix A ∈ L(RN ,RN ), and
the control operator B ∈ L(RNc ,RN ):

M =


Mzz 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , A =


Azz Azθ Azw Azd
Aθz 0 0 Aθd
Awz 0 Aww 0
Adz 0 0 Add

 , and B =



0
0

MηηL
0
0
0


,

where

Mzz =

Mvv 0 0
0 Mηη 0
0 0 Mηη

 , Azz =

Avv 0 0
0 0 Aη1η2

0 Aη2η1 Aη2η2

 Azθ =

Avp Avλv
f

Avλvs
0 0 0
0 0 Ãη2λvs

 ,

Azw =

Avw 0 0
0 0 0
0 0 0

 , Azd =

Avd 0 0
0 0 0

Aη2d 0 0

 , Aθz =

 A>vp 0 0
A>vλv

f
0 0

A>vλvs 0 Aλvsη2

 ,

Aθd =

Apd 0 0
0 0 0
0 0 0

 , Awz =

0 0 0
0 0 0
0 0 Aλws η2

 , Aww =


Aww Awλw

f
Awλws

A>wλw
f

0 0
A>wλws 0 0

 ,

Adz =

0 0 0
0 0 0
0 Aλdsη1 0

 , Add =


Add Awλd

f
Adλds

A>
dλd
f

0 0
A>
dλds

0 0

 ,
L = (L1 · · ·LNc), Lj = (w1

j , · · · , w
Ns
j )>, j = 1, . . . , Nc.

Thus, the spatial semi-discretization of system (6.2.5) can be written as

M
d

dt


Z
Θ
W
D

 = A


Z
Θ
W
D

+BF. (6.2.6)

6.2.2 Eliminating the fluid domain variables W and D

In order to eliminate the fluid domain variables W and D, we follow the same idea used in
[FAC].

From the third and fourth equation in (6.2.6) we deduce that

W = −A−1
wwAwzZ and D = −A−1

dd
AdzZ. (6.2.7)

We recall tha the matrices Aww and Add are given by

Aww =


Aww Awλw

f
Awλws

A>wλw
f

0 0
A>wλws 0 0

 and Add =


Add Awλd

f
Adλds

A>
dλd
f

0 0
A>
dλds

0 0

 .
The invertibility of these matrices holds provided that the inf-sup condition is satisfied by the
finite element chosen to approximate the variables (w,λw) (respectively, (d,λd)). Using the
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expressions of W and D given in (6.2.7) in (6.2.6), we obtain the following reduced system:

M̃
d

dt

(
Z
Θ

)
= Ã

(
Z
Θ

)
+ B̃F, (6.2.8)

where the matrices M̃, Ã ∈ L(R(Nz+Nθ),R(Nz+Nθ)) and the operator B̃ ∈ L(RNc ,RNz+Nθ) are
given by

M̃ =
(
Mzz 0

0 0

)
, Ã =

(
Ãzz Azθ
Ãθz 0

)
, and B̃ =


0
0

MηηL
0

 , (6.2.9)

with
Ãzz = Azz −AzwA−1

wwAwz −AzdA
−1
dd
Adz and Ãθz = Aθz −AθdA

−1
dd
Adz.

We remark that Subsections 6.2.3, 6.2.4 and 6.2.5 collect some of the results presented in [Del18,
Chapter 3] and [Ndi16].

6.2.3 Finite dimensional controlled system

The aim of this subsection is to reformulate system (6.2.8) solely in terms of the variable
Z by eliminating the multiplier Θ, and to express Θ as a function of Z and the given data.
In order to do that, we will introduce the projection Π onto Ker(Ãθz) parallel to Im(M−1

zz Azθ).
The characterization of such a projector, as presented in [Del18, Lemma 3.3.2, p.110], is given
in the following proposition.
Proposition 6.2.1. The projector Π of RNz onto Ker(Ãθz) parallel to Im(M−1

zz Azθ) is defined
by

Π = I −M−1
zz Azθ

(
ÃθzM

−1
zz Azθ

)−1
Ãθz.

The projector Π> of RNz onto Ker(Ã>zθM−1
zz ) parallel to Im(Ã>θz) is defined by

Π> = I − Ã>θz
(
A>zθM

−1
zz Ã

>
θz

)−1
A>zθM

−1
zz .

Then, using this proposition, we deduce the following result:
Proposition 6.2.2. A pair (Z,Θ) is solution of (6.2.8) if and only if (Z,Θ) is solution to the
system 

d

dt
ΠZ = AΠZ + BF,

(I −Π)Z = 0,
Θ = −(ÃθzM−1

zz Azθ)−1ÃθzM
−1
zz ÃzzZ− (ÃθzM−1

zz Azθ)−1ÃθzM
−1
zz B̃F,

(6.2.10)

where A = ΠM−1
zz Ãzz and B = ΠM−1

zz B̃.

6.2.4 Spectral decomposition of the operators

In this subsection, we are interested in finding a decomposition of Ker(Ãθz) into a sum of
generalized eigenspaces of the operator A. We consider the eigenvalue problem

µ ∈ C∗, Z ∈ Ker(Ãθz), Z 6= 0, AZ = µZ. (6.2.11)

We define the operator A# = Π̃M−1
zz Ã

>
zz, where Π̃ = I −M−1

zz Ã
>
θz(A>zθM−1

zz Ã
>
θz)−1A>zθ. We now

consider the eigenvalue problem for A#

µ ∈ C∗, Φ ∈ Ker(A>zθ), Φ 6= 0, A#Φ = µΦ. (6.2.12)
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We recall that a vector Zk ∈ CNz \{0} is a generalized eigenvector for problem (6.2.11) associated
with a solution (µ,Z) of (6.2.11) when

Zk ∈ Ker(Ãθz), Zk 6= 0, (A− µ)kZk = Z for some k ∈ N. (6.2.13)

Similarly, we have that the vector Φk ∈ CNz \ {0} is a generalized eigenvector for problem
(6.2.12) associated with a solution (µ,Φ) of (6.2.12) when

Φk ∈ Ker(A>zθ), Φk 6= 0, (A# − µ)kΦk = Φ for some k ∈ N. (6.2.14)

In the following proposition we establish the equivalence between the eigenvalue problems asso-
ciated to A (see problem (6.2.11)) and the one associated to the pair (M̃, Ã) (to be defined in
the statement of the proposition, see problem (6.2.15)).

