Ea T université

REPUBLIQUE ) de Toulouse
FRANCAISE

e

Fraternité Doct O r at d e

I’'Université de Toulouse

Analyse d'un modele d'interaction fluide-structure : caractere
bien posé, stabilisation et simulations numériques

These présentée et soutenue, le 27 novembre 2025 par

Diego GAJARDO MIRANDA

Ecole doctorale

EDMITT - Ecole Doctorale Mathématiques, Informatique et Télécommunications de Toulouse
Spécialité

Mathématiques et Applications

Unité de recherche
IMT : Institut de Mathématiques de Toulouse

These dirigée par
Franck BOYER et Michel FOURNIE

Composition du jury

M. Matthieu HILLAIRET, Président, Université de Montpellier

M. Miguel FERNANDEZ, Rapporteur, INRIA Paris

Mme Muriel BOULAKIA, Rapporteure, USVQ

M. Majdi AZAIEZ, Examinateur, Bordeaux INP

M. Takéo TAKAHASHI, Examinateur, INRIA de I'Université de Lorraine
M. Jean-Pierre RAYMOND, Examinateur, Université de Toulouse

M. Franck BOYER, Directeur de these, Université de Toulouse

M. Michel FOURNIE, Co-directeur de thése, ISAE-SUPAERO



Université de Toulouse

Doctoral School MITT: Domaine Mathématiques: Mathématiques appliquées
University Department Institut de Mathématiques de Toulouse (UMR5219)

Thesis defended by Diego Gajardo
Defended on November 27, 2025
In order to become Doctor from Université de Toulouse

Academic Field Mathematics

Speciality Partial differential equations

Analysis of a fluid-structure
interaction model: well-posedness,
stabilization and numerical
simulations

Thesis supervised by Franck BOYER
Michel FOURNIE

Committee members

Referees Muriel BOULAKIA Professor at Université de Versailles Saint-Quentin
Miguel FERNANDEZ Senior Researcher at INRIA de Paris
Ezxaminers Majdi AZAIEZ Professor at Institut Polytechnique de Bordeaux

Matthieu HILLAIRET Professor at Université de Montpellier
Jean-Pierre RAYMOND  Professor at Université de Toulouse
Takéo TAKAHASHI Senior Researcher at INRIA Nancy

Supervisors Franck BOYER Professor at Université de Toulouse
Michel FOURNIE Professor at Institut Supérieur de I’Aéronautique et de ’Espace


https://www.univ-tlse3.fr/
https://ed-mitt.univ-toulouse.fr/as/ed/edmitt/page.pl
https://www.math.univ-toulouse.fr/fr/
mailto:diego.gajardo@math.univ-toulouse.fr

Remerciements

Je commence par remercier Franck et Michel. Tout d’abord, pour m’avoir donné I'oppor-
tunité de travailler avec vous. Cela a été une expérience trés enrichissante pour moi. Je vous
remercie infiniment tous les deux pour votre gentillesse et votre pédagogie pour répondre & mes
questions tout au long de cette période. De la méme maniere, je remercie beaucoup Jean-Pierre
de nous avoir aidés a clarifier de nombreuses questions qui ont surgi tout au long de ce travail. Sa
patience pour répondre a mes questions, toujours de facon pédagogique, est quelque chose que
je lui suis infiniment reconnaissant. Je me sens privilégié d’avoir pu travailler en collaboration
avec vous trois.

Je remercie beaucoup Muriel Boulakia et Miguel Fernandez d’avoir accepté de relire et rap-
porter cette these. Je tiens également a remercier sincerement Majdi Azaiez, Matthieu Hillairet,
Jean-Pierre Raymond et Takéo Takahashi d’avoir accepté de faire partie du jury.

Mes remerciements vont également a Alberto Mercado pour m’avoir introduit dans le do-
maine de la recherche et pour m’avoir motivé a poursuivre un doctorat.

Je m’addresse maintenant a mes camarades. Tout d’abord, je remercie tous ceux que j’ai
eu la chance de rencontrer lorsque j’étais encore étudiant a Valparaiso. De la méme maniere,
je remercie mes camarades de thése ici a Toulouse, avec lesquels j’ai eu le privilege de partager
cette période.

Enfin, je remercie mes parents et mes fréres pour leur soutien infini, que j’ai toujours ressenti
malgré la distance.

ii



Table

des matieres

Appendices

Résumé

Remerciements

Table des matiéres

1 Introduction
1.1 Contexte général . . . . . . . . . . . e
1.2 Description du modele étudié . . . . . . . . . ... L o e
1.3 Résultatsdelathese . . . . . . . . . . .

1.3.1

1.3.2

1.3.3

1.3.4
1.3.5

Chapitre 2 : Etude du systéme de Stokes stationnaire avec conditions aux
limites mixtes dans des domaines polygonaux curvilignes non convexes
Chapitre 3 : Existence d’une solution forte locale en temps pour le systeme
d’interaction fluide-structure . . . . . . .. ..o
Chapitre 4 : Simulations numériques du systéme d’interaction fluide-structure
Chapitre 5 : Stabilisation du systéme d’interaction fluide-structure

Chapitre 6 : Simulations numériques du probleme de stabilisation du systeme
d’interaction fluide-structure . . . . . . . . .. ...

1.4 Perspectives . . . . . . . L e e e e e e e e e

2 Study of the stationary Stokes system with mixed boundary conditions in
non-convex curvilinear polygonal domains
2.1 Introduction . . . . . . . .o e

2.11
2.1.2
2.1.3

Statement of the problem . . . . . . . . . ... ... ... .. ... ..., .
Motivation . . . . . . . . e e e e
Outline . . . . . . . . . e

2.2 Classes of domains and functional setting . . . . . .. .. .. ... ... .....

2.2.1
2.2.2

Classes of domains . . . . . . . . . . . . L e
Functional setting . . . . . . . . . . ...

2.3 Existence, uniqueness and regularity . . . . ... ... L L oo
2.4 Rewriting the Stokes system as an operator equation . . . . . . . .. .. .. ...

2.4.1
2.4.2
2.4.3
2.4.4

The Leray projector . . . . . . . . . . . . e
Stokes operator and the analyticity of its underlying semigroup . .. . ..
Expression of the pressure . . . . . . .. . ... ... ... 0.
System reformulated as an operator equation . . . . . . ... ... L.

Appendix A : Study of the Stokes resolvent system . . . .. ... ... ... .....
Appendix B : Technical result adapted from Pazy’s book . . . . ... ... ... ...
Appendix C : Justification of the identity (2.4.55) (formal computations) . . . . . . .

iii

ii

(20 NI

10

16
22

30
36

38
39
39
40
41
41
41
42
45
47
47
51
58
61
62
64
65



Table des matieres iv
3 Existence of a local-in-time strong solution of the fluid-structure system 67
3.1 Imtroduction . . . . . . .. 69
3.1.1 Description of the model . . . . . ... ... ... ... ... .. ... ... 69
3.1.2 Discussion . . . . . .. o e e 71
3.1.3 Outline . . . . . . . . e e 72

3.2 Notation and statement of the main result . . . .. ... ... ... .. ..... 72
3.2.1 Notation . . . . . . . . . . . e e 73
3.2.2 System in the reference configuration . . .. .. ... ... ... ... ... 74
3.2.3 Statement of the main result . . . . . . ... ... ... ... .. ... ... 77

3.3 System rewritten using the semigroup formulation . . . ... ... ... .. ... 79
3.3.1 Steady Stokes system . . . .. .. L 79
3.3.2 Euler-Bernoulli beam equation . . . . . . ... ... L oL 82
3.3.3 Coupled linear fluid-structure system . . . . . .. . ... ... 83
3.3.4 Analyticity of the semigroup generated by (A, D(A))onZ .. ....... 85

3.4 Existence and regularity results for the non-homogeneous linear system . . . . . 88
3.5 Estimates of nonlinear terms . . . . . . . .. ..o Lo 96
3.5.1 Auxiliary results . . . . . ... 96
3.5.2 Estimates of nonlinear terms . . . . . . . .. ... oL 100

3.6 Proof of Theorem 3.2.1 . . . . . . . . .. 105
Appendix A: Expression of the function H and simplification in the modelling . . . . 107
Discussion about the termx Jg . . . . . . . ... o 109
Appendix B: Change of variables . . . . . .. ... ... ... ... 111
B.1  General change of variable formula . . . . .. ... ... ... ... .. .. 111

B.2  Nonlinear terms coming from the geometric transformation (3.2.9) .o 111
Appendix C: Auxiliar results . . . . . . . . .. 112
C.1  Study of Stokes system with irregular divergence data (case 1). . . . . .. 112

C.2  Study of the Stokes system with irregular divergence data (case 2) 113

C.3 Auxiliar Lemma . . . . . . .. ..o 113
Appendix D: Proof of estimates (3.5.17) and (3.5.18) . . . ... ... ... ... ... 114
D.1  Proof of estimate (3.5.17) . . . .. ... ... 115

D.2  Proof of estimate (3.5.18) . . . . . ... ... 115

4 Numerical simulations of the fluid-structure interaction system 118
4.1 Introduction . . . . . . . . . e e e e e e e 119
4.2 A variational formulation of the continuous system . . . . . . .. ... ... ... 120
4.3 ALE mapping and the time-marching process . . . . . . . . . .. .. .. ... .. 122
4.3.1 The time-marching process . . . . . . . . .. .. . L o oL 123
4.3.2 Full discretization of the nonlinear system . . . . . .. .. .. ... .... 124

4.4 Numerical simulations . . . . . . . . ... oL 125
4.4.1 Computation of the spectrum . . . . . . ... ... ... L. 127
4.4.2 Solving the direct problem . . . . . . .. ... ... .. .. ... 135
Appendix A: Terms to be linearized . . . . . . . . . ... ... .. 145
5 Stabilization of the Fluid-Structure Interaction system 147
5.1 Introduction . . . . . . . . . . e e e e 149
5.2 Notation and statement of the main results . . . . . ... .. .. ... ... ... 152
5.2.1 Notation . . . . . . . . . . . e e e 152
5.2.2 System in the reference configuration and statement of the main results . . 154

5.3 Analysis of the fluid-structure operator . . . . . . . ... ... L. 158
5.3.1 Fluid operator . . . . . . . . . . ... 158
5.3.2 Structure operator . . . . . . . . ... e e e 164
5.3.3 Fluid-Structure operator . . . . . . . . . . . . .. ... 165



Table des matieres v

5.4 Characterization of the adjoint operator (A*, D(A*)) . . . . ... ... ... ... 166
5.5 Resolvent of (A, D(A)) and analyticity of the underlying semigroup . . . .. .. 171
5.6 Eigenvalue problems . . . . . . . .. L 173
5.6.1 Direct eigenvalue problem . . . . .. .. ... oL 173
5.6.2 Adjoint eigenvalue problem . . . . . . .. ... 0oL 174
5.7 Stabilization of the linearized system . . . . . . .. .. .o oo 175
5.7.1 Stabilizability of (Ay, +wlgnu,By) « o o v o oo 178
5.7.2 Feedback control law . . . . . . . .. .. . 180
5.8 Stabilization of the nonhomogeneous linearized system . . . . . . . ... ... .. 181
5.9 Stabilization of the nonlinear system . . . . . . . .. ... .. ... ........ 188
5.9.1 Estimate of nonlinear terms . . . . . . . . . ... Lo 188
5.9.2 Proof of Theorem 5.2.1 . . . . . . . . . . . . . . e 192
Appendix A: Nonlinear terms coming from the geometric transformation (5.2.8) . . . 195
Appendix B: Proof of Theorem 5.3.2 . . . . . . . .. .. ... .. ... ... .. ... 197
Appendix C: Justification of the identity (5.4.14) (formal computations) . . ... .. 199
Appendix D: Proof of Proposition 5.7.1 . . . . . . .. . ... oo 204
Appendix E: Proof of Proposition 5.7.3 . . . . . . . . .. ... .. ... ... 206
6 Numerical simulations of the stabilization problem of the fluid-structure
interaction system 209
6.1 Introduction . . . . . . . . . 210
6.2 Stabilization of the semi-discrete system . . . . . . . ... ..o oL 213
6.2.1 Semi-discrete approximation . . . . . . . . . .. .o 214
6.2.2 Eliminating the fluid domain variables Wand D . . .. ... .. ... .. 216
6.2.3 Finite dimensional controlled system . . . . .. ... .. ... ... ... 217
6.2.4 Spectral decomposition of the operators . . . . . . .. .. ... 217
6.2.5 The projected dynamical system and computation of the feedback . . . . . 219
6.3 Algorithm for FSI direct problem . . . . . ... ... ... ... ... ... ... 220
6.4 Numerical experiments . . . . . . . . ... o Lo 221
6.4.1 Case 1: Rigidity coefficient = 1, Re =200 and y=10"6 . . . . . .. .. 223
6.4.2 Case 2: Rigidity coefficient a = 107!, Re =200 and y =10"%. . . . . .. 228
6.4.3 Case 3: Rigidity coefficient a = 1072, Re =200 and y =107%. . . . . .. 233

Bibliographie 240



Chapitre

Introduction

Sommaire du présent chapitre

1.1 Contexte général 1
1.2 Description du modeéle étudié

1.3 Résultats de la theése 5
1.3.1 Chapitre 2 : Etude du systeme de Stokes stationnaire avec condi-
tions aux limites mixtes dans des domaines polygonaux curvilignes

NOMN CONVEXES .+ v v v v e e et e e e e e e e e e e e e 5)
1.3.2 Chapitre 3 : Existence d’une solution forte locale en temps pour le
systeme d’interaction fluide-structure . . . . . . . ... ... .. .. 10
1.3.3 Chapitre 4 : Simulations numériques du systeme d’interaction fluide-
structure . . . ..o L Lo 16
1.3.4 Chapitre 5 : Stabilisation du systeme d’interaction fluide-structure 22
1.3.5 Chapitre 6 : Simulations numériques du probleme de stabilisation du
systeme d’interaction fluide-structure . . . . . . . .. ... ... .. 30
1.4 Perspectives 36

1.1 Contexte général

Le phénomene d’interaction fluide-structure est présent dans différents domaines, comme par
exemple la biologie ou I'aéronautique. Plus spécifiquement, un exemple concret dans le domaine
de la biologie est le cas de I’écoulement sanguin dans une artére, ou dans le cas de I’aéronautique,
I’écoulement d’air autour d’une aile d’avion.