Proposition 6.2.3. A pair (µ,Z) ∈ C∗×CNz is a solution to the eigenvalue problem (6.2.11) if
and only if (µ,Z,Θz), with Θz = −(ÃθzM−1

zz Azθ)−1ÃθzM
−1
zz AzzZ, is a solution of the eigenvalue

problem

µ ∈ C∗, Z ∈ CNz \ {0}, Θz ∈ CNθ , Ã
(

Z
Θ

)
= µM̃

(
Z
Θ

)
, (6.2.15)

where the matrices Ã and M̃ are defined in (6.2.9). In a similar way, the pair (µ,Φ) ∈ C∗ ×
CNz is a solution to the eigenvalue problem (6.2.12) if and only if (µ,Φ,ΘΦ), with ΘΦ =
−(A>zθM−1

zz Ã
>
θz)−1A>zθM

−1
zz A

>
zzΦ, is a solution of the eigenvalue problem

µ ∈ C∗, Φ ∈ CNz \ {0}, ΘΦ ∈ CNθ , Ã>
(

Φ
ΘΦ

)
= µM̃

(
Φ

ΘΦ

)
. (6.2.16)

The proof of the preceding result is provided in [Del18, Lemmas 3.41 and 3.42, p.118-119].
A similar statement can be established for the generalized eigenvalue problems (see [Del18, The-
orem 3.4.3, p.119]).

In what follows, we will denote by Nπ the dimension of the subspace Ker(Ãθz).

Once the equivalence of the eigenvalue problems is established, an important point in the anal-
ysis is the existence of appropriate bases for Ker(Ãθz) and Ker(A>zθ) that satisfy a biorthogo-
nality condition. These bases will then be used to characterize suitable projector operators (see
(6.2.19)). The existence of such bases is established in the following two theorems, whose proofs
can be found in [Del18, Theorems 3.3.12, 3.3.14].

Theorem 6.2.1. There exist two matrices Ψ ∈ L(CNz ,CNπ) and Ψ̃ ∈ L(CNz ,CNπ) satisfying
the following assertions:

(i) The columns of Ψ are eigenvectors and generalized eigenvectors of A and form a basis of
Ker(Ãθz).

(ii) The columns of Ψ̃ are eigenvectors or generalized eigenvectors of A# and form a basis of
Ker(A>zθ).

(iii) The following decompositions hold:

ΞC = Ψ̃>MzzAΨ ∈ L(CNπ ,CNπ) and Ξ>C = Ψ>MzzA#Ψ̃ ∈ L(CNπ ,CNπ),

where ΞC is a decomposition of A into complex Jordan blocks.
(iv) The following biorthogonality condition holds:

Ψ>MzzΨ̃ = INπ . (6.2.17)
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Theorem 6.2.2. There exist two matrices E ∈ L(RNz ,RNπ) and Ẽ ∈ L(RNz ,RNπ) satisfying
the following assertions:

(i) The columns of E form a basis of Ker(Ãθz), while the columns of Ẽ form a basis of
Ker(A>zθ).

(ii) The following decomposition holds:

ΞR = Ẽ>MzzAE ∈ L(RNπ ,RNπ) and Ξ>R = E>MzzA#Ẽ ∈ L(RNπ ,RNπ),

where ΞR is a real Jordan matrix.
(iv) The following biorthogonality condition holds:

E>MzzẼ = INπ . (6.2.18)

6.2.5 The projected dynamical system and computation of the feedback

Let (µj)1≤j≤Nπ be the eigenvalues of the matrix A. We denote by GR(µj) the real generalized
eigenspace of A and by G∗R(µj) the real generalized eigenspace of A# associated to the eigenvalue
µj . Given ω > 0, we define the subset Ju of N∗ by Ju := {j ∈ N∗ | <λj ≥ −ω}. We then introduce
the spaces

Zu =
⊕
j∈Ju

GR(µj) and Z∗u =
⊕
j∈Ju

G∗R(µj).

We denote by Ek (respectively, Ẽk) the k-th column of the matrix E (respectively, Ẽ) presented
in Theorem 6.2.2. We assume that

Zu = Vect((Ei)1≤i≤Nu) and Z∗u = Vect((Ẽi)1≤i≤Nu),

where Nu = dim(Zu). We also define

Zs = Vect((Ei)Nu+1≤i≤Nπ) and Z∗s = Vect((Ẽi)Nu+1≤i≤Nπ),

and Ns = dim(Zs). Then, we have

Ker(Ãθz) = Zu
⊕

Zs and Ker(A>zθ) = Z∗u
⊕

Z∗s.

We define the following matrices:
• Eu ∈ L(RNz ,RNu) the matrix whose columns are (Ei)1≤i≤Nu ,
• Es ∈ L(RNz ,RNs) the matrix whose columns are (Ei)Nu+1≤i≤Nπ ,
• Ẽu ∈ L(RNz ,RNu) the matrix whose columns are (Ẽi)1≤i≤Nu ,
• Ẽs ∈ L(RNz ,RNs) the matrix whose columns are (Ẽi)Nu+1≤i≤Nπ ,
• Ξu ∈ L(RNu ,RNu) and Ξs ∈ L(RNs ,RNs) are the matrices such that

ΞR =
(

Ξu 0
0 Ξs

)
.

We now introduce the projector Πu ∈ L(RNz ,Zu) (respectively, Πs ∈ L(RNz ,Zs)) of RNz onto
Zu (respectively, Zs) parallel to Zs ⊕ Ker(Π) (respectively, Zu ⊕ Ker(Π) ), which according to
[Del18, Lemma 3.3.16, p.116] are characterized by

Πu = EuẼ
>
uMzz and Πs = EsẼ

>
s Mzz. (6.2.19)
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Proposition 6.2.4. If Z is solution of system
d

dt
Z(t) = AZ(t) + BF(t), t > 0,

Z(0) = Z0,
(6.2.20)

then, ζu = ΠuZ and ζs = ΠsZ obey the systems
d

dt
ζu(t) = Auζu(t) + BuF(t), t > 0,

ζu(0) = ΠuZ0,
(6.2.21)

and 
d

dt
ζs(t) = Asζs(t) + BsF(t), t > 0,

ζs(0) = ΠuZ0,
(6.2.22)

where Au = ΠuM
−1
zz Ãzz, As = ΠsM

−1
zz Ãzz, Bu = ΠuM

−1
zz B̃ and Bs = ΠsM

−1
zz B̃. Conversely, if

ζu = ΠuZ and ζs = ΠsZ are solution of systems (6.2.21) and (6.2.22), respectively, then Z is
solution to (6.2.20).

To construct a stabilizing feedback law for (6.2.21), we consider the Riccati equation{
Qu ∈ L(RNu), Qu = Q>u ≥ 0,
Qu(Ξu + ωshIRNu ) + (Ξ>u + ωshIRNu )Qu −QuẼ

>
u B̃B̃

>ẼuQu = 0,
(6.2.23)

where ωsh is a shift parameter. Then, the feedback law is given by

K = −B̃>ẼuQuẼ
>
uMzz. (6.2.24)

6.3 Algorithm for FSI direct problem

In this section, we recall the time-marching process introduced in Section 4.3 of Chapter 4.

We consider the ALE mapping A(t, ·) : Ω −→ Ωη(t) defined by

A(t, ·) = I +
∫ t

0
w(s, ·) ds, (6.3.1)

where w(t, ·) is solution of the elliptic equation

∆w = 0 in Ω, w = u|Γs on Γs, w = 0 on Γ \ Γs, (6.3.2)

where u|Γs stands for the trace of the fluid velocity on Γs. Let ∆t denote the time step, and
define tk = k∆t for k ∈ N, representing the time at level k. For all k ∈ N, Ωk := A(tk,Ωref )
with boundary Γk = Γi ∪ Γ0 ∪ Γks ∪ Γn, where Γ0 = Γr ∪ Γw and Γks = Γks,top ∪ Γks,bot ∪ Γks,lat. We
denote by uk, pk and λk the approximations of u(tk, ·), p(tk, ·) and λ(tk, ·), respectively. Here,
λk = (λki ,λk0,λks,top,λks,bot,λks,lat)> denotes the Langrange multiplier associated to the Dirichlet
boundary conditions. We also denote by ηk1 and ηk2 the approximation of η1(tk, ·) and η2(tk, ·)
defined on (0, `s), respectively.

Then, assuming known uk, pk, λk, wk, ηk1 and ηk2 , let us consider the following problem:
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Find ûk+1 ∈ H1(Ωk), p̂k+1 ∈ L2(Ωk), λ̂k+1 ∈ H−
1
2 (Γk \ Γn), ηk+1

1 , ηk+1
2 ∈ H2

{0}(0, `s) such that

∫
Ωk

ûk+1 − uk

∆t · φ = af (ûk+1,φ) + b(φ, p̂k+1) + c(ûk+1 −wk, ûk+1,φ)

+
∫

Γi
λ̂
k+1
i · φ+

∫
Γk0
λ̂
k+1
0 · φ+

∫
Γks,top

λ̂
k+1
s,top · φ

+
∫

Γk
s,bot

λ̂
k+1
s,bot · φ,+

∫
Γk
s,lat

λ̂
k+1
s,lat · φ, ∀φ ∈ H1(Ωk),

b(ûk+1, ψ) = 0, ∀ψ ∈ L2(Ωk),∫
Γi

ûk+1 · τ =
∫

Γi
gi · τ , ∀τ ∈ H−

1
2 (Γi),

∫
Γ0

ûk+1 · τ = 0, ∀τ ∈ H−
1
2 (Γ0),∫

Γks,top
ûk+1 · τ =

∫
Γks,top

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,top),∫

Γk
s,bot

ûk+1 · τ =
∫

Γk
s,bot

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,bot),∫

Γk
s,lat

ûk+1 · τ =
∫

Γk
s,lat

ηk+1
2 ~e2 · τ , ∀τ ∈ H−

1
2 (Γks,lat),∫ `s

0

ηk+1
1 − ηk1

∆t ζ =
∫ `s

0
ηk+1

2 ζ, ∀ζ ∈ H2
{0}(0, `s),∫ `s

0

ηk+1
2 − ηk2

∆t ζ = a1
s(ηk+1

1 , ζ) + a2
s(ηk+1

2 , ζ)

−
∫ `s

0
λ̂
k+1
s,top · ~e2ζ

√
1 + (ηk1,x)2

−
∫ `s

0
λ̂
k+1
bot · ~e2ζ

√
1 + (ηk1,x)2

+
Nc∑
j=1

∫ `s

0
wj(z1)ζ(z1)fkj (t) +

∫ `s

0
fsζ, ∀ζ ∈ H2

{0}(0, `s).

(6.3.3)

where

af (v,φ) = −2ν
∫

Ωk
ε(v) : ε(φ), b(φ, q) =

∫
Ωk

divφq, c(u,v,φ) = −
∫

Ωk
(u · ∇)v · φ,

a1
s(η1, ζ) = −α

∫ `s

0
∆η1 ·∆ζ, a2

s(η2, ζ) = −γ
∫ `s

0
∆η2 ·∆ζ.

Given the solution at the instant tk, uk, pk, λk, wk, ηk1 and ηk2 at the known configuration Ωk,
the procedure to solve the time advancing scheme from k to k + 1 is described in Algorithm 4
below.

6.4 Numerical experiments

In this section, we present numerical experiments to analyze the performance of the linear
feedback law when it is applied to the nonlinear system. More precisely, by fixing the Reynolds
number Re = 200 and the damping coefficient γ = 10−6, we consider different values of the rigid-
ity coefficient α and various levels of the perturbation amplitude β. The geometrical parameters
of the initial domain configuration Ω are described in Table 4.1 (see Figure 6.1).
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Algorithm 4: Semi-implicit algorithm
For k ≥ 1 :
1 : Solve the linear systems that yields after applying the Newton algorithm in system (6.3.3)
and get ûk+1, p̂k+1, λ̂k+1, ηk+1

1 , ηk+1
2 .

2 : Compute the mesh velocity ŵk+1 : Ωk → R2 satisfying the elliptic equation
∆ŵk+1 = 0 in Ωk,

ŵk+1 = ûk+1 on Γks ,
ŵk+1 = 0 on Γ \ Γks .

(6.3.4)

3 : Define Ak(x̂) := x̂ + ∆tŵk+1(x̂) and Ωk+1 := Ak(Ωk).
4 : Define uk+1 : Ωk+1 → R2, p : Ωk+1 → R, λk+1 : Ωk+1 → R2 and wk+1 : Ωk+1 → R2 by

uk+1(x) = ûk+1(x̂), pk+1(x) = p̂k+1(x̂), λk+1(x) = λ̂
k+1(x̂)

and wk+1(x) = ŵk+1(x̂), ∀x = Ak(x̂), x̂ ∈ Ωk.

Figure 6.1 – Geometrical configuration and triangular mesh used in the numerical simulation.

As in Section 4.4 of Chapter 4, we use a triangular mesh with 30168 cells locally refined
around the structure, see Figure 6.1. For the space discretization of system (6.3.3), we choose
the generalized Taylor-Hood finite elements P2 − P1 − P1 for the velocity, the pressure and the
Lagrange multiplier, respectively. The displacement and the velocity of the structure are dis-
cretized by using Hermite finite elements. The nonlinearity is treated with a Newton algorithm.
The total of degree of freedom is equal to 394803. All numerical simulation of the unsteady
system were carried out using a time step ∆t = 5 · 10−4.

In order to facilitate the analysis, for each of the three values of the rigidity coefficient α
(α = 1, 10−1, 10−2) and when the Reynolds number Re = 200 and the damping coefficient
γ = 10−6, we first compare the spectrum of the fluid-structure operator with and without feed-
back. Secondly, for a fixed pertubation amplitude β, we analyze the influence of the choice of
the unstable subspace Zu by considering two alternatives: the unstable subspace Z1

u, associated
with the unstable eigenvalues, and the extended subspace Z2

u = Z1
u⊕G(µs), where G(µs) denotes

the subspace associated to the first stable eigenvalue µs (ordered according to the real parts).
Although other choices are possible, these cases were selected for the sake of simplicity. Finally,
we investigate the performance of the feedback laws under the influence of the perturbation
amplitude β.