Parmi la grande diversité de modeles fluide-structure existant dans la littérature, nous nous
intéressons, dans ce qui suit, a un systéeme couplant les équations de Navier-Stokes avec des
conditions aux limites mixtes comme modele pour le fluide, et une équation d’Euler-Bernoulli
amortie, avec des conditions limites de type encastrée et extrémité libre, comme modele pour la
structure. Nous présentons ci-dessous un bref résumé du contenu de chaque chapitre de la these.

¢ Existence de solutions (Chapitres 2 et 3)
Dans le Chapitre 2, nous analysons le systéme de Stokes stationnaire avec conditions aux li-

mites mixtes dans des domaines présentant des coins rentrants. Ce chapitre est utilisé dans
I’analyse du Chapitre 3, ot nous démontrons un résultat d’existence d’une solution forte locale
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en temps du systéeme fluide-structure.
e Stabilisation du systéme (Chapitre 5)

Dans le Chapitre 5, nous nous intéressons a la stabilisation du modele fluide-structure autour
d’une solution stationnaire instable. Afin d’atteindre cet objectif, nous construisons un controle
de dimension finie agissant sur la structure.

e Simulations numériques (Chapitres 4 et 6)

Un troisieme axe de ce travail de these, concerne les simulations numériques du systéme en
question. Dans une premiere partie, au Chapitre 4, nous présentons des simulations numériques
du probleme direct. Ensuite, au Chapitre 6, nous présentons des simulations du probleme de
stabilisation.

1.2 Description du modele étudié

Nous supposons qu’une structure S = S, U S, est immergée dans une cavité remplie d’un
fluide Newtonien incompressible et visqueux en deux dimensions. Ici, S, designe la partie rigide
de la structure et S, la partie élastique. Nous désignerons par €) le domaine représentant la
configuration de référence, lequel est donné par

QO =([-L/2,L] x [-£, )\ S, (1.2.1)

comme indiqué a la Figure 1.1.

|
r; r, : A r,
| B

ZL)2 0 r., £ L

Q
‘ D
FIGURE 1.1 — Configuration de référence.
La frontiere du domaine €2 est donnée par
r=r,ur,ur,ur,ur,, (1.2.2)

ot Ty =T7; UTFUTY, avec Ty = [0,4] x {—e}, T'F =1[0,4] x {e} et T\ = {£,} x [—e,e]. Nous
posons également I'y =T'\ T'),.

Dans le cas instationnaire, I’interaction entre le fluide et la structure entraine une déformation
de la géometrie, comme le montre la Figure 1.2.
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Qn(t)

FIGURE 1.2 — Domaine physique. Les lignes pointillées vertes indiquent la ligne centrale de
référence.

Soit T' > 0. Nous supposons que la partie élastique S, de la structure est entierement décrite
par le déplacement 7 de la ligne centrale (voir Figure 1.2). Pour une fonction n donnée, définie
de (0,7T) x (0,4,) dans R, qui décrit le déplacement de I’axe central de la poutre, nous désignons
par €, le domaine du fluide a I'instant ¢ et par I';;) = F;(t) U F;r(t) U Ff](t) I'interface fluide-
structure, ou F;( n et F;r(t) représentent respectivement le bas et le haut de la structure, et Ff;(t)

la partie latérale (voir Figure 1.2). Plus précisément, F;(t), It

¢ .
(@) et Fn(t) sont données par

Lo = Wzt z) —e)l a1 € [0,4]}, Ty = {(z1,n(t,21) + €)| 21 € [0,4,]}

(1.2.3)
et T}y = {(s,m2) [ w2 = (1 = A)(—e +n(t, £5)) + Ae +n(t, £))), A€ [0,1]}.
Pour 0 < T' < oo, nous notons
= U (x%0). == U ({8 xTy),
te(0,T) te(0,T)
Q" =(0,T) xQ, %I =(0,T) x T, (1.2.4)

I =(0,7) xIy, L =(0,7) x Iy,
»I'=(0,7)xT,, I =(0,7) x I,..

e Le fluide

Nous supposerons que le fluide est Newtonien, incompressible et visqueux en deux dimensions.
Nous modélisons le fluide par les équations de Navier-Stokes incompressibles

du+ (u-V)u—divo(u,p) =0 dans Qg, (1.2.5a)
divu =0 dans Q;, (1.2.5b)
u(0) = u’ dans Q, (1.2.5¢)

oll u et p sont respectivement la vitesse et la pression du fluide. Ici, o(u, p) représente le tenseur
des contraintes du fluide donné par

1
J(uap) = 2V€(u) _pla 5(11) = E(vu + (vu)T)v
avec v > 0 représentant la viscosité du fluide.

Dans cette thése, nous imposons une condition de type Dirichlet non homogene a ’entrée I';
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du canal, tandis qu’a la sortie I'j,, nous imposons une condition de type Neumann homogene.
D’autre part, sur les parties supérieure et inférieure I';, du canal, ainsi que sur I';., nous imposons
une condition de type Dirichlet homogeéne. Plus précisément,
_ i T _ T
u=g' sur;, o(u,p)n=0 sur X, , (1.2.6a)
u=0 sur XL uxT, (1.2.6b)

ou g’ est donnée.
e La structure

Nous modélisons le déplacement 1 de la ligne centrale par 1’équation de poutre Euler-Bernoulli
amortie

070 + alAdn +yBn; = H(a,p,n) dans (0,T) x (0,£), (1.2.7a)

n(0) =0 et 9mn(0) =nd dans (0,£,), (1.2.7b)

ol les parametres a > 0 et 7 > 0 sont des constantes relatives a la nature de la structure. Ici,
4

A2 = % avec comme domaine D(A2%) = Hf07es}(0,€s), représente l'opérateur bi-Laplacien sur

(0,45). Dans cette theése, 'opérateur d’amortissement B sera défini comme une puissance de A2,

sur un domaine D(B) ad hoc. Plus précisément, B = (A2)", avec 1/2 < r < 1. Le terme source
H dans le second membre de I’équation de la structure est donné par

H(uvpvﬁ) = (U+(uap)n:7r(t) + 0_(u7p)n;(t)> 1+ (8I17])2 : 627 (1‘2'8)

Ji(u,p) =o(u(t,z1,n(t,x1) £ e),p(t,z1,n(t,z1) L e)),
n

. - . . N =+ . N —
et np (respectivement n, t)) est le vecteur unitaire normal a I' ) (respectivement a Fn(t))

extérieur a €2, ). Ici, € = (0, 1). La déduction de I'expression de H donnée en (1.2.8), ainsi que
les simplifications effectuées dans le modele, sont présentées dans I’Annexe A.

A Dextrémité gauche de la structure en z = 0, nous imposons des conditions d’encastrement et
une condition d’extremité libre en z = ¢4. De maniére plus précise,

n=0 et d,;n=0 sur (0,7) x {0}, (1.2.9a)
2 3
0z,m=0 et 0, n=0 sur (0,T) x {{s}. (1.2.9b)

e Les interactions

Tout d’abord, nous considérons la condition cinématique
=z T
u =€ on . (1.2.10)

La condition dynamique est encapsulée dans le terme H qui apparait dans le membre de droite
de I’équation (1.2.7a), dont 'expression explicite est donnée en (1.2.8).
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En résumé, le modele fluide-structure qui nous intéresse dans cette theése est donné par

du+ (u-V)u—divo(u,p) =0 dans Q;,

divu = 0 dans Q;,

u=g' sur E;fp, u=0 sur EfUEg,

u =€y sur Zg, o(u,p)n =0 sur X1,

u(0) = u’ dans Q, (1.2.11)
d¢n + aAln +yBn; = H(u,p,n) dans (0,T) x (0, L),

n=0 and 0;,n =0 sur (0,7) x {0},

92n=0 and 92 n=0 sur (0,T) x {(,},

7(0) =0 and 9yn(0) =19 dans (0,s).

Dans ce qui suit, nous décrirons plus en détail la contribution de chaque chapitre de la these.

1.3 Reésultats de la theése

1.3.1 Chapitre 2 : Etude du systéme de Stokes stationnaire avec condi-
tions aux limites mixtes dans des domaines polygonaux curvilignes non
convexes

e Formulation du probléeme et littérature existante

Dans ce chapitre, nous considérons un systéme de Stokes stationnaire avec des conditions aux
limites mixtes, de type Dirichlet et Neumann, dans un domaine 2 polygonal curviligne non
convexe borné de R? (par exemple, le domaine représenté dans la Figure 1.1). Plus précisément,
nous nous intéressons a 1’étude du systeme

—divo(w,n) =F dans Q, divw =h dans Q,
(1.3.1)

w=g sur 'y, o(w,7)n =0 sur ',
ou F, h et g sont données.

Bien que les résultats énoncés dans ce chapitre soient intéressants en eux-mémes, leur moti-
vation principale provient de ’étude de I'existence de solutions fortes du systeme d’interaction
fluide-structure (1.2.11), probleme dans lequel nous devons étudier la régularité des solutions
du systéme (1.3.1), lorsque le domaine est donné, par exemple, par celui représenté sur Figure
1.2, et que les donneés F et h sont irrégulieres. Pour entamer la discussion, commencons par
rappeler les résultats existants dans la littérature.

D’apres [MR10, Theorem 9.4.5], nous savons que la solution (w, ) du systeme de Stokes (1.3.1)
avec des conditions aux limites mixtes Dirichlet-Neumann satisfait

(w, ) appartient & Pespace de Sobolev pondéré H3(Q) x H(Q)
3 (R1)
lorsque F € L3(Q), h € Hy(Q) et g € HZ (Ty),

pour tout 0 € (6%,1), ou 6* € (0,1/2).
D’autre part, pour le systéme de Stokes avec seulement une condition limite de type Dirichlet,
w=gsur I' =Ty (i.e.,, I';, =), plus une condition de compatibilité appropriée sur h et g, nous
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avons , )
(w, ) appartient & I'espace de Sobolev H21*(Q2) x H2T*(Q),

(R2)
lorsque F € H_%Jra(Q), h e H%+Q(Q), g € H'™(I") pour tout a € (0, a*),

ou lexposant critique a* € (0,1/2) dépend des angles aux coins de I'. Ce résultat est démontré
dans [Dau89, Theorem 5.5(a)] lorsque g = 0 et étendu a g # 0 dans [BR, Corollary 3.3].

Un systeéme d’interaction fluide-structure similaire a (1.2.11) a été étudié dans [FNR19], mais
avec des conditions d’encastrement aux deux extrémités de la poutre élastique. Dans ce cas, le
probléme non linéaire peut étre étudié dans le cadre des espaces avec poids H3(Q) et H}(Q). Par
conséquent, la question naturelle est de savoir s’il est possible d’utiliser le résultat de régularité
(R1) dans le cas du modele (1.2.11).