We remark that, due to the deterioration of the mesh when α = 10−3 (see Figure 4.34), we
do not include analysis of this case, as it prevents a meaningful comparison between the con-
trolled and uncontrolled scenarios.



6.4. Numerical experiments 223

6.4.1 Case 1: Rigidity coefficient α = 1, Re = 200 and γ = 10−6

• Comparison between the spectra of the fluid-structure operator with and without feedback.

Table 6.1 presents the unstable eigenvalues of the fluid-structure operator A, which are denoted
by µ, along with the corresponding eigenvalues of the controlled operator A−BK, denoted by µ̃,
where the feedback operator K is defined in (6.2.24). A graphical representation is provided in
Figure 6.2b, where a comparison between portions of the spectra of both operators is presented.

µ1,2 µ̃1,2 µ3,4 µ̃3,4
1.21± 25.72i −5.21± 25.72i 0.85± 14.03i −4.85± 14.03i

Table 6.1 – Eigenvalues of the fluid-structure system without feedback (denoted by µ) and with
feedback (denoted by µ̃) corresponding to Reynolds number Re = 200, rigidity coefficient α = 1,
and damping coefficient γ = 10−6. The feedback law K is based on Z1

u = G(µ1,2)⊕G(µ3,4) with
a shift coefficient ωsh = 2.
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(a) Spectrum of the operator A.
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(b) Spectrum of the operator A−BK.

Figure 6.2 – Comparison of the fluid-structure spectrum corresponding to Reynolds number
Re = 200, rigidity coefficient α = 1, and damping coefficient γ = 10−6, with and without
control. The unstable eigenvalues of the operator A (denoted by µ) and those of the operator
A − BK (denoted by µ̃) are colored in red (the conjugate pairs µ1,2 and µ̃1,2) and green (the
conjugate pairs µ3,4 and µ̃3,4). The feedback law K is based on Z1

u = G(µ1,2)⊕G(µ3,4) with a
shift coefficient ωsh = 2.
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(a) Profile of the inflow condition gi
s,1.
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(b) Profile perturbation gi
p at t = 0.

Figure 6.3 – Profile of the inflow condition gis,1 and perturbation gip.
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(a) t = 0[s] (without perturbation)
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(d) t = 1.5[s]

Figure 6.4 – Profile of the first component of the inflow data gi at different time instants for
different values of the perturbation parameter β.

• Influence of the unstable subspace Zu. In order to compute the feedback law, we consider
two unstable subspaces Zu: Z1

u = G(µ1,2)⊕G(µ3,4) and Z2
u = G(µ1,2)⊕G(µ3,4)⊕G(µ5), where

µ5 = −0.23. To carry out the numerical simulations, we set the perturbation amplitude β to 1.5
(see Figure 6.4). Figure 6.5b corroborates the expected decay rate in each case. Furthermore,
as is expected, the best decay rate is obtained in the case when Zu = Z2

u (see Figure 6.5a).
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Figure 6.5 – Comparison between the decay rates when Z1
u = G(µ1,2) ⊕ G(µ3,4) and Z2

u =
Z1
u ⊕ G(µ5), in the case of rigidity coefficient α = 1, damping coefficient γ = 10−6, Reynolds

number Re = 200 and perturbation amplitude β = 1.5.



6.4. Numerical experiments 225

0 2 4 6 8 10 12 14
t

0.000

0.002

0.004

0.006

0.008

0.010

||
|| L

1
u = G( 1, 2) G( 3, 4)
2
u = G( 1, 2) G( 3, 4) G( 5)

(a) Time evolution of ‖η‖L∞ .

0 2 4 6 8 10 12 14
t

0.000

0.001

0.002

0.003

0.004

0.005

||f
|| L

2

1
u = G( 1, 2) G( 3, 4)
2
u = G( 1, 2) G( 3, 4) G( 5)

(b) Time evolution of ‖f‖L2 .

Figure 6.6 – Time evolution of ‖η‖L∞ and ‖f‖L2 for the unstable subspaces Z1
u = G(µ1,2) ⊕

G(µ3,4) and Z2
u = Z1

u⊕G(µ5), when the rigidity coefficient α = 1, damping coefficient γ = 10−6,
Reynolds number Re = 200 and the perturbation amplitude β = 1.5.

We first observe that in the case of the feedback law based on Z1
u, the control mainly acts

during the first two seconds (see red curve in Figure 6.6b). This coincides with the period during
which the structure experiences the most significant displacements (see red curve in Figure 6.6a),
which is expected given that the control acts on the structure. Similarly, when the feedback
law control is based on Zu = Z2

u, Figure 6.6b (see blue curve) shows that the control action is
mainly concentrated during the first two seconds. As in the case Z1

u, during this interval of time
we observe that the structure experiences the most significant displacements (see blue curve
in Figure 6.6a). Furthermore, over the same period, the magnitude of the control is greater
compared to that associated to Z1

u, as shown in Figure 6.6b.

Figure 6.7 shows a sequence of snapshots illustrating the evolution of the structure’s deflec-
tion at different time instants, considering both the open-loop and closed-loop systems (feedback
control law based on Z1

u and Z2
u), when the perturbation amplitude is fixed at β = 1.5. From

Figures 6.7c, 6.7d and 6.7e, we observe that the displacement of the structure is stabilized around
η = 0, which is also corroborated by the information displayed in Figures 6.11b and 6.11e.
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Figure 6.7 – Snapshots of the structure’s deflection at different time instants, without and
with control (based on the unstable subspaces Z1

u = G(µ1,2) ⊕ G(µ3,4) and Z2
u = Z1

u ⊕ G(µ5))
corresponding to the rigidity coefficient α = 1, damping coefficient γ = 10−6, Reynolds number
Re = 200 and the perturbation amplitude β = 1.5.
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In Figure 6.9, we compare the magnitude of the fluid velocity in the open loop system, and
the closed loop system where the feedback law is based on the unstable subspace Zu = Z1

u. As
observed at time instants t = 1[s] and t = 2[s], the global behavior appears to be similar in both
cases. However, from t = 4[s] onward, we notice that the fluid velocity stabilizes around the
stationary fluid velocity (see also Figure 6.8). Similar conclusions are drawn when the feedback
law is based on the unstable subspace Z2

u (see Figure 6.10).

Figure 6.8 – Fluid velocity magnitude Us corresponding to Reynolds number Re = 200.