Dans le cas considéré du modele (1.2.11), ot une condition d’encastrement est imposée d’un
cOté et une condition d’extrémité libre de l'autre, le résultat de régularité (R1) reste toujours
valable pour le systeme d’interaction fluide-structure linéarisé. Cependant, cette approache n’est
pas suffisante pour traiter le systéme d’interaction fluide-structure non linéaire. Cela est dit & un
décalage entre les résultats de régularité obtenus dans les espaces de Sobolev avec poids pour les
solutions du modele linéaire non homogene et la régularité correspondante de certains termes
non linéaires du modele (qui joueront le réle des termes non homogenes dans une procédure de
point fixe).

e Présentation de nos résultats

Afin de simplifier la présentation de nos résultats, nous considérons la géometrie €2 donnée
a la Figure 1.1. Les hypotheses générales sur la géometrie sont présentées dans la sous-section
2.2.1. Nous introduissons les espaces fonctionnels suivants :

L%(Q) = L*(Q;R?) et, avec s > 0, H*(Q) = H*(Q; R?),
H%d(ﬂ) ={uec H(Q)|u=0 sur Ty},
ngrd(Q) ={uecl?Q)| divu=0in Q, u-n=_0sur Iy},

Etant donnée 8 > 0, nous introduisons les espaces de Sobolev avec poids

1/2
2 2
W o= | 33 [ (I %) 0bwide|  wec=@r)
kl=0i=1"% " jeg
X 12 (1.3.2)
oy o= (S [ (TLA7)0"sPar| . pec~@m
|k|=0 Q> jeg

ot 7y designe la distance au point de junction J € J, k = (k1,k2) € N? est un muti-indice de
longueur |k| = ki + ko, OF désigne I'opérateur différentiel partiel correspondant et w = (w1, wo).
Nous désignons par H%(Q, R?) (respectivement H é () la fermeture de C°(£2; R?) (respective-

ment C*°(2)) dans la norme HHH% (respectivement HHHLQ

On désigne par Jzq C J l'ensemble des points correspondant & une jonction entre deux condi-
tions aux limites de Dirichlet. Soient & et V deux ouverts disjoints de R? tels que Jaa C U
et I';, C V. En particulier, V ne contient aucun point correspondant & une jonction Dirichlet-
Dirichlet. Introduisons maintenant une fonction de troncature ¥ € C°°(R?) vérifiant 0 < ¥ < 1
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et
VU =1dans U et ¥ =0 dans V. (1.3.3)

Soit a € (0,a*) et § € (0*,1). Nous introduisons les espaces de Sobolev hétérogenes suivants

Hzt0(Q) = {F € H{f*“(my(l —U)F € LQ(Q)} ,
HE Q) = {pe HF*(Q)[(1 - w)p € H'(Q (L3

§+o¢ 2

@}
HE Q) = {pe HE (@)1 - Wp e HYD),
H Q) = {v e HE(Q)|(1 - ¥)v e H} (@)},

qui sont respectivement munis des normes

1/2
1Pl giao = (IFIZ e+ 10— O)FE)

Ta

1/2
121y 5mr = (P12 3o+ 1= 2l )

1/2
Il 30 = (121 g0+ 1= D)

o 9 5 \1/2
hall g ez = (ullfgea + 10— Pullg)
5
Présentons maintenant les principaux résultats de ce chapitre, ainsi que les idées essentielles de
leurs preuves respectives.

1. Régularité du systéme de Stokes stationnaire.

Theorem 1.3.1. Supposons que F € H™ 2+°‘0(Q) h e H%JFO‘I(Q) et g € H%(Fd). Alors, la

solution variationnelle (w, ) du systéme (1.3.1) appartient a H2+a 2(Q) H2+a 1(Q) De plus,
il existe une constante Cp 5 > 0 telle que

I g+ 3 ) < Cos (PPl Wil g+ Vg )+ (135)

Idée de la preuve. L’idée principale de la preuve est d’utiliser un argument de troncature qui
nous permet de considérer deux systémes : un premier systeme avec des conditions de type Di-
richlet, ¢’est-a-dire I';, = (), qui nous permet d’utiliser le résultat de régularité (R2). Ensuite, un
second systeme avec des conditions mixtes, nous permettant d’utiliser le résultat de régularité
(R1). Il est important de souligner que la fonction de troncature ¥ choisie est la méme que celle
définie dans (1.3.3), ce qui est naturel, compte tenu de la régularité des données F et h.

2. Analyticité du semigroupe associé a ’opérateur de Stokes sur V 2+O((Q).

Commencons par introduire 'opérateur de Stokes. L’opérateur de Stokes (Ag, D(Ag; VY r, ()
dans Vg,rd(ﬂ) est défini par

D(Ao; Vi1, () = {w € HE(Q) N V},(Q) | Ir € H3(Q) tel que
divo(w, ) € L%(Q) et o(w, m)n = 0 sur I‘n},

Aow = Pdivo(w, ).
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Pour tout « € (0, @*), nous introduisons l'espace hétérogene

2+a

Lia,0
2
V n,lg

by ()= {v ev Q) |Q-T)ve L2(Q)} . (1.3.6)

Cet espace muni de sa norme naturelle est un espace de Hilbert (voir Proposition 2.4.5).

Comme l'opérateur Ap est un isomoprhisme de D(Ay; V?L’Fd(Q)) dans V?LId(Q) et de V%d (Q)
dans Vfdl(Q), on en déduit que qu’il est également un isomorphisme de

—lia _
D(Ao: Vo, 7, () = [D(Ag; Vi 1, (), Vi, (D)1, dans [V3 1, (2), Vi, (Y], =V, %d ().
(1.3.7)
L’égalité [V nrd(Q),VI?dl(Q)]% =V, %d “(Q) est établie dans le Lemme 2.4.7, dont la preuve

repose sur un résultat similaire établi dans [MMO8] dans le cas de conditions de Dirichlet partout
et sur 'existence d’un opérateur d’extension E qui est précisé en (??). Dans le Lemme 3.3.1 du
Chapitre 3, nous montrons ’existence d’un tel opérateur dans le cadre de la geométrie étudiée
dans ce chapitre.

Pour tout 6 € (7/2,7), nous définissons le secteur ¥y par

Yg={AeC||arg(N)| < 0}.

1
Theorem 1.3.2. L’opérateur non borné (AO,D(AO;VM%:O‘(Q))) est le générateur infinitésimal

+a(Q).

d’un semigroupe analytique sur Vn Iy
Idée de la preuve. D’apres [EN06, Théoréeme 4.6, p. 95|, il suffit de montrer que 1'opérateur

(Ao, D(Ap; V — 5o (€2))) est sectoriel et a domaine dense.

TLFd

1
a) Sectorialité de l'opérateur de Stokes sur V 270
n,l'g

Proposition 1.3.1. Soit a € (0,a*). Il existe 6y € (w/2,7) et C > 0 tel que

|(AT — Ag) ™Y pour tout A € ¥g, \ {0}. (1.3.8)

< IEVE
cov, @) T

Idée de la preuve. L’inégalité (1.3.8) s’obtient par interpolation. D’abord, comme 'opé-
rateur de Stokes (Ao, D(Ap; VO r,(82))) est sectoriel sur V%Fd (), il existe Oy € (7/2, )
et Cp > 0 tel que

I = 40)"Flivy @ < 10 IFllve, (13.9)

£,
=7

pour tout A € ¥y, \ {0} et F € V%Fd(Q). D’autre part, des calculs directs permettent de
montrer qu’il existe C; > 0 tel que

||(/\I—A0)‘1FHV;; < ||FHV L (1.3.10)

[A]

pour tout A € ¥y, \ {0} et F € V%Fd(Q). Ensuite, en interpolant (1.3.9) et (1.3.10) et
_1

en utilisant le Lemme 2.4.7 et la densité de V) . (Q) dans an:a(Q), on déduit (1.3.8)

pour tout F € V| 2+ O(Q) et pour tout A € ¥y, \ {0}.
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1
n,l'y

(b) L’opérateur (Ao, D(Ao; V (Q))) est a domaine dense.

1,
Proposition 1.3.2. Le domaine D(Ag;an: (Q)) de [lopérateur de Stokes
lig
(Ao, D(Ag; V, 1)

1
5ta
”71 d

(Q))) est dense dans V;Fd (Q).

Idée de la preuve. La preuve repose sur une modification de [Paz83, Théoreme 4.6, p. 16]
(voir Proposition 2.4.9(iii)) et de I'estimation (1.3.8).

3. Réécriture du systéme (1.3.1) en termes d’opérateurs.

Avant de présenter le théoréme principal de cette sous-section, nous introduirons des notations.
D designe un opérateur de relevement de la trace sur I'; (voir la définition (2.4.64)), tandis que
les opérateurs N, et N, sont définis comme suit :

N, € L(H 2t0(Q), H2t*1(Q)), N,F = q, (1.3.11)

ou ¢ est solution du systeme

Ag = divF dans , gfl =F -nsurly, ¢=0 sur ', (1.3.12)
et s
N, € L(H2T%(Q), L*(Q)), N,w = p, (1.3.13)
ou p est solution du systeme
dp
Ap=0 dans 2, —— =vAw-n sur 'y, p=2ve(w)n-n sur I',. (1.3.14)

on

Theorem 1.3.3. Supposons que F € H_%JFO"O(Q), g€ H%(Fd) et h = 0. Le couple (w, ) €

3+a,2 14a,l ) . . .
H§+a’ (Q) x H52+a’ (Q) est une solution variationnelle de (1.3.1) si et seulement si Pw, (I —
P)w, et m sont solutions du systéme suivant :

_AyPw + AyPDg = PF
{ orwr A8 ’ (1.3.15)

(I - P)w= (I — P)Dg, == N,F+ N,w.

Idée de la preuve. Les principales difficultés de la preuve résident dans le fait de montrer que
les opérateurs N, € E(H_%“'O‘vo(Q),H%“"l(Q)) et N, € E(H%+O‘(Q),L2(Q)) sont bien définis
et que la pression peut s’exprimer comme 7™ = N,F + N,w.

(a) Opérateurs Ny et N, bien définis

Pour montrer que les opérateurs N, et IV, sont bien définis, il est tout d’abord néces-
saire de préciser le sens des solutions de (1.3.12) et (1.3.14), respectivement. Dans le cas
du systeme (1.3.12), ou l'on utilise la notion de solution par transposition, une analyse
précise de la régularité de celle-ci est requise (voir Lemme 2.4.4). En ce qui concerne le
systeme (1.3.14), ou l'on utilise une notion de solution tres-faible, on conclut a I’aide du
Théoreme de représentation de Riesz (voir Lemme 2.4.8).

(b) Justification de l’expression de la pression 7

Une fois les opérateurs N, et IV, bien définis, il est nécessaire de montrer que la pression
peut s’exprimer comme 7 = N, F + N,w. L’idée centrale de la démonstration repose sur
l'utilisation du systéme satisfait par (w, ) ainsi qu'un argument de densité (voir Lemme
2.4.9). Ce dernier argument est utilisé pour justifier certaines intégrations par parties.
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1.3.2 Chapitre 3 : Existence d’une solution forte locale en temps pour le
systéme d’interaction fluide-structure

Tout au long de cette section, nous considérons la configuration geométrique représentée dans la
Figure 1.2, dont la description précise a été introduite dans la Section 1.2 (voir (1.2.1), (1.2.2)
et (1.2.4)).

e Formulation du probléme et littérature existante

Dans ce chapitre, nous prouvons ’existence d’une solution forte locale en temps pour le sys-
teme d’interaction fluide-structure

Ju+ (u-V)u—divo(u,p) =0 dans Q?,
diva =0 dans Qg,

u=g' on ¥, u=0sur 2L, u=0 sur 27, (

u =€y sur Eg, o(u,p)n =0 sur 1, (1.3.16d
u(0) = u’ dans Q,

I + aA’n +yBn, = H(u, p,n) dans (0,T) x (0,4), 1.3.16f
n=0 et 9pn =0 sur (0,T) x {0}, (1.3.16g
97,1 =0 et 95n=0 sur (0,7) x {£}, (1.3.16h
1(0) =0 et 9m(0) =73 dans (0, ), (1.3.16i
ol
H(u7p7n) = - (U+(uﬂp)n;7’_(t) + O'7<u,p)n’;(t)) ]- + (81‘177)2 N 627
avec

ot (u,p) = o(u(t,z1,n(t,z1) £ e),p(t, x1,n(t, z1) £ e)),

+ i - . +
et n, (respectivement nn(t)) est le vecteur normal unitaire Fn(t)

rieur a 2. Ici, € = (0,1). Tout au long de ce chapitre, nous supposerons que l'opérateur

(respectivement, F;(t)) exté-

d’amortissement B est donné par B = (A2)'/2 avec un domaine D(B) que nous préciserons
ultérieurement. Cependant, comme nous le verrons dans la Remarque 6, le résultat principal de
ce chapitre reste également valable dans le cas B = (A2)" avec r € (1/2, 1], ot le domaine D(B)
sera précisé plus tard.

Nous présentons ci-dessous une liste non-exhaustive de travaux portant sur l’existence de solu-
tions pour des modeles d’interaction fluide-structure. Nous limiterons cette présentation a 1’étude
de modeles couplant les équations de Navier-Stokes incompressibles et une structure modélisée
par une équation de poutre ou de plaque.