(a) t = 1[s] (b) t = 1[s]

(c) t = 2[s] (d) t = 2[s]

(e) t = 4[s] (f) t = 4[s]

(g) t = 11[s] (h) t = 11[s]

(i) t = 15[s] (j) t = 15[s]

Figure 6.9 – Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient α = 1, damping coefficient γ = 10−6, Reynolds number Re = 200,
perturbation amplitude β = 1.5, and unstable subspace Z1

u = G(µ1,2) ⊕ G(µ3,4). In the left
column (a)-(c)-(e)-(g)-(i), we show the velocity magnitudes for the case without control, whereas
in the right column (b)-(d)-(f)-(h)-(j), we display the velocity magnitudes when the control is
applied.
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(a) t = 1[s] (b) t = 1[s]

(c) t = 2[s] (d) t = 2[s]

(e) t = 4[s] (f) t = 4[s]

(g) t = 11[s] (h) t = 11[s]

(i) t = 15[s] (j) t = 15[s]

Figure 6.10 – Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient α = 1, damping coefficient γ = 10−6, Reynolds number Re = 200,
perturbation amplitude β = 1.5, and unstable subspace Z2

u = G(µ1,2)⊕G(µ3,4)⊕G(µ5). In the
left column (a)-(c)-(e)-(g)-(i)-(k), we show the velocity magnitudes for the case without control,
whereas in the right column (b)-(d)-(f)-(h)-(j)-(l), we display the velocity magnitudes when the
control is applied.

• Influence of the perturbation amplitude β. We analyze the performance of the feedback
control law based on each of the two unstable subspaces Zu. More precisely, in order to get a
first glance of the performance of the control, we plot the evolution of the norms ‖U−Us‖L2 ,
‖η‖L∞ and ‖f‖L2 , for three given values of the perturbation amplitude β: 0.5, 1, 1.5.

Z1
u (dim(Z1

u) = 4) Z2
u (dim(Z2

u) = 5)

β ‖U−Us‖L2 ‖η‖L∞ ‖f‖L2 ‖U−Us‖L2 ‖η‖L∞ ‖f‖L2

0.5 10−3 5 · 10−7 6 · 10−9 5 · 10−6 2 · 10−10 7 · 10−11

1 2 · 10−3 10−6 2 · 10−8 9 · 10−6 6 · 10−10 2 · 10−10

1.5 3 · 10−3 10−6 4 · 10−8 10−5 9 · 10−10 2 · 10−10

Table 6.2 – Order of quantities ‖U −Us‖L2 , ‖η‖L∞ and ‖f‖L2 at t = 15.5[s], for two different
choices of the unstable subspaces Z1

u = G(µ1,2) ⊕ G(µ3,4) and Z2
u = Z1

u ⊕ G(µ5), and for three
different values of the perturbation amplitude β. The rigidity coefficient is fixed at α = 1,
damping coefficient γ = 10−6 and Reynolds number Re = 200.
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Figure 6.11 – Evolution of (a): ‖U−Us‖L2 , (b): ‖η‖L∞ and (c): ‖f‖L2 , for three different values
of the amplitude perturbation β, when the rigidity coefficient α = 1, damping coefficient γ =
10−6 and Reynolds number Re = 200. Row (a)-(b)-(c): Control based on Z1

u = G(µ1,2)⊕G(µ3,4).
Row (d)-(e)-(f): Control based on Z2

u = Z1
u ⊕G(µ5).

An initial expected conclusion that it is possible to deduce from Figures 6.11c and 6.11f, is
that the magnitude of the control grows with increasing perturbation amplitude β. The effect
of the size of the perturbation amplitude is also observed in the evolution of the quantities
‖U − Us‖L2 and ‖η‖L∞ , as show Figures 6.11a, 6.11d, and 6.11b, 6.11e, respectively. Table
6.2 shows the orders of magnitudes of the quantities ‖U −Us‖L2 , ‖η‖L∞ , and ‖f‖L2 at time
t = 15.5[s]. This table allows us to observe the difference of the orders of magnitudes between
the feedback control based on Z1

u (dim(Z1
u) = 4) and Z2

u (dim(Z2
u) = 5). This information

supports the claim that using Z2
u instead of Z1

u improves the stabilization performance.

6.4.2 Case 2: Rigidity coefficient α = 10−1, Re = 200 and γ = 10−6

• Comparison between the spectra of the fluid-structure operator with and without feedback.

Figure 6.12b shows how the spectrum is modified after applying the feedback law. Figure
6.12a displays the spectrum of the fluid-structure operator without the action of the feedback
operator. As complementary information, Table 6.3 shows the values of the unstable eigenvalues,
along with their corresponding modifications after the feedback law is applied.

µ1,2 µ̃1,2 µ3,4 µ̃3,4
3.05± 21.61i −7.06± 21.61i 0.50± 11.96i −4.50± 11.96i

Table 6.3 – Eigenvalues of the fluid-structure system without feedback (µ) and with feedback
(µ̃) corresponding to Reynolds number Re = 200, rigidity coefficient α = 10−1, and damping
coefficient γ = 10−6. The feedback law K is based on Z1

u = G(µ1,2) ⊕ G(µ3,4) with a shift
coefficient ωsh = 2.
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Figure 6.12 – Comparison of the fluid-structure spectrum corresponding to Reynolds number
Re = 200, rigidity coefficient α = 10−1, and damping coefficient γ = 10−6, with and without
control. The unstable eigenvalues of the operator A (denoted by µ) and those of the operator
A − BK (denoted by µ̃) are colored in red (the conjugate pairs µ1,2 and µ̃1,2) and green (the
conjugate pairs µ3,4 and µ̃3,4). The feedback law K is based on Z1

u = G(µ1,2)⊕G(µ3,4) with a
shift coefficient ωsh = 2.

• Influence of the unstable subspace Zu. As expected, from Figure 6.13a we confirm that the
control based on the unstable subspace Z2

u = G(µ1,2)⊕G(µ3,4)⊕G(µ5), where µ5 = −0.16, yields
a better decay rate compared to the control based on the unstable subspace Z1

u = G(µ1,2) ⊕
G(µ3,4), when the amplitude of the perturbation is fixed at β = 1.5. Moreover, the expected
value of the decay rates in each case are corroborated by the information displayed in the semi-
logarithmic plot shown in Figure 6.13b.
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Figure 6.13 – Comparison between the decay rates when Z1
u = G(µ1,2) ⊕ G(µ3,4) and Z2

u =
Z1
u⊕G(µ5), in the case of rigidity coefficient α = 10−1, damping coefficient γ = 10−6, Reynolds

number Re = 200 and perturbation amplitude β = 1.5.

As in the previously analyzed case with α = 1, Figures 6.14a and 6.14b, which respectively
show the evolution of the quantities ‖η‖L∞ and ‖f‖L2 , allow us to conclude that the period of
significant activation of the control approximatelly coincides with the period of most pronounced
displacement of the structure.
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Figure 6.14 – Time evolution of ‖η‖L∞ and ‖f‖L2 for the unstable subspaces Z1
u = G(µ1,2) ⊕

G(µ3,4) and Z2
u = Z1

u ⊕ G(µ5), when the rigidity coefficient α = 10−1, damping coefficient
γ = 10−6, Reynolds number Re = 200 and the perturbation amplitude β = 1.5.