En ce qui concerne I’étude de solutions faibles, a notre connaisance, le premier résultat dans
cette direction est di & Chambolle et al. [CDEGO5], ou les auteurs ont étudié un systéme cou-
plant les équations incompressible de Navier-Stokes en 3D et un équation de plaque amortie
2D. Ce résultat a ensuite été étendu par Grandmont [Gra08] au cas non amorti. Dans les deux
travaux, qui sont également valables dans le cas 2D /1D, I'existence de solutions faibles se vérifie
tant que la structure ne touche pas la partie fixe de la frontiere du fluide. Récemment, Casanova
et al. [CGH21] ont démontré, dans un cadre 2D /1D sans amortissement, ’existence de solutions
faibles globales en temps, indépendamment d’un éventuel contact entre la structure et la partie
fixe du domaine fluide.
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Concernant ’étude de solutions fortes, a notre connaissance, le premier résultat a été obtenu par
Beirao da Veiga [Bei04] dans le cas ou la dynamique de la structure est régie par une équation
de poutre d’Euler-Bernoulli amortie. Plus précisément, I’auteur montre un résultat d’existence
locale en temps sous I’hypothése d’une condition de petitesse sur les données initiales. Ce ré-
sultat a ensuite été amelioré par Lequeurre [Leqll], qui démontre le méme résultat d’existence
locale en temps, mais sans supposer une condition de petitesse sur les données initiales. Le cas
non amorti est traité dans Badra et al. [BT19], ou les auteurs prouvent I'existence d’une solution
forte locale en temps.

e Présentation de nos résultats

La principale contribution de ce chapitre est la preuve d’existence d’une solution forte locale en
temps du systéeme (1.3.16). Commencons par introduire les espaces fonctionnels :
L%(Q) = L?(Q;R?) et, avec s > 0, H¥(Q) = H*(Q; R?),
0, () ={ueH(Q) [u=0sur I'y} avecs>1/2,
Van( y={ueLl?Q)| divu=0inQ, u-n=0sur Iy},
Vrd(Q) = H%d(Q) nvy r, (),
H{gy(0,65) = {p € H'(0,4) | pu(0) = 0},
Hioy(0,65) = {pn € H*(0,45) | p(0) = 0z, u(0) = }
Hy 13(0,65) = {u € H*(0,£5) N Higy (0,45) | 02, u(ls) = 0},
Hio3(0,65) = {p € H*(0,£5) N Hi, (0, 45) | 39;1#( s) = Oy, u(ls) = 0},
H3y ((0,T) x (0,65)) = L*(0, T Hyy (0, £5)) N H'(0,T; L*(0,45)),
H?, 1 ((0,T) x (0,£5)) = L0, T3 H{y 40, €5)) NV H?(0,T; L*(0,£5)).

Tous les espaces précédents sont munis de leurs normes naturelles.

Nous introduisons ’espace des conditions d’entrée
3
H(I) = {g = (g1,02) | 2 = 0 et g1 € H?(T;) N H{(Ty) }, (1.3.17)

muni de la norme (g1, g2) — ||g1 HH%(P)' Si nous identifions Vg,rd(Q) avec son dual et si Vfdl (Q)

désigne le dual de VT, (2), nous avons
Vi, () = Vi, (Q) = Vi, (9)

avec des injections continues & image dense. Etant donnée 5 > 0, nous introduisons les espaces
de Sobolev avec poids

1/2
||W||H2 = (Z Z/ 11 7’2'6 0% w;|? dx) . weEC®(Q;R?)

k|=01i=1 JeJg
" c (1.3.18)

1/2
HPHHé = (Z / H 7"26 0% p|? dac) , p€C®(R)

|k|=0 JeJg

ot r; designe la distance au point de junction J € J, k = (k1, ko) € N? est un muti-indice de
longueur |k| = ki + ko, % désigne I'opérateur différentiel partiel correspondant et w = (wy, ws).
Nous désignons par H%(Q, R?) (respectivement H é (2)) la fermeture de C°°(Q; R?) (respective-
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ment C*°(Q)) dans la norme HHH% (respectivement HHH})

Soit & > 0. Nous introduisons la fonction de troncature ¥ € C*°(R?) satisfaisant 0 < ¥ < 1,

U=1on (—L/2,ls+¢c/2) x (—£,¢) and ¥ =0 on ({s+¢,L) x (—£,7). (1.3.19)

—L

—L/2 Ty L+s lte L

F1GURE 1.3 — Décomposition du domaine €.

Nous définissons également Qg = ({5 +¢/2,L) x (—¢, ) (voir Figure 1.3) et introduisons les
espaces de Sobolev hétérogenes

H-4+e0(q :{FeH‘?*“ )](1—\11)F€L2(Q)},
Q:{peHz+a (1= T)p e HY(Q }
1.3.20
2+a19 o (1.3.20)
)= {pe H(Q)|(1 - )p e B} (D)},
H2+a29:{ €HT(Q)|(1- W)y e H3(Q)},

munis de leurs normes naturelles.

Une difficulté propre aux problémes d’interactions fluide-structure est le fait que le domaine
du fluide change au cours du temps. Une maniere de faire face a cette difficulté, et qui corres-
pond a la stratégie que nous adopterons dans ce chapitre, consiste a définir un difféfomorphisme
X entre le domaine fixe ) en fonction de 7, que nous appellerons domaine de référence, et le
domaine du fluide 2, ;) a I'instant ¢, que nous appellerons domaine physique. Cette transforma-
tion, qui est définie dans le Chapitre 3 (voir (3.2.9)), est utilisée pour définir le changement de
variables suivant :

U(t,2) = u(t, X(t,2)) et p(t,2) = p(t, X (t, 2)), (1.3.21)

pour tout (¢,z) € (0,7) x €. Ainsi, nous obtenons que (U, p, n) satisfait le systéme

~

0i —divo(u,p) = Fy(l,p,n) dans QT (1.3.22a)
div i = div Ggiy (4, 7) dans Q7 (1.3.22b)
=g swr¥, G=0onXl, G=0 sur %7, (1.3.22¢)
i =m6 sur ¥7, o(d,p)n =0 sur B2, (1.3.22d)
u(0) = ug dans Q, (1.3.22¢)
0fn + oA +yBm = —v P+ v, P+ Fs(6,5,m) dans (0,T) x (0,£,), (1.3.22f)
n=0 et 9,,n=0 sur (0,7) x {0}, (1.3.22g)
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#2n=0et O2n=0 sur (0,T) x {£}, (1.3.22h)

z

n(0) =0 et n(0) =75 dans (0,£,), (1.3.221)

ouB = (Ag)%, avec D(B) = H{QO} (0, £s). Ici, les termes f‘f, Guiv et Fy encapsulent les termes non
linéaires obtenus apres le changement de variables. Pour les epressions précises de ces termes, le
lecteur est renvoyé au Chapitre 3 (voir (3.2.14), (3.2.15) et (3.2.16)).

De cette maniére, nous avons réussi a réduire le systéme (1.3.16), formulé initialement sur le
domaine physique {2, ), a un systeme posé sur le domaine de référence (). Cependant, le prix
a payer est 'apparition de nouvelles non-linéarités F r (A}div et ﬁs dans le systéme résultant
(1.3.22). Comme nous verrons plus tard, ce sont précisément ces termes, ainsi que le fait de
considérer des conditions aux limites libres sur une extrémité de la structure (voir (1.3.22h)),
les principales difficultés rencontrées dans ’analyse du probléme.

Avant de definir les espaces de Sobolev dans le domaine dépendant du temps €2, ), nous rap-
pelons que la définition précise de ’ensemble E(0,7T) C H?(’)?ZS}((O,T ) x (0,45)) est introduite
au Chapitre 3 (voir (3.2.8)). De méme, les définitions des ensembles Of, et Og sont données au
Chapitre 3 (voir (3.2.10)).

Definition 1.3.1. Soit T > 0. Pour tout n € FE(0,T), nour dirons que u appartient a
3

L%(0,T; H§+a’1(Qn(,))) (respectivement a H(0,T; HféJra’O(Qn(,))) s’il existe

X € L?*0,T;H*t%(0r)) N L?(0,T; H*(OR)) N H2(0,T;L2(Q)), avec 0 < ag < 1/2, tel que

pour tout t € [0,T), X(t,-) est un C'—difféomorphisme de Q sur Qy), et lorsque U définie par

u(t,z) =u(t, X(t,2)), pour tout (t,z) € [0,T] x Q,

3
appartenant a L*(0,T; H§+a’2(Q)) (respectivement a H'(0,T; H_%JFQ’O(Q))). De méme, nous

%Jra,l(

dirons que p appartient a L*(0,T; H; Q) lorsque p, défini par

Bt 2) = plt, X (t,2)), pour tout (t,2) € [0,T] x O,

1
appartient a L*(0,T; H? +a’l(Q)).

Nous nous intéressons aux solutions (u,p,n) du systéme (1.3.16) satisfaisant

34q
ue L2(0,T;H2 ™ (Q,00) N HY(0, T H 20, ),

1
pe LX0,T; HE N (Q,)), (1.3.23)
n € L*(0,T; Hy41(0,45)) 0 H?(0,T; L*(0, £5)).

Definition 1.3.2. Nous disons que le triplet (u,p,n) est une solution forte du systéme (1.3.22)
sur Uintervalle de temps (0,T), lorsqu’il satisfait (1.3.23), les équations (1.3.16a)-(1.3.16b) au
sens des distributions dans Qg, léquation (1.3.16f) au sens des distributions dans (0,T) x (0, 4s),
les équations (1.3.16¢)-(1.3.16d)-(1.3.16g)-(1.3.16h) au sens des traces, et les conditions initiales
énoncées dans (1.3.16¢e) et (1.3.16i).

Nous introduisons l'espace

3 «
Zp = <L2(O,T; H: " 2(Q)) n H'(0, T H‘§+Q’O(Q))>
(1.3.24)
%—i—a,l

x L2(0, T HE ™™ (Q) x Hi?, 1((0,T) x (0,44)),
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muni de la norme

u,p, =|ju sS4
0 llze =l b b o
+ Hp|’L2(O,T;H§+a’1(Q)) + HnHH?E)Q,ZS}((O»T)X(Oyés))'
Nous introduisons également 1’ensemble
B(T, R,uo,3) = {(8.5.7) € Z¢ | |(8.5.m)]z, < R, n€ £0.T) s
1.3.26

et 6(0) = ug, 7(0) = 0, 7:(0) = n}.

Le résultat principal du chapitre est le suivant :
Theorem 1.3.4. Pour tout ug € HY(Q), 9 € H{lo}(O,Ks) etg' € H{lo}(O, 1, H(T;)) satisfaisant
u =0 surl’;, ug=0 surl',, UL,

. . (1.3.27)
ug = 15(0,-)8 sur 'y, divuy =0 dans Q,

il existe T € (0,1) et R > 0 tels que le systéme (1.3.22) admet une solution unique (U, p,n) dans
B(T, R,ug,n3). De plus, si l’on pose

u(t,z) = a(t, X Yt,z)) et p(t,z) =p(t, X (t,x)), pour tout x € Qe t €10,7T7,

ot la transformation X (t,-) : Q — Q) est celle définie dans (3.2.9), alors (u,p,n) est une
solution du systéme (1.3.16).

Avant de décrire plus en détail les éléments qui font partie de la preuve, commencons par
présenter I'idée générale de la stratégie.

1) Description générale de la preuve.

Comme mentionné ci-dessus, les principales difficultés résident dans la présence des termes non
linéaires F s édiv et }A?S dans le systéme (1.3.22), ainsi que le fait de considérer des conditions
aux limites libres sur une extrémité de la structure (voir (1.3.22h)). Nous expliquons ci-dessous
ces point clés.

Pour traiter le probléme non linéaire (1.3.22), nous utilisons une approche classique, qui a été
utilisée par exemple dans [MRR20] et [FNR19]. Tout d’abord, nous associons au probléme non
linéaire un probléme linéaire (PL) avec des termes sources non homogenes, ces derniers repré-
sentant les non linéarités. Ensuite, apres avoir résolu le probleme linéaire, nous appliquons le
Théoreme du point fixe de Banach pour traiter le probleme non linéaire. Dans cette analyse,
les points cruciaux sont 1’établissement du caracteére bien posé du probleme linéaire (PL) et les
estimations de type Lipschitz utilisées dans 'argument de point fixe. En effet, ces deux étapes
sont interdépendantes dans le sens ou la régularité imposée aux données non homogenes du
probléme linéaire (PL) doit étre appropriée pour obtenir les estimations des termes non linéaires
dans Pargument de point fixe. Cet aspect central se ramene a I’étude de la régularité spatiale
de la vitesse et de la pression du fluide dans le probleme linéaire non homogene. Plus précisé-
ment, nous devons étudier la régularité de la vitesse w et la pression m du systéme de Stokes
stationnaire

{—diva(wm) =F dans , divw =h dans Q, (1.3.28)

w=g sur 'y, o(w,m)n =0 sur I,

ou F, h et g sont données et jouent le role de termes non linéaires. Il y a deux difficultés sous-
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jacents dans 1’étude de ce probleme. Tout d’abord, le domaine 2 possede des coins rentrants aux
points A et B (voir Figure 1.2). Deuxiémement, nous remarquons aussi la présence des points
de junction entre les conditions aux limites de Dirichlet et de Neumann aux sommets C' et D.
En suivant la démarche de [FNR19] (voir aussi [MRR20]), il devrait étre suffisant d’utiliser le
résultat de régularité (R1) déja mentionné dans la Section 1.3.1, qui affirme que

(w, ) appartient & I'espace de Sobolev pondéré H3(Q) x Hj ()
3 (R1)
lorsque F € L}(Q), h € Hy(Q) et g € HZ (Ty),

pour tout 0 € (6*,1), ou 6* € (0,1/2). Cependant, du moins dans la maniére dont les auteurs de
[FNR19] utilisent le résultat de régularité (R1), il n’est pas possible de le reproduire dans notre
cas. Examinons cela plus en détail. Les auteurs de [FNR19] utilisent le résultat de régularité
(R1) dans le cas ou F € L2(Q), h € H(Q) et g € H%(I‘Z) Le fait de considérer F € L?(Q) par
les auteurs de [FNR19] est suffisant pour estimer tous les termes non linéaires encapsulés dans F
dans la norme L%(Q2). En particulier, grace a [FNR19, Lemme 6.3], qui établit que si w € H2(Q)
et n € HY(—L/2,L) avec n(0) = n({s) = 0, alors w,,n appartient a L?(Q2). Cependant, dans
notre cas nous sommes incapables d’estimer ce terme. La raison en est que le cceur de la démons-
tration du [FNR19, Lemme 6.3] repose sur le fait que n(0) = n(¢;) = 0, ce qui n’est pas vérifié
dans notre situation, puisque en général, n(fs) # 0 (voir (1.3.22h)). C’est précisément & cause
de cet argument que les conditions aux limites libres sur une extrémité de la structure posent
des difficultés. Pour cette raisson, nous devons chercher un résultat de régularité alternatif. En
particulier, une version adaptée de (R1) est présentée dans le Théoréeme 2.3.2 du Chapitre 2,
mais en termes d’espaces de Sobolev hétérogenes.

Une option alternative a celle présentée et qui n’a pas été explorée dans ce travail de these,
consiste a travailler directement dans les espaces avec poids. Cela impliquerait, comme point
de départ, d’analyser une décomposition de Leray de I’espace avec poid Lg((l), ce qui revient a
étudier un systeme elliptique avec des conditions aux limites mixtes dans un domaine avec des
coins rentrants.

Le preuve du Théoréme 1.3.4 repose essentiellement sur deux arguments :

2) Etude du systéme linéaire non homogéne.

Nous considérons le systéeme fluide-structure linearisé

v — divo(v,p) = F; dans Q7

divv = div Ggiy dans Q7T

v =g sur E;fp, v=0sur YT UYL v=(8& sur X7I,

o(v,p)n =0 sur X7,

v(0) = vy dans Q,

0i¢1 = (2 sur (0,7) x (0,4s),

BiCo + aA2() + 7 (A2)3¢ = —vFp+ 75+ Fy dans (0,T) x (0, £),
G =0 et 0,1 =0 sur (0,7) x {0},

092G =0 et 02 ¢ =0 sur (0,T) x {{s},

G1(0) =0 et ¢2(0) =¢9 dans (0,£,).

(1.3.29)

Nous prouvons le théoreme suivant :
Theorem 1.3.5. Soit 0 < T < 1. Supposons que vo € HY(Q), ¢ ¢ HEO}(O,ES), F; ¢
L?(0,T; H_%“'O"O(Q)), gt € H{lo}(O,l;H(Fi)) et Fy € L?(0,7T;L%(0,45)). Supposons également
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que Gqiy satisfait les conditions énoncées en (3.4.9), (3.4.10), (3.4.11) et Ggiv|i=0 = 0. De plus,

supposons que les conditions de compatibilité (3.4.14) sont satisfaites. Alors, le systéme (1.3.29)
3+a,2 _1
2 b

admet une solution unique (v, p, 1, (2) appartenant a L*(0,T; H; ()NH (0, T; H 270(Q)) x
1

L?(0,T; Hg*“’l((z)) x H*2((0,T) x (0,45)) x H>1((0,T) x (0,£s)).

Idée de la preuve. Les trois points essentiels de la démonstration sont les suivants :

(a) Constrution d’un relévement pour g et Gqiy.

La construction du relévement z pour g’ est une conséquence du résultat de régularité
donné dans le Théoreme 3.3.1(ii) (voir Proposition 3.4.1). D’autre part, la construction
du reléevement w associé a Ggjy repose sur une combinaison des approches utilisées dans
[FNR19, Theorem 10.2] et [MRR20, Proposition 5.1] (voir Proposition 3.4.2).

(b) Réécriture du systéeme (1.3.29) avec g' = 0 et Ggiy = 0 en termes d’opérateurs.

Une fois introduits les relevements z et w, nous utilisons le Théoréme 3.3.6 pour réécrire
le systeme (1.3.29), avec g' = 0 and Gg;y = 0, sous la forme d’une équation opératorielle.

(c) Régularité de la solution du systéme (1.3.29) avec g' = 0 et Ggiy = 0.

Tout d’abord, nous utilisons l'analyticité du semi-groupe associé a 'opérateur fluide-
structure défini en (3.3.27) (voir Théoreme 3.3.7), afin de déduire, grace au résultat de
régularité maximale [BDDMO07, Theorem 3.1, p. 143], la régularité en temps. Ensuite, la
régularité spatiale découle du Théoréme 3.3.1(ii).

3) Estimations des termes non linéaires et argument de point fize.

Apres avoir établi le caractére bien posé du systeme (1.3.29), la derniére étape de la démons-
tration du Théoréme 1.3.4 consiste a estimer les termes non linéaires et a utiliser un argument
de point fixe. Pour cela, nous considérons I'application N : B(T, R,ug,n9) — B(T, R,ug,n3)
définie par

N(®,9,k) = (4,p,n) pour tout (®,1,k) € B(T, R, ug,n3),

ou (u,p,n) est solution du systéme

Ot — div o (4, p) = Fp(®, 1, k), divii = div Ga (P, k) dans Q7

=g swr X7, 4=0 sur 2L U 6 =myé sur X7,

o(U,p)n =0 sur XL, 6(0) = ug(X, (")) dans Q,

O + a2 + (A2 En = P+ 5P+ Fu(®, k) dans (0,T) x (0,4,), (1.3.30)
n=0 et O;,n=0 sur (0,7) x {0},

92n=0cet 92 n=0 sur (0,T) x {},

1(0) =0 et 7,(0) =73 dans (0, ).

Pour montrer que I'application N admet un unique point fixe, nous utilisons le Théoréme du
point fixe de Banach. On peut en fait montrer que si 7' est suffisamment petit, 'application N est
bien définie, et qu’elle est une contraction stricte. Ces derniers points découlent des estimations
précises des termes non linéaires F s édiv et I s (voir Lemmes 3.5.5, 3.5.6 et 3.5.7).

1.3.3 Chapitre 4 : Simulations numériques du systeme d’interaction fluide-
structure

Tout au long de cette partie, nous considérons la configuration geométrique représentée dans la
Figure 1.2, dont la description précise a été introduite dans la Section 1.2 (voir (1.2.1), (1.2.2)
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et (1.2.4)).

e Formulation du probléme et littérature existante

Dans ce chapitre, nous nous intéressons a ’approximation numérique de la solution du systeme

du+ (u-V)u—dive(u,p) =0 dans Qg,

divua =0 dans QZ,

u=g' sur EiT, u=20 sur ZZUEE,

u = 16y sur 2;, o(u,p)n =0 sur X7,

u(0) = u’ dans Q, (1.3.31)
02+ a2y +yBn, = H(u,p,n) + fs dans (0,7) x (0,£y),

n=0 et J;;n=0 sur (0,7) x {0},

92n=0cet 82 =0 sur (0,T) x {},

17(0) =0 et 9n(0) =73 dans (0,£),

ol u et p représentent respectivement la vitesse et la pression du fluide. Ici, o(u, p) est le tenseur
de contraintes du fluide donné par

o(u,p) = we(u) ~pl, c(u) = L (Vu+ (Vu)"),

avec v > 0 représentant la viscosité du fluide. La condition au bord d’entrée g' = g’ + ﬁg;,
ou g; est indépendante du temps, g;, est une perturbation dépendant du temps, tandis que
représente 'amplitude de la perturbation.

L’opérateur d’amortissement B est donné par :

B=A2=0,

T1?

D(B) = H{y,1(0,Ls).

L’expression de la force H est donnée par

H(uvpvn) = - (U+(u,p)nj7'(t) + O-i(uvp)n;(t)> 1+ (8x177)2 : 62' (1332)

Comme dans ’étude du probleme d’existence de solutions pour le systéme (1.3.31), une premiere
difficulté inhérente a ce type de systéme est le fait que le domaine du fluide change au cours du
temps. Cette problématique est également un obstacle lorsqu’on s’intéresse a ’approximation nu-
mérique du systéme. Pour faire face a cette difficulté, nous utilisons la méthode ALE (Arbitrary
Lagrangian Eulerian) (voir, par exemple, [DGH82], [QTV00], [QF04], [THO06], [FGGOT], [Ric15]).

En ce qui concerne la résolution numérique du systéeme (1.3.31), deux grande stratégies sont
utilisées dans la littérature. La premiere, connue sous le nom de partitionnée, consiste a résoudre
séparément les sous-probléemes du fluide et de la structure, qui sont ensuite couplés a travers des
conditions de transmission. Cette stratégie présente I’avantage de permettre 'utilisation de sol-
veurs ad hoc déja existants. Cependant, cela se fait au prix d’une perte d’efficacité par rapport au
second groupe décrit ci-dessous. Ce second groupe, appelé approche monolithique, est caractérisé
par le fait que les sous-problemes fluide et structure sont résolus simultanément. Comme souli-
gné dans [Ricl5], "cette approche permet 'utilisation de techniques de discrétisation implicites
et de solveurs fortement couplés pour ’ensemble du systeme". L’un des principaux inconvénient
de cette stratégie réside dans son cotit de calcul élevé. La stratégie utilisée dans ce chapitre suit
Papproche monolithique présentée dans [Murl9]. Plus précisément, un algorithme semi-implicite
est employé, ou le mot semi-implicite est compris dans le sens ol le domaine fluide est calculé
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explicitement.
L’approche suivie dans ce chapitre, la méthode ALE et ’algorithme semi-implicite 1, est égale-
ment la stratégie utilisée dans les simulations numériques du probléme de stabilisation traité au

Chapitre 6.

e Présentation de nos résultats

Nous considérons d’abord la transformation ALE A(%,-) : Q.cp — €2y définie par

t
Alt, ) = 1+/ wi(s, ) ds, (1.3.33)
0
ot w(t,-) est solution de I’équation elliptique
Aw =0 dans Q, w=ulp, surI's, w=0 sur I' \ T's. (1.3.34)

Ici, u|r, représente la trace de la vitesse du fluide sur I's et w un relévement.

La discrétisation en temps est traitée a ’aide de la méthode classique d’Euler implicite. Nous
désignons par At le pas de temps et t* = kAt, pour k € N le niveau de temps k. Pour tout k € N,
QF := A(t*, Qef) avec frontiere I'* = ;UL UIFUTy,, ot Ty = T, ULy, et Th =Tk, UTh, UTh
(voir Figure 1.4). Nous désignons par u*, p* et A* les approximations de u(t,-), p(t*,-) et
X(t*, ), respectivement. Ici, A¥ = (AF, Ak ,)\];top,)\’;7bot,)\§7lat)—r représentent les multiplicateurs
de Langrange associés aux conditions de bord Dirichlet. Nous notons également nf et 1% les

approximations de 71 (t*, -) et na(t*, ) définies sur (0, £,), respectivement.

iy,

FA

s,top k
<k
l s,bot

Qk

Ty

FIGURE 1.4 — Domaine physique au niveau de temps k.

Avant d’introduire 'algorithme de résolution, nous considérons le probléme intermédiaire
suivant. Etant donné u, p¥, A wk, nlf et 775C :
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Trouver 4**+! € HY(QF), pF*l € L2(QF), A e H_%(Fk \T,,), nith ph+t e {0}(0 ls) tels que

ﬁk+1 _ uk
‘/Qk ~ ¢ _ af(/\k+17¢) —l-b((,b AkJrl) _|_C(Ak:+1 o k Ak+1’¢)
~k+1 k+1
+/ )‘z ¢+/ }‘ ¢+/ stop

s,top

[, Res [, Ao vec (e,

s,bot s,lat

b(G 1Y) =0, Y € 12 (QF),
/ U -T:/ g T, VTEH_%(FZ'), / . =0, VTGH_%(FO),
T I F0
/k ot = . &y T, Yr e H™ ( ’;top),
1—‘s,top 1_‘s,top
/ G — W&, 7, Vr e H 2(1“8 ), (1.3.35)
Tk rk
s,bot s,bot
/ . = n§+1e2 T, Vre H™ Q(FS lat)
Fﬁ lat F.I: lat
2 771f+1 - 77]f L k+1
| = [Tkt v ety 0.0,

OZS W§+1 - 77]5 k+1 k+1
| R = e 0 + a2t 0
bs k41
_/0 )‘stop e2< 1+(77 )2

_/OZS At 81+ (1 / fiC, V¢ € H(0,4,).

ou

aslv.g) = =2 [ cv):e(@). Wb = [ (Wive)a. evvig)= [ (v-V)v-o.

Qk

‘. 2
ay(m,¢) = —a ; An - A a2(mp, ) = — ; Ang - AC.

Algorithm 1: Semi-implicit algorithm
Pour k> 1:
1 : Résoudre le systeme linéaire obtenu apres 'application de I'algorithme de Newton au systéme

~k+1
(1.3.35) pour obtenir @*+!, pF+1 X N 77]f+1 .

2 : Calculer la vitesse du malllage whtl . QF — R? satisfaisant Péquation elliptique

AWFH =0 dans QF,
whtl = G*1 sur 'Y, (1.3.36)

WEtl =0 sur '\ T'%.

3 : Définir A¥(X) := X + AtwF () et QFFL .= AR(QF).
4 : Définir uFt1: QF1 5 R2 p . QFFL 5 RN QFFL 5 R2 ot whH! : QFFD 5 R2 par

Py Py Py <~k+1
u" i (x) = 0 (®), M) = R), AT @) =2 (®)

et witl(x) = W (%), vx = A*R), x € OF.
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0.0e+00 04 06 08 1 12 14 16 18 2 23e+00
—e—— | —

FIGURE 1.5 — Module de la vitesse Ug du fluide correspondant & Re = 200 (solution station-
naire).