Figure 6.15 show snapshots of the evolution of the structure’s displacement at different time
instants, when β = 1.5. From these plots we observe the stabilization of the displacement of the
structure around η = 0 in both cases. On the other hand, concerning the behavior of the fluid
velocity, Figures 6.16 and 6.17, which show a comparison between the open loop system and
the closed loop system based on the unstable subspaces Z1

u and Z2
u, respectively, corroborate

the insight mentioned above. Specifically, they show that the velocity fluid is stabilized around
the stationary solution (see Figure 6.8). These results are similar to those obtained in the case
when α = 1. The main difference is that the structure exhibits larger deflection when α = 0.1,
as can be observed by comparing Figures 6.15 and 6.7.
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Figure 6.15 – Snapshots of the structure’s deflection at different time instants, without and
with control (based on the unstable subspaces Z1

u = G(µ1,2) ⊕ G(µ3,4) and Z2
u = Z1

u ⊕ G(µ5)
corresponding to the rigidity coefficient α = 10−1, damping coefficient γ = 10−6, Reynolds
number Re = 200 and perturbation amplitude β = 1.5.
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(a) t = 1[s] (b) t = 1[s]

(c) t = 2[s] (d) t = 2[s]

(e) t = 4[s] (f) t = 4[s]

(g) t = 11[s] (h) t = 11[s]

(i) t = 15[s] (j) t = 15[s]

Figure 6.16 – Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient α = 10−1, damping coefficient γ = 10−6, Reynolds number Re = 200,
perturbation amplitude β = 1.5, and unstable subspace Z1

u = G(µ1,2) ⊕ G(µ3,4). In the left
column (a)-(c)-(e)-(g)-(i), we show the velocity magnitudes for the case without control, whereas
in the right column (b)-(d)-(f)-(h)-(j), we display the velocity magnitudes when the control is
applied.
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(a) t = 1[s] (b) t = 1[s]

(c) t = 2[s] (d) t = 2[s]
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Figure 6.17 – Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient α = 10−1, damping coefficient γ = 10−6, Reynolds number Re = 200,
perturbation amplitude β = 1.5, and unstable subspace Z2

u = G(µ1,2) ⊕ G(µ3,4) ⊕ G(µ5). In
the left column (a)-(c)-(e)-(g)-(i), we show the velocity magnitudes for the case without control,
whereas in the right column (b)-(d)-(f)-(h)-(j), we display the velocity magnitudes when the
control is applied.

• Influence of the perturbation amplitude β. An in the case of α = 1, we analyze the per-
formance of the feedback control based on the unstable subspaces Z1

u = G(µ1,2) ⊕ G(µ3,4) and
Z2
u = G(µ1,2)⊕G(µ3,4)⊕G(µ5). The conclusions in this case are similar to those obtained for

the case α = 1. First, from Figure 6.18, we observe the influence of the perturbation amplitude
β on the quantities ‖U−Us‖L2 , ‖η‖L∞ and ‖f‖L2 . Secondly, Table 6.4 is a complement to the
information displayed in Figure 6.18 that supports the claim that the feedback operator based
on Z2

u (dim(Z1
u) = 5) enhances the stabilization performance compared to the one based on Z1

u

(dim(Z1
u) = 4).

Z1
u (dim(Z1

u) = 4) Z2
u (dim(Z2

u) = 5)

β ‖U−Us‖L2 ‖η‖L∞ ‖f‖L2 ‖U−Us‖L2 ‖η‖L∞ ‖f‖L2

0.5 3 · 10−3 2 · 10−5 10−8 3 · 10−6 5 · 10−9 9 · 10−11

1 5 · 10−3 3 · 10−5 3 · 10−8 5 · 10−6 10−8 10−10

1.5 6 · 10−3 4 · 10−5 3 · 10−8 8 · 10−6 10−8 8 · 10−11

Table 6.4 – Order of quantities ‖U −Us‖L2 , ‖η‖L∞ and ‖f‖L2 at t = 15.5[s], for two different
choices of the unstable subspace Z1

u = G(µ1,2) ⊕ G(µ3,4) and Z2
u = Z1

u ⊕ G(µ5), and for three
different values of the perturbation amplitude β. The rigidity coefficient is fixed at α = 10−1,
damping coefficient γ = 10−6 and Reynolds number Re = 200.
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Figure 6.18 – Evolution of (a): ‖U−Us‖L2 , (b): ‖η‖L∞ and (c): ‖f‖L2 , for three different values
of the amplitude perturbation β, when the rigidity coefficient α = 10−1, damping coefficient γ =
10−6 and Reynolds number Re = 200. Row (a)-(b)-(c): Control based on Z1

u = G(µ1,2)⊕G(µ3,4).
Row (d)-(e)-(f): Control based on Z2

u = Z1
u ⊕G(µ5).

6.4.3 Case 3: Rigidity coefficient α = 10−2, Re = 200 and γ = 10−6

• Comparison between the spectra of the fluid-structure operator with and without feedback.

In contrast to the two previously analyzed cases, which exhibited four unstable eigenvalues,
the case with α = 10−2 exhibits five unstable eigenvalues. Table 6.5 reports those values (de-
noted by µ), together with the corresponding eigenvalues of the controlled system (denoted by
µ̃) obtained by using the feedback law K based on Z1

u = G(µ1,2)⊕G(µ3)⊕G(µ4,5) with a shift
coefficient ωsh = 2. A graphical representation of a portion of the spectrum for the uncontrolled
and controlled systems is presented in Figures 6.19a and 6.19b, respectively.

µ1,2 µ̃1,2 µ3 µ̃3 µ4,5 µ̃4,5
2.0± 19.21i −6.0± 19.21i 0.38 −4.38 0.02± 8.27i −4.02± 8.27i

Table 6.5 – Eigenvalues of the fluid-structure system without feedback (µ) and with feedback
(µ̃) corresponding to Reynolds number Re = 200, rigidity coefficient α = 10−2, and damping
coefficient γ = 10−6. The feedback law K is based on Z1

u = G(µ1,2) ⊕ G(µ3) ⊕ G(µ4,5) with a
shift coefficient ωsh = 2.
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Figure 6.19 – Comparison of the fluid-structure spectrum corresponding to Reynolds number
Re = 200, rigidity coefficient α = 10−2, and damping coefficient γ = 10−6, with and without
control. The unstable eigenvalues of the operator A (denoted by µ) and those of the operator
A − BK (denoted by µ̃) are colored in red (the conjugate pairs µ1,2 and µ̃1,2), green (the real
values µ3 and µ̃3) and blue (the conjugate pairs µ4,5 and µ̃4,5). The feedback law K is based on
Z1
u = G(µ1,2)⊕G(µ3)⊕G(µ4,5) with a shift coefficient ωsh = 2.