1. Analyse spectrale avec différents parameétres physiques.

En ce qui concerne ’étude du probleéme de stabilisation (voir Chapitre 6), un élément impor-
tant consiste a calculer numériquement le spectre du systéme linéarisé autour d’une solution
stationnaire donnée (dans la Figure 1.5, nous montrons le module de la vitesse du fluide station-
naire pour un nombre de Reynolds Re = 200). Dans ce cadre, nous analysons le spectre d’'un
tel systéme en fixant le nombre de Reynolds Re = 200 ainsi que le coefficient d’amortissement
v = 107% de la structure. Par exemple, dans la Figure 1.6, nous montrons une partie du spectre
correspondante & un coefficient de rigidité o = 107!, Dans cette figure, nous observons deux va-
leurs propres conjuguées instables, que nous désignons par 112 et 34, dont les valeurs précises
sont présentées dans le Tableau 1.1

40 .
30
20

® % o . LA Y
10 Ho=®g et
. . .

3(u)
-

e

%

-15.0 -12.5 -10.0 =75 -5.0 =25 0.0 25

R(p)

FIGURE 1.6 — Partie du spectre fluide-structure correspondant a Re = 200, un coefficient de
rigidité o = 107!, et un coefficient d’amortisemment v = 1075.

H1,2 3,4 M5 2] M7 8,9 H10
3.05 +21.617 | 0.50+11.96¢ | —0.16 | —0.69 | —0.79 | —1.86 £ 27.917 | —1.94

TABLEAU 1.1 — Premiéres valeurs propres du systéme fluide-structure (ordonnées selon la partie
réelle) correspondant & un nombre de Reynolds Re = 200, coefficient de rigidité o = 1071, et
coefficient d’amortissement v = 1075,
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FIGURE 1.7 — Partie réelle de la composante horizontale de la vitesse du fluide associée aux
valeurs propres instables ;2 et pg 4, pour a = 1071, (a)-(c) Fonctions propres associées & ji
et g, respectivement. (b)-(d) Fonctions propres associées a us et 4, respectivement.

2. Simulations numériques du probléme direct.

En utilisant I’algorithme 1, nous présentons plusieurs simulations numériques dans le méme
esprit que pour I'analyse du spectre : nous fixons le nombre de Reynolds a Re = 200 et le co-
efficient d’amortissement v = 107, Par exemple, dans la Figure 1.8, nous montrons le module
de la vitesse du fluide & différents instants, correspondant & une valeur de coefficient de rigidité
a = 107!, La Figure 1.9 montre le déplacement de la structure aux mémes instants.

00e400 04 06 08 1 12 14 16 18 2220400 000400 04 06 08 1 12 14 16 18 2220400
h L n

— e — — e —

FIGURE 1.8 — Snapshots du module de la vitesse a différents instants correspondant au coefficient
de rigidité o = 10~! et au parameétre de perturbation 8 = 1.5 pour Re = 200.
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0.008 —— Reference line (n=0) 0.008 —— Reference line (n=0) 0.008 —— Reference line (n=0)
0.006: 0.006: 0.006:
0.004: 0.004: 0.004:
0.002 0.002 0.002
E 0. g 0. g 0.
S : S - <
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FIGURE 1.9 — Snapshots du déplacement de la structure (ligne rouge en pointillés) a différents
instants correspondant au coefficient de rigidité o = 10~! et au parameétre de perturbation
B = 1.5.

1.3.4 Chapitre 5 : Stabilisation du systéme d’interaction fluide-structure

e Formulation du probléme et littérature existante

Commengons par établir la notation qui sera utilisée tout au long de cette section.

er= U (B x%0). == U {8 xDy),

t€(0,00) +€(0.00)
Q> = (0,00) x Q, ¥ = (0,00) x I, (1.3.37)
X =(0,00) x Ty, X =(0,00) x Ty,
XX =(0,00) x Ty, 30° =(0,00) x Ty,

Soit (us, ps) solution du systeme

(us - V)us — divo(us, ps) =0, dans Q,
divugs = 0 dans €2,

(1.3.38)
us =g, sur [, ug =0 sur I'\ T,

o(ug,ps)n =0 sur I'y,.
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Considérons le systéeme d’interaction fluide-structure

du+ (u-V)u—dive(u,p) =0 dans Q7°,
diva =0 dans Q7°,

u=g sur X°, u=0 sur X7, u=0 sur X;°,

u =€ sur X7°, o(u,p)n =0 sur X7,

u(0) = u’ dans Q, (1.3.39)
020 + a2y +y(A2)zq = H(u,p,n) + fo + f dans (0,00) x (0,£),

n=0 et 0;,n =0 sur (0,00) x {0},

92 n=0 et 82 n=0 sur (0,00) x {ls},

1(0) =0 et 9mn(0) =n3 dans (0,Ls),

H(u,p,n) - (U+<u’p>n7—;—(t) + O’i(u7p)n;(t)) L+ (ax177)2 : 627
avec

U:t(uvp) = U(u(t,JCl,U(t, .’L'l) + 6),p(t,x1, U(tw”«"l) + 6))

La condition au bord en entrée g = g5 + 3gp, ou g, est indépendante du temps et g, est une
perturbation dépendant du temps. La fonction fs est indépendante du temps et est choisie de
telle sorte que le triplet (u,n,7:) = (us,0,0) constitue une solution stationnaire du systéme
(1.3.39). Ainsi,

fs = o(us, ps)n™ - & + o(us, ps)n”~ - &, (1.3.40)

ot n' (respectivement n~) représente la normale unitaire exterieure & I'] (respectivement I'; ).

Le but de ce chapitre est de trouver un controle sous la forme f = Z;yél fi(t)w;(z1), donné
en boucle fermée, capable de stabiliser le systéme (1.3.39) avec un taux de décroissance expo-
nentielle prescrit w > 0, localement autour (u,n,7n;) = (us,0,0). Ici, les profils w; sont choisis
de maniere appropriée afin de garantir une propriété de stabilisabilité.

Dans ce qui suit, nous présentons une liste non exhaustive de travaux portant sur la stabili-
sation de modeles fluide-structure.

A notre connaissance, un premier travail dans cette direction est I'article de Raymond [Ray10], ot
il considére un systeme fluide-structure couplant les équations de Navier-Stokes incompressibles
dans un domaine rectangulaire 2D avec des conditions de Dirichlet, et une équation d’Euler-
Bernoulli amortie avec des conditions encastrées. Le but de ce travail est de trouver un controle
en boucle fermée, capable de stabiliser expontiellement le systéme autour de la solution station-
naire nulle, avec un taux de décroissance arbitraire. Dans la méme ligne, les auteurs de [FNR19],
étudient un systeme similaire dans lequel, au lieu de considérer des conditions Dirichlet pour
le fluide, ils ont considéré des conditions mixtes de type Dirichlet-Neumann. Dans cet article,
les auteurs ont stabilisé le systéme autour d’une solution stationnaire qui n’est pas nécessai-
rement nulle, avec un contrdle de dimension finie en boucle fermée. Dans le cadre du méme
modele analysé dans [Ray10], mais dans le contexte de solutions faibles, les auteurs de [BT17]
étudient le probléeme de stabilisation du systeme autour d’une solution stationnaire qui n’est
pas nécessairement nulle, avec un contréle donné sous la forme en boucle fermée qui agit sur le
domaine externe du fluide. Dans [MR17], les auteurs étudient un systéme couplant les équations
de Navier-Stokes incompressibles et une équation des ondes amortie. Ils prennent également en
compte des conditions aux limites de type peridédique. La stabilisation est effectuée autour de la
solution stationnaire nulle, avec un contréle de dimension finie en boucle fermée qui agit sur une
partie de la frontiere du fluide. Dans un contexte légerement différent en termes de dynamique
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régissant la structure, dans [Dell9], 'auteur étudie un probléme de stabilisation d’'un modéle
fluide-structure couplant les équations de Navier-Stokes décrivant la dynamique du fluide, et une
équation différentielle ordinaire décrivant la dynamique de la structure. Dans ce cas, le controle
qui agit sur la structure, est de dimension finie en boucle fermée.

o Présentation de nos résultats

La principale contribution de ce chapitre est la preuve de la stabilisation exponentielle du sys-
teme (1.3.39), localement autour d’une solution stationnaire. Avant d’énoncer les résultats de ce
chapitre, nous précisons que nous utiliserons la notation déja introduite dans la Section 1.3.2,
a la différence que, lorsqu’il est fait mention d’un certain 7' arbitraire, dans ce contexte nous
considérons T' = oo.

La premiere difficulté, et qui est intriseque a ’étude des systeémes fluide-structure, est le fait
que le domaine du fluide varie au cours du temps. Pour faire face a cette difficulté, nous défi-
nissons un difféomorphisme X entre le domaine de référence ) et le domaine physique €, a
I'instant ¢. Cette transformation, introduite dans le Chapitre 5 (voir (5.2.8)), est utilisée pour
définir le changement de variables suivant :

U(t,z) = ¢ (u(t, X(t,2)) — us(2)), Bt 2) = & (p(t, X (t,2)) — ps(2)),
Mt z1) = Qth(t7 Zl)a ﬁ2<t7 Zl) = eWtatn(ta 1), f(t) = €Wtf(t)a f: e‘Ut.ﬂ
ﬁit(tv Zl) = €wt77i<t7 zl)u ﬁét(ta 21) = GWtatni(tv 21)7

gp(tv Z) = ewtgp(ta Z)a i’ =u’ - Us,

(1.3.41)

pour tout (¢,z) € (0,00) x Q, avec w > 0. Ainsi, nous obtenons que (4, p,ni,n2) satisfait le
systeme

ou —divo(a,p) + (us - V)u + (- V)us — A1y — Aoljp — wi = e*“tf‘f(ﬁ,ﬁ, n1,m2) dans Q°°,
divi = et div Gayy (T, 1) + A3y dans Q*°,

u=g, sur X°, u=0 sur ¥° U X,

=)}

=126y sur X2°, o(0,p)n =0 sur X2°
1(0) = 0’ dans Q,
O — M2 —wijy = 0 dans (0,00) x (0,£s),
Oty + Ay + Y(A2) 27 — A4 — wifp = 77D — 7 P+ e Fa(@, i)
+7 dans (0,00) x (0,4,),
m =0 et 0,,m =0 sur (0,00) x {0},
92 =0 et 9271 =0 sur (0,00) x {{s},
7(0) =0 et 72(0) =Y dans (0,4s),

(1.3.42)

ou les opérateurs linéaires Ay, Ay, A3 et Ay sont définis dans (5.2.12), tandis que 1'~“f, édiv et Fl
sont définis dans I’appendice A.

Avant d’énoncer les principaux résultats de ce chapitre, nous introduirons la notation et les
espaces utilisés tout au long du cette section.
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Soit « € (0,a*) et § € (0*,1). Considérons d’abord la classe

€ L2(0, 00, H2 (0, 1)) N HY(0, 00; H3H9(Q), 1)
u » 005 H§ n(-) » 005 n(-))»

1 (03
p € LX0,00; HZ " (Q,))), (1.3.43)
n € L*(0,00; Hy 410, 45)) N H?(0,00; L*(0, £5)).
En partant de la Définition 1.3.2 avec T' = oo, nous introduisons l'espace
2 3ta2 1 —14a0
Zoo = | L7(0,00; HF * 7 (22)) N H (0,00; H"27%7(02))
(1.3.44)

L (03
x L2(0, 00, H2 " () % H?, 1((0,00) x (0, £5)),

que nous munissons de la norme

I mlize =l s

(1.3.45)
+ llpll
L2

( ,oo;H(;%Jra’l) " HnHH?t’)Q,es}((O’OO)X(O’ES)’
ol

Hn”H?(’)Z’[S}((O,oo)X(O,ZS) = H77||H4,2((0700)><(0,ES)) + HntHHQ*l((O,oo)X(O,ES))~

Pour un R > 0 donné, nous introduisons également ’ensemble

Boo(R,u0,18) i={(8.5.n) € Zec | (@, 5.0)]z.. < R, 1 € B(0,%)

. (1.3.46)
et 6(0) = ug, 7(0) = 0, 7(0) = n3}.

Nos résultats reposent sur trois hypotheses. Commencgons par décrire la premiere hypothese, qui

concerne la régularité des solutions du systéme stationnaire (1.3.38).

Hypothése 1. Soit « € (0,a™) et § € (6*,1). Supposons que gs € H(T';) et que le
. 21,2 lial (Al)

systeme (1.3.38) admette une solution (us,ps) € Hy () x HY 7 ().

Les deux autres hypotheéses A2 et A3 sont précisées dans la Section 5.7. Dans I’hypotheése A2, on

énonce une condition concernant les spectres des opérateurs adjoints d’Oseen et de la structure.

Plus précisément, on suppose que les parties du spectre, contenues dans le demi-plan {\ €

C | RA > w}, des opérateurs adjoints d’Oseen et de la structure sont disjointes. D’autre part,

I’hypothése A3 énonce une propiété de prolongement unique.

Nous sommes maintenant en mesure d’énoncer les résultats principaux de ce chapitre.