• Influence of the unstable subspace Zu. To compute the feedback law, we consider two un-
stable subspaces Zu: Z1

u = G(µ1,2)⊕G(µ3)⊕G(µ4,5) and Z2
u = G(µ1,2)⊕G(µ3)⊕G(µ4,5)⊕G(µ6),

where µ6 = −0.48. The amplitude of the perturbation is fixed at β = 1.5. As visible in Fig-
ures 6.20a and 6.21a, the feedback control law based on the unstable subspace Z1

u stabilizes the
fluid velocity and the structure’s displacement (see also Figures 6.23 (green curve) and 6.24).
However, as shown in Figure 6.20b, the observed decay rate does not match the expected one,
at least within the time period in which the numerical simulation was carried out. In fact, the
results indicate that the decay rate is slower compared with the expected one.
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Figure 6.20 – Comparison between the decay rates when Z1
u = G(µ1,2) ⊕ G(µ3) ⊕ G(µ4,5) and

Z2
u = Z1

u ⊕ G(µ6), in the case of rigidity coefficient α = 10−2, damping coefficient γ = 10−6,
Reynolds number Re = 200 and perturbation amplitude β = 1.5.
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Figure 6.21 – Time evolution of ‖η‖L∞ and ‖f‖L2 for the unstable subspaces Z1
u = G(µ1,2) ⊕

G(µ3)⊕G(µ4,5) and Z2
u = Z1

u ⊕G(µ6), when the rigidity coefficient α = 10−2, damping coeffi-
cient γ = 10−6, Reynolds number Re = 200 and perturbation amplitude β = 1.5.

In the case of the feedback operator based on the unstable subspace Z2
u, with dim(Z2

u) = 6,
Figure 6.20a (curve in blue) is not sufficiently informative to determine whether the fluid velocity
is stabilized. Figure 6.25, which displays snapshots of the fluid velocity magnitude, also does not
provides this information. Figure 6.22a shows a zoomed-in view of the evolution of ‖U−Us‖L2 .
From this plot, we observe that, starting around t = 7[s], the quantity ‖U−Us‖L2 decreases very
slowly and exhibits an oscillatory behavior, which allows us to claim that the fluid velocity seems
to be stabilized, but very weakly. Furthermore, as shown in Figure 6.20b, the observed decay
rate is significantly lower than the expected one. On the other hand, it is not clear from Figure
6.21a whether the displacement of the structure is stabilized or not around η = 0. However, in
the zoomed-in view presented in Figure 6.22b, it seems that the displacement of the structure
is stabilized, although very weakly.
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Figure 6.22 – Zoom-in view of evolution of (a) ‖U−Us‖L2 and (b) ‖η‖L∞ , when Z2
u = G(µ1,2)⊕

G(µ3)⊕G(µ4,5)⊕G(µ6), in the case of rigidity coefficient α = 10−2, damping coefficient γ =
10−6, Reynolds number Re = 200 and perturbation amplitude β = 1.5.
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Figure 6.23 – Snapshots of the structure’s deflection at different time instants, without and with
control (based on the unstable subspaces Z1

u = G(µ1,2)⊕G(µ3)⊕G(µ4,5) and Z2
u = Z1

u⊕G(µ6)
corresponding to the rigidity coefficient α = 10−2, damping coefficient γ = 10−6, Reynolds
number Re = 200 and perturbation amplitude β = 1.5.

(a) t = 1[s] (b) t = 1[s]

(c) t = 2[s] (d) t = 2[s]

(e) t = 4[s] (f) t = 4[s]

(g) t = 11[s] (h) t = 11[s]

(i) t = 15[s] (j) t = 15[s]

Figure 6.24 – Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient α = 10−2, damping coefficient γ = 10−6, Reynolds number Re = 200,
perturbation amplitude β = 1.5, and unstable subspace Z1

u = G(µ1,2) ⊕ G(µ3) ⊕ G(µ4,5) . In
the left column (a)-(c)-(e)-(g)-(i), we show the velocity magnitudes for the case without control,
whereas in the right column (b)-(d)-(f)-(h)-(j), we display the velocity magnitudes when the
control is applied.
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Figure 6.25 – Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient α = 10−2, damping coefficient γ = 10−6, Reynolds number Re = 200,
perturbation amplitude β = 1.5, and unstable subspace Z1

u = G(µ1,2)⊕G(µ3)⊕G(µ4,5)⊕G(µ6).
In the left column (a)-(c)-(e)-(g)-(i), we show the velocity magnitudes for the case without
control, whereas in the right column (b)-(d)-(f)-(h)-(j), we display the velocity magnitudes when
the control is applied.

• Influence of the perturbation amplitude β. The plots shown in Figure 6.26 provide a first
insight into the performance of the feedback operators based on Z1

u and Z2
u according to the

three values of the perturbation amplitude β. In the case when the feedback operator is based on
Z1
u (dim(Z1

u) = 5), the plots in Figures 6.26a and 6.26b show that the corresponding norms tend
to zero for all three values of the perturbation amplitude. These results are also corroborated
by the information displayed in Figures 6.23 and 6.24, which show snapshots of the structure’s
deflection and the magnitude of the fluid velocity, respectively, in the worst-case scenario with
β = 1.5. However, as we pointed out above, in the worst-case scenario for the perturbation
amplitude (β = 1.5), the observed decay rate does not match the expected one, at least within
the time interval considered for the numerical simulation.

Z1
u (dim(Z1

u) = 5) Z2
u (dim(Z2

u) = 6)

β ‖U−Us‖L2 ‖η‖L∞ ‖f‖L2 ‖U−Us‖L2 ‖η‖L∞ ‖f‖L2

0.5 2 · 10−5 10−7 10−10 9 · 10−4 3 · 10−5 2 · 10−6

1 5 · 10−5 3 · 10−7 2 · 10−9 9 · 10−4 3 · 10−5 2 · 10−6

1.5 5 · 10−5 2 · 10−7 3 · 10−9 5 · 10−3 10−4 10−5

Table 6.6 – Order of quantities ‖U −Us‖L2 , ‖η‖L∞ and ‖f‖L2 at t = 15.5[s], for two different
choices of the unstable subspace Z1

u = G(µ1,2) ⊕ G(µ3) ⊕ G(µ4,5) and Z2
u = Z1

u ⊕ G(µ6), and
for three different values of the perturbation amplitude β. The rigidity coefficient is fixed at
α = 10−2, Reynolds number Re = 200 and damping coefficient γ = 10−6.
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Figure 6.26 – Evolution of (a): ‖U−Us‖L2 , (b): ‖η‖L∞ and (c): ‖f‖L2 , for three different values
of the amplitude perturbation β, when the rigidity coefficient α = 10−2, damping coefficient
γ = 10−6 and Reynolds number Re = 200. Row (a)-(b)-(c): Control based on Z1

u = G(µ1,2) ⊕
G(µ3)⊕G(µ4,5). Row (d)-(e)-(f): Control based on Z2

u = G(µ1,2)⊕G(µ3)⊕G(µ4,5)⊕G(µ6).