Theorem 1.3.6. Soit a € (0,a™). Supposons que les hypothéses A1, A2 et A3 sont satisfaites.
Pour tout w > 0, il existe une famille (w;)~e, C H?o} (0,45) et un opérateur

K € L(L*(Q) x H{y(0,45) x L*(0,£,), RY),

tels qu’il existe R > 0 et r > 0, tels que pour tout (W n9) € H(Q) x H{QO}(O,KS) et g, €
H%o} (0,00; H(I;)) satisfaisant

a’ g,(0,-) surTy, 4% =0 sur T, UT,,
0

. ) o (1.3.47)
u” =1n5(0,-)€ sur 'y, diva’ =0 dans (,
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et
16|11 (@) + HnSIIHgO}(o,eS) + 18pll 1 (0,005 (T,)) < T (1.3.48)

le systéme (1.3.42) muni du contrile feedback
~ NC
f= ZICi(ﬁ,ﬁ, m)wi, avec K = (Kq,...,Kn.),
i=1

admet une solution (Q,p,7) € Beo(R,ug,n3) satisfaisant

I(ag, ),

=)

(t,-), me(t, '))HH%*“(Q)xH3(0,eS)xH1(0,es) < CR pour tout t > 0,

ou C >0 dépend de « et r.

En conséquence du résultat précédent, on obtient le théoreme suivant.
Theorem 1.3.7. Soit a € (0,*). Supposons que les hypthéses A1, A2 et A3 sont satisfaites.
Pour tout w > 0, il existe une famille (w;)YNe, C H{QO} (0,45) et un opérateur

K € L(L*(Q) x H{py(0,45) x L*(0,£5), RY),

tels qu’il existe r > 0, tel que pour tout (u°,n9) € HI(Q)XH{QO}(O,KS) et e¥lg, € H{lo} (0, 00; H(T;))
satisfaisant
w —u, = gp(0,-) sur Ly, w’ =0 sur, UT,,

0

0 - 0 (1.3.49)
u’ —u; =105(0,)8 surly, diva’ =0 dans Q,

et
[ = usllm @) + (731 520.0) + 1€ 8ol 11 0,00sm1(r)) < 75 (1.3.50)
le systéme (1.3.39) muni du contréle feedback

Ne
f = Z’Cl(u © Xil - u8777777t)wi7 avec ,C = (]Cl) .. 7’CNc)7
=1

admet une solution (u,p,n) appartenant d la classe (1.3.43) satisfaisant

[ (a0 ) = (e, (e, )

< —wt
HH%+“(Q)xH3(o,zs)xH1(o,zs) < Ce™™ pour tout t >0,

ot la transformation X : Q@ — Q,« est celle définie dans (1.3.38), et C > 0 dépend de o et r.

Avant de décrire les éléments essentiels de la preuve du Théoréme 1.3.6, commengons par
présenter I'idée générale de la démonstration.

1) Description générale de la preuve.

L’approche utilisée est classique. La stratégie consiste d’abord a stabiliser le systeme linéarisé.
Ensuite, en utilisant le loi de controle en boucle fermée obtenue a cette étape, nous montrons,
a laide d’'un argument de point fixe, qu’elle permet également de stabiliser le systéme non li-
néaire, a condition que certaines hypothéses appropriées sur les données initiales et aux bords
soient satisfaites. Dans le contexte des modeles d’interaction fluide-structure, cette approche a
été utilisée par Raymond dans [Ray10]. Une stratégie similaire a été adoptée, par exemple, dans
[FNR19] et [MR17].

La premiere chose a observer est que les difficultées rencontrées dans 1’étude de l’existence
de solutions fortes persistent dans l'analyse du probleme de stabilisation. Ces difficultés sont
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liées a la présence des termes non linéaires F s édiv et I s dans le systéme (1.3.42), ainsi que le
fait de considérer des conditions aux limites libres sur une extrémité de la structure. Cependant,
de nouvelles difficultés apparaissent, que nous détaillons ci-dessous.

— Analyse des problémes de valeurs propres. Puisque le systéme est linéarisé autour d’une
solution stationnaire non triviale, I’analyse du probleme aux valeurs propres direct né-
cessite de traiter une contrainte algébrique de la forme suivante :

divv = Azm dans , (1.3.51)

ou l'opérateur linéaire A3 n’est pas nécessairement nul. Dans le probleme de stabilisation
étudié dans [Ray10] (voir aussi [MR17]), on voit que cette difficulté n’est pas présente,
puisque 'opérateur A3 = 0, du fait de la linéarisation effectuée autour de la solution
stationnaire nulle.

— Equivalence entre les formulations sous forme d’EDP et sous forme d’opérateur. Etroite-
ment liée a la difficulté mentionnée ci-dessus se trouve la nécessité, dans ’analyse spectrale
du systeme linéarisé, d’établir I’équivalence entre les formulations en équations aux déri-
vées partielles et les formulations en termes d’opérateurs, tant que pour les problémes aux
valeurs propres directs que pour les adjoints. Cette considération a une importance parti-
culiere dans le cadre de simulations numériques, car dans cette contexte nous travaillons
directement avec la formulation EDP.

La preuve du Théoreme 1.3.6 peut étre divisée en deux arguments principaux :

2) Ftude du systéme linéarisé.

Nous considérons le systeme fluide-structure linearisé

Ov —divo(v,q) + (us - V)v+ (v-V)uy, — Ay — Aomp —wv = Fy dans Q*°,

divv = Asgn + div Ggiy dans Q°°,

V=g, sur X5°, v=1p€ sur X°, v=0 sur Z° UL, o(v,q)n =0 sur X7°,

Oom —n2 —wn; =0 in (0,00) x (0,4),

Dz + al + Y (A2)3ny — Ay —wip = —7F g+ 75 g+ Fy + f dans (0,00) x (0,4),
m = 0,01 =0 sur (0,00) x {0} et 92 m =0,02 m =0 sur (0,00) x {£s},

m(0) =0 et 172(0) =19 dans (0, £).

(1.3.52)
Nous prouvons le théoreme suivant :
Theorem 1.3.8. Soit o € (0,a*) et § € (6%, ) Supposons que les hypothéses Al, A2 et A3
sont satisfaites. Supposons que vo € HY(Q), n) € H{O}(O,ES), Fy ¢ LZ(O,OO;H_%JFO"O(Q)),
gp € H{IO}(O,OO;H(E)), Fy € L?(0,00; L?(0,4)), et que Gqjy satisfait (5.8.6), (5.8.7), (5.8.8) et
Giv|t=0 = 0. Nous supposons aussi les conditions de compatibilité suivantes :

vo=0 surly, vo=0 surI,UT,,,
vo = 12(0,-)€y sur Ty, divvyg=0 dans (, (1.3.53)
(PV0707778) S [D(A)7Z]1/27 Pvy € [D(4; Vn Fd(Q))7V’9L,Fd(Q)]1/2'

Alors, le systéme (1.3.52) avec

f= Z (v,m1,7m2) ' Jwi,

ot opérateur IC € E(Ho RNe) est défini en (5.7.14), admet une um’que solution (v,p,n1,m2) ap-

partenant a L?(0, oo; H2+aZ(Q))ﬁHl(O,oo;H_%+o‘70(Q))><L2(0 00; H2+a1(Q))xH4’2((0,oo)><
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(0,£5)) x H>'((0,00) x (0, £)).

Idée de la preuve. La preuve de ce résultat repose sur les trois mémes éléments déja mention-
nés dans la preuve du Théoréme 1.3.5 de la Section 1.3.2. Par conséquent, nous nous concen-
trerons sur les ingrédients de la preuve qui sont directement liés & la construction de la loi de
controle.

(a) Réduction de la stabilisabilité du systéme (1.3.52) a la stabilisabilité du systéme projeté.

Le point de départ de 'analyse est le fait que la résolvante de 'opérateur fluide-structure
(A, D(A)) est compacte, et par conséquent le spectre de A est ponctuel. Nous avons alors
la décomposition suivante :

Z="7,07Z, et =177

ou

Z,= P Gr(\y) et Z; = P Gr(N)),

J€EJu J€Ju

avec Jy, = {j e N* | R)\; > —w} et
Gr(Aj) = span{RGc(Aj) USGc(Aj)} et Gr(Aj) = span{RG(N)) USGr(A))}

désignant les espaces propres généralisés réels. Ici, les sous-espaces Z, et Z; sont in-
variants sous (et““)tzo et (etA*)tZO, respectivement. Ensuite, nous désignons par II, la
projection de Z sur Z, selon Zg et par Il la projection de Z sur Zg selon Z,.

La Proposition 5.7.2 nous permet de caractériser I'opérateur de projection II,,. Plus pré-
cisément, ce résultat montre I'existence de bases bi-orthogonales {(Pvs,71,i,72,i) }; ;< N,

et {M*(Pq)i, G, Cg}i)T} de Z,, et Z; respectivement, telles que

1<i<Ny

Ny

Hu(Vﬂ?lﬂh)T — Z <(V77717772)T5M*(P@i561,ivg2,i)—r>z 7! (Pvianl,i)UZ,i)Ta
i=1 ’

pour tout (v,n1,m2)" € Z. Ici, P désigne l'opérateur de Leray, N, = dim(Z,) et M est
la matrice de masse définie en (5.3.37).

Considérons le systeme

Ov —divo(v,q) + (us - V)v+ (v- V)ug — Aim — Agme —wv =0 dans Q°,
divv = Asn; dans Q°°,
v =16 sur £3°, v=0 sur X\ X°, o(v,q)n =0 sur X°,
O¢m — 2 —wn = 0 dans (0,00) x (0,£5),
Bim + A2y + Y (A2) 2 — Ay — wip = =7 g+ 75°g
+ 3N fiw; dams (0,00) x (0,£5),
m =0,80;,m =0 sur (0,00) x {0} et 92 m =0,02 m =0 sur (0,00) x {{s}.

(1.3.54)
Nous avons que le systéme (1.3.54) peut étre réécrit de la maniére suivante :
p Pv Pv Pv pPvY
— = (A4 wl + Bf, 0O=1] 0 1,
a | ™ ( )| m m | (0) . (1.3.55)
2 2 712 2

(I = P)v = VNgiyAzm — V.Ngnp,
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N
ott Bf =3 £i(0,0,(I + "~ No) " lwy) "

i=1
Proposition 1.3.3. Le triplet (Pv,n1,1m2)" € D(A) est la solution de la premiére équa-
tion de (1.3.55), si et seulement si,

Pv Pq)j
C’u = < 771 7M* Cl,j > €t (VS7771,87772,S) = HS(PV77717772)T7
' 25 /" 20/ 1<jem,
satisfont
d 0
7Cu = (Au + WIRNM)CU + Bufa Cu(o) = Cuv
a|v Vs Vs Ve (1.3.56)
@ Mms| = -As,w M,s + Bsf7 M,s (0) =II; | 0 5
2,5 2,5 2,5 77(2]

ot la matrice A, est donnée par

Au = [Aijli<ij<n. Nij= <~A(Pvi’771,ia772,i)T7M*(P(I)j’Cl,ja C2,j)T>Z -

PvY P®;
Q= < 0 |, M*| G > et B, = I,B.

' 25 /" 20/ 1<jen,

Etant donné que l'opérateur As o = II5(A + wl) satisfait
|| tAs lzz) < Ce ' Wt >0, 0<es < dist(Rspec(Asy,),0),

on voit que la stabilisabilité du systeme linéarisé se réduit a la stabilisabilité du couple
(Au + wIRNu , Bu)

Stabilisabilité du couple (Ay, + wlgn,, By).

Theorem 1.3.9. Supposons que les hypothéses A1, A2 et A3 sont satisfaites et que
les fonctions (w;)1<i<n, sont donné par (5.7.3). Alors, le couple (A + wlgn,,B,) est
stabilisable.

Idée de la preuve. Le cceur de la preuve est I'utilisation de [BDDMO07, Proposition 3.3,
p.492] qui nous permet d’établir que le couple (A, + wlpn,,B,) est stabilisable, si et
seulement si,

ker(A — A*) Nker(B*) = {0} pour tout A € C tel que R\ > —w.

C’est précisément a ce stade que nous utilisons les hypotheses A2 et A3.
Loi de contréle feedback.

Grace au Théoréme 1.3.9 et au fait que —(A, + wlgn, ) est stable, il découle de [KR09,
Theorem 3] que 1’équation de Riccati (de petite dimension)

Qu € LIRM), Q,=Q, >0,

- T (1.3.57)
(Au + UJI]RNu)Qu + Qu(Au + WI]RNu) - QuBuBu Qu =0

admet une unique solution. Nous introduisons maintenant I'opérateur K, € L(Zg, RNe),
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défini par
Pv N, [PV P®;
Kplm | = ZK2’9< mo|, M| G > (1.3.58)
” = 2 G2 Zo/ 1<i<N,
On a donc :

Theorem 1.3.10. Sous les hypothéses A1, A2 et A3, l'opérateur KC,, introduit en (1.3.58)
fournit une loi de contréle pour le couple (A+wl, B). De plus, Uopérateur A+wl + BICy,
avec domaine le D(A+ wl + BK,) = D(A), est le générateur infinitésimal d’un semi-
groupe analytic exponentiellement stable sur Z.

(d) Utilisation de la loi de contréle K dans le systéme linéarisé non homogéne (1.3.52).

La relation

Pv v
’Cp m =K m (1.3.59)
2 2

(voir Proposition 5.7.4) nous permet d’établir le lien entre la loi de contrdle I, et la loi
de contréle K. Cette relation peut étre comprise comme le lien entre "la loi de controle
dans I’équation d’opérateurs et la loi de contrdle dans 1’équation aux dérivées partielles
(EDP)", nous permet de travailler directement avec 'EDP.

3) Estimations des termes non linéaires et argument de point fize.

La derniére étape de la preuve consiste a estimer les termes non linéaires et a utiliser un argument
de point fixe. A cette fin, nous définissons application N : B (R, ug,13) — Boo(R,ug,79)
par L -

N(®,4,k) = (0,p,7) pour tout (®,¢,k) € Boo(R,u0,73),

ou (u,p,n) est solution du systéme

8t — div o(U, p) — A17] — Aol = e “'F§(®,), k) dans Q,

divi = Asn; + e “tdiv (A}div(@, @) dans Q°°,

u=g, sur X°, u=0 sur ¥y UX2°, U= sur X3°,

o(t,p)n =0 sur X°, 1(0) =u° dans ,

02 + a2 + y(A2) 27, = - P+ e E(®, k) + XN, Ki(@, 7, 5)w; dans (0,00) x (0, £s),
n=0 et 0,7 =0 sur (0,00) x {0},

9210 =0 et 02 7=0 sur (0,00) x {{},

A(0) = 0 et 7(0) = nd dans (0,£,).

(1.3.60)

En prenant r > 0 et R > 0 de mani¢re appropriée, on peut démontrer que I’application N est
bien définie, et qu’elle est une contraction stricte. Finalement, I’existence d’un unique point fixe
de N découle du Théoréeme du point fixe de Banach. Ici, les estimations présentées dans les
Lemmes 5.9.2, 5.9.3 et 5.9.4 sont essentielles.

1.3.5 Chapitre 6 : Simulations numériques du probleme de stabilisation du
systéme d’interaction fluide-structure

Tout au long de cette section, nous considérons la configuration geométrique représentée dans la
Figure 1.2, dont la description précise a été introduite dans la Section 1.2 (voir (1.2.1), (1.2.2)
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et (1.2.4)).

e Formulation du probléme et littérature existante

Dans ce chapitre on s’interesse a la simulation numérique de la stabilisation du systeme d’inter-
action fluide-structure

du+ (u-V)u—divo(u,p) =0 dans Q;°,
divu =0 dans @;°,

u=g;+g, sur;°, u=0 sur 37,

u =0 sur X%,

u =6 sur X7°, o(u,p)n =0 sur X3,

u(0) = u’ dans Q, (1.3.61)
020+ aAn+~Bn, = H(u,p,n) + fs + f dans (0,00) x (0,£s),

n=0 et d;;n =0 sur (0,00) x {0},

D2 n=0 et 92 n=0 sur (0,00) x {s},

7(0) =0 et 9mn(0) =13 dans (0,4s),

a l’aide d’un contréle f qui agit sur I’équation de la structure. Avant de décrire le probléme plus
en détail, introduisons quelques notations.

Dans le systeme (1.3.61),
H(u,p,n) = — (07 (u,p)nfy + o~ (wphny ) 1+ @0 m)? - &,

U:t(uvp) = U(u(t,JCl,U(t, xl) + 6),p(t,x1, n(t7x1) + 6))

L’opérateur d’amortissement B est donné par

avec

B=A2=0;

1)

D(B) = Hyg 40, 4).

La condition au bord en entrée g’ est indépendante du temps, tandis que g; est une perturbation
de g! (dépendante du temps).

Considérons le systéme stationnaire

(us - V)us — divo(ug,ps) =0, dans Q,
divug; = 0 dans €,

- (1.3.62)
us = géu on Fi, Us = 0 sur F\F“

o(us,ps)n =0 sur T',.

La fonction fs est indépendante du temps et est choisie de telle sorte que le triplet (u,n,n:) =
(us,0,0) constitue une solution stationnaire du systeme (1.3.39). Ainsi,

fs = o(ug,ps)n™ - & + o(ug, ps)n~ - &, (1.3.63)

ol nt (respectivement n~) représente la normale unitaire extericure a I'Y (respectivement I'y).
Nous supposons aussi que la fonction f (qui joue le role de controle) s’écrit sous la forme

N
f=> fithw;(z), (1.3.64)
j=1
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ou les fonctions w; sont choisies de maniere appropriée.
L’objectif de ce chapitre est de simuler numériquement le probleme de stabilisation suivant :

Trouver un contréle f donné sous la forme de boucle fermée, capable de stabiliser le systeme
(1.3.61) autour de la solution stationnaire (u,7,7:) = (us,0,0), & condition que g, u’ —u, et
79 soient suffisamment petits dans certains espaces fonctionnels appropriés.

En plus de la difficulté liée au fait que le domaine du fluide change au cours du temps, il y
a maintenant la difficulté supplémentaire du cacul du contrdle. Un premier travail qui aborde
ces problémes conjointement, traitant un probleme de stabilisation d’un systeme d’interaction
fluide-structure, se trouve dans [FNR] (voir aussi [Ndil6]). Dans ces travaux, le calcul numérique
du controle feedback est basé sur l'utilisation d’une équation de Riccati de petite dimension,
grace a une projection du systeme sur ’espace inestable. Une particularité de ces travaux est que
les simulations numériques sont menées dans un domaine fixe. Le modele d’interaction fluide-
structure considéré dans ces travaux, est un systéme couplant les équations incompressible de
Navier-Stokes et une structure modélisée par une équation d’Euler-Bernoulli avec des conditions
encastrées. D’autre part, dans [Dell8], une étude d’un probléme de stabilisation d’un systéme
couplant les équations incompressible de Navier-Stokes et une équation différentielle ordinaire
modélisant la structure est effectuée. Dans ce travail, une stratégie similaire a celle utilisée dans
[FNR] est mise en ceuvre pour construire le controle feedback. La principale différence entre les
deux travaux est que, contrairement a l’approche utilisée dans [FNR], ou tous les calculs du
probléme en évolution sont effectués dans un domaine de référence fixe, dans [Del18] la résolu-
tion du probléeme d’évolution est menée dans le domaine physique en utilisant la méthode de
domaines fictifs.

e Présentation de nos résultats

La stratégie utilisée dans ce chapitre differe de celle utilisée dans [FNR]. Pour comprendre
les différences entre eux, commencgons par mentionner les principaux éléments de [FNR] :

(1) Le premier aspect important est que, pour réécrire le systéme d’interaction fluide-structure
dans le domaine de référence, les auteurs utilisent une tranformation géométrique expli-
cite. Ensuite, la linéarisation du systeme résultant est effectuée "manuellement". Puis, le
calcul de la loi de controle est realisé dans le domaine de référence €.

(2) Le deuxiéme point important est qu'une fois la loi de contréle pour le systéme linéarisé
est calculée dans le domaine de référence fixe €2, elle est injectée dans le systéeme non
linéaire, qui est alors résolu dans le domaine de référence.

Comparons maintenant la stratégie adoptée dans [FNR] avec celle utilisée dans ce chapitre.

(1b) Pour réécrire le systéme d’interaction fluide-structure dans le domaine de référence, nous
n’utilisons pas la transformation géométrique comme dans [FNR]. Au lieu de cela, nous
considérons une transformation définie en termes d’une extension harmonique dans €2 de
la trace du déplacement de la structure. Ensuite, une fois le systéme non linéaire reformulé
dans sa forme faible sur le domaine de référence fixe €2, la linéarisation est effectuée a ’aide
d’une routine fournie par la bibliotheque GetFEM+-+. De maniéere similaire a I’approche
utilisée dans [FNR], la loi de controle est calculée sur le domaine de référence fixe .

)

(2b) De maniére analogue a I’approche adoptée dans [FNR], la loi de controle calculée sur le
domaine de référence fixe €2 est appliquée au systéme non linéaire, qui contrairement &
[FNR], est résolu sur le domaine physique €2, en utilisant 'algorithme 2.

En résumé, les principales différences entre les stratégies utilisées dans [FNR] et celles utilisé
dans ce chapitre sont les transformations permettant de réécrire le systeme dans le domaine de
référence et ’approche pour résoudre le probleme direct différent dans le deux cas.



1.3. Résultats de la these 33

Nous commencons par rappeler la stratégie utiilsée pour faire face au fait que le domaine peut
changer au cours du temps.

Nous considérons d’abord la transformation ALE A(t,-) : Qcy — €2y définie par

Alt,) =T+ /0 "w(s, ) ds, (1.3.65)

ot w(t,-) est solution de I’équation elliptique
Aw =0 dans Q, w=ulp, sur 'y, w=0 sur I'\ T',. (1.3.66)

Ici, u|p, représente la trace de la vitesse du fluide sur T's.

La discrétisation en temps est traitée a 'aide de la méthode classique d’Euler implicite. Nous
désignons par At le pas de temps et t* = kAt, pour k € N le niveau de temps k. Pour tout k € N,
OF := A(t*, Q,.5) avec frontiere T'* = Fiurour’;urn, oulg = T,Uly et Th =Tk, UrY,  UTh
(voir Figure 1.4). Nous désignons par u*, p et AF les approximations de u(tk,-), p(tk,-) et
X(t*, ), respectivement. Ici, AF = (AF, Ak AF top,)\s bots AF lat)T représentent les multiplicateurs

s,lat

de Langrange associés aux conditions au bord de Dirichlet. Nous notons également nf et n}
I'approximation de 71 (t*,-) et no(t*,-) définie sur (0, £;), respectivement.

Avant d’introduire I’algorithme de résolution, nous allons considérer le probléme intermédiaire
suivant. Etant donné u®, pk, X\¥, wk, n¥ et n§, considérons le probléme suivant :

k+1

Trouver @1 € H'(QV), p*1 e L3(QF), X € H2(DF\ L), gf ™1 0™ € H2,(0,£) tels que

ottt Gh 1 bl B+ L _ Wk ght!
[ b= (@) + b6, 5 ) + o[ T ¢)
Skt SN
+/>\z- </b+//\+ ¢+/ Asiop” @
etop
o
—l—/ sbot o, + / Slat b, V¢EH1(Q]€)
sbot s,lat
b(ak T, )—0 Vip € L2(QF),
/ =/ g1, Vr e H 3(T)), / @l r =0, Yr e H3(Iy),
T; L '
/ Gl — nyt&y -1, Yr e H™ 2(Fstop)
Fk Fk
s,top s,top
/ G = ey T, Vr e H- Q(Fsbot)
FI: bot Fl;,bot (1 367)
/ Gl — g8, T, Yre H 2(T olat):
LY o Fl;lat
s Lk p1
/0 e [k vee gy 0.0
byt — e 1
Tg_a( ,¢) +az(ns Q)
0 Y
S ~k+1
_/0 Xostop - €2Cy/1+ (0} ,)?
b 1
—A )‘bot eQC 1 ( k )2
/ wi(21)¢(21) f +/ fsC, VC € Higy (0,L5).
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ou

a(v.9) = =2 | e(v):=(6), bea) = [ (vl cviv.)= [ (v-V)v-o.

Qk

ls ls
a3, €)= —a [ An-AC ad(m.¢) = = /0 Az - AC.

Algorithm 2: Semi-implicit algorithm

Pour £ > 1:

1 : Résoudre le systeme linéaire obtenu apres avoir appliqué l'algorithme de Newton au systéme
(1.3.35) pour obtenir a*+!, pF+l, S\kﬂ, nitt bt

2 : Calculer la vitesse du maillage W**! : QF — R? satisfaisant I’équation elliptique

AwWFl =0 dans QF,
whtl = G**! sur 'Y, (1.3.68)
WEtl =0 sur '\ T'%.

3 : Définir A¥(X) := X + AW () et QFFL .= AF(QF).
4 : Définir uFt1: QF1 5 R2 p . QFFL 5 RN QFFL 5 R2 ot wht! . QFF 5 R2 par

Py Py Py ~k+1
uttl(x) = 0 (%), P (e) =0T (R), M) =2 (%)

and w*l(x) = W (%), vx = A*(R), x € O~

1. Comparaison entre les spectres de I’opérateur fluide-structure.

Un premier élément a analyser est de comparer les spectres des systémes sans et avec la loi
de contrdle. Dans ce cadre, nous analysons les spectres d’un systeme en fixant le nombre de
Reynolds Re = 200 ainsi que le coefficient d’amortissement v = 1075 de la structure. Par
exemple, dans la Figure 1.10 nous montrons une partie du spectre du sytéme avec et sans loi de
contrdle dans cette configuration.

-15.0 125 -10.0 -75 -5.0 2.5 0.0 25 -16 -14 -12 -10 -8 -6 -4 -2

(a) Spectre de l'opérateur A. (b) Spectre de l'opérateur A — BK.

FIGURE 1.10 — Comparaison du spectre fluide-structure correspondante & un nombre de
ReynoldsRe = 200, coefficient de rigidité o = 1071, et un coefficient d’amortissement v = 1079,
avec et sans loi de controle.
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2. Influence du sous-espace instable Z,.

Un deuxiéme élément intéressant a étudier est la facon dont le choix du sous-espace Z, af-
fecte la performance du contrble. Dans le méme