As previously pointed out, in the case Z2
u (dim(Z2

u) = 6) and β = 1.5 (worst-case scenario),
it appears that neither the fluid-velocity is stabilized around the stationary solution nor the
structure’s displacement. However, from Figure 6.26d and 6.26e (see black and red curves),
it is not clear whether similar conclusions apply for β = 0.5 and β = 1. From the plots
shown in Figures 6.27b and 6.28b, we observe a similar behavior compared to that presented
in Figure 6.20b (see blue curve). By doing a zoom-in view on Figure 6.26e (see black and red
curves), we observe from Figure 6.29 a similar type of oscillation in the displacement of the
structure as in the case of β = 1.5. This indicates that the displacement of the structure is
not stabilized around η = 0 when the feedback operator is based on Z2

u. Thus, in summary,
in the case where the rigidity coefficient is α = 10−2 and the feedback control is based on
Z2
u = G(µ1,2)⊕G(µ3)⊕G(µ4,5)⊕G(µ6), neither the fluid velocity nor the stucture’s displacement

is stabilized. Furthermore, in contrast to the conclusions obtained for the cases where the
rigidity coefficient α is 1 and 10−1, the inclusion of the eigenspace G(µ6) into the subspace
Z1
u = G(µ1,2)⊕G(µ3)⊕G(µ4,5) to construct the feedbaw law does not improve the stabilization

process (see also Table 6.6). On the contrary, it seems to deteriorate the bahavior. A possible
explanation of this phenomenon is that the inclusion of the eigenspace G(µ6) into the subspace
Z1
u may activate or amplify the nonlinear effects of the system.
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Figure 6.27 – Behavior of ‖U − Us‖L2 in the case of rigidity coefficient α = 10−2, damping
coefficient γ = 10−6, Reynolds number Re = 200 and perturbation amplitude β = 0.5 when
Z2
u = G(µ1,2)⊕G(µ3)⊕G(µ4,5)⊕G(µ6). (a) Zoom-in view of the evolution of ‖U−Us‖L2 . (b)

Semi-log plot of ‖U−Us‖L2 versus t, illustrating exponential decay of ‖U−Us‖L2 .
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Figure 6.28 – Behavior of ‖U − Us‖L2 in the case of rigidity coefficient α = 10−2, damping
coefficient γ = 10−6, Reynolds number Re = 200 and perturbation amplitude β = 1 when
Z2
u = G(µ1,2)⊕G(µ3)⊕G(µ4,5)⊕G(µ6). (a) Zoom-in view of the evolution of ‖U−Us‖L2 . (b)

Semi-log plot of ‖U−Us‖L2 versus t, illustrating exponential decay of ‖U−Us‖L2 .
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Figure 6.29 – Zoom-in view of the evolution of ‖η‖L∞ in the case of rigidity coefficient α = 10−2,
damping coefficient γ = 10−6 and Reynolds number Re = 200. (a) Case perturbation amplitude
β = 0.5. (b) Case perturbation amplitude β = 1.0.
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Titre : Analyse d'un modèle d'interaction fluide-structure : caractère bien posé, stabilisation et simulations numériques
Mots clés : Modèle fluide-structure, Équation de Navier-Stokes incompressible, Stabilisation, Approche Euler Lagrangienne Arbitraire,
Simulations numériques
Résumé : Cette thèse porte sur l’étude d’un modèle d’interaction fluide-structure qui couple les équations de Navier-Stokes dans un domaine
rectangulaire bidimensionnel avec des conditions aux limites mixtes, et une structure régie par une équation d’Euler-Bernoulli amortie. La
structure, supposée encastrée à une extrémité et libre à l’autre, est immergée dans le domaine fluide.



Dans la première partie de la thèse, nous établissons l’existence locale en temps de solutions fortes. La démonstration de ce résultat repose
principalement sur trois éléments : la réécriture du système dans un domaine de référence fixé ; une analyse minutieuse du système de Stokes
stationnaire avec des conditions aux limites mixtes dans un domaine présentant des coins rentrants, dans le cadre des espaces de Sobolev
hétérogènes ; et enfin, des estimations ad hoc pour les termes non linéaires, lesquelles, combinées à un argument de point fixe, nous
permettent de conclure le résultat.



La deuxième partie consiste à montrer que le système fluide-structure est localement exponentiellement stabilisable autour d’une solution
stationnaire instable, avec un taux de décroissance arbitrairement prescrit, au moyen d’un contrôle par retour d’état appliqué comme terme de
forçage dans l’équation de la structure. Bien que la démonstration et les difficultés soient similaires à celles rencontrées lors de l’établissement de
l’existence de solutions fortes, des défis supplémentaires apparaissent, propres à la stabilisation du système linéarisé. Par exemple, l’analyse des
problèmes aux valeurs propres direct et adjoint avec des conditions non standard.



Dans la troisième partie de la thèse, nous abordons les simulations numériques à la fois du problème direct et du problème de stabilisation. Pour
résoudre le problème direct, nous utilisons un algorithme monolithique semi-implicite disponible dans la littérature. En ce qui concerne le
problème de stabilisation semi-discret (en espace), il est possible de raisonner de manière similaire au cas continu. La principale nouveauté
réside dans le fait que, pour réécrire le système dans le domaine de référence fixe, au lieu d’utiliser une transformation géométrique, nous
considérons un prolongement harmonique approprié pour définir l’application. Plusieurs expériences numériques sont présentées.

Title: Analysis of a fluid-structure interaction model: well-posedness, stabilization and numerical simulations
Key words: Fluid-Structure Model, Incompressible Navier-Stokes equation, Stabilization, Arbitrary Lagrangian Euler Approach, Numerical
simulations
Abstract: This thesis deals with the study of a fluid-structure interaction model that couples the Navier-Stokes equations in a two-dimensional
rectangular domain with mixed boundary conditions, and a structure governed by a damped Euler-Bernoulli equation. The structure, which is
assumed to be clamped at one end and free at the other one, is immersed in the fluid domain.



In the first part of the thesis, we establish the local-in-time existence of strong solutions. The proof of this result relies primarily on three main
ingredients: rewriting the system in a fixed reference domain; a careful analysis of the stationary Stokes system with mixed boundary conditions
in a domain with reentrant corners in the framework of heterogeneous Sobolev spaces; and finally, ad-hoc estimates for the nonlinear terms,
which, together with a fixed-point argument, enable us to conclude the result.



The second part consists in showing that the fluid-structure system is exponentially stabilizable–locally around an unstable stationary solution–
with any prescribed decay rate, using a feedback control applied as a forcing term in the structure equation. Although the proof and difficulties
are similar to those encountered in establishing the existence of strong solutions, additional challenges arise that are intrinsic to the stabilization
of the linearized system. For instance, the analysis of both the direct and adjoint eigenvalue problems involves non-standard conditions.



In the third part of the thesis, we address numerical simulations of both the forward problem and the stabilization problem. To solve the
forward problem, we use a semi-implicit monolithic algorithm available in the literature. Regarding the semi-discrete (in space) stabilization
problem, it is possible to argue in a manner similar to the continuous case. The main novelty lies in the fact that, to rewrite the system in the
fixed referenced domain, instead of using a geometric transformation, we consider an appropriate harmonic extension to define the mapping.
Several numerical experiments are presented.
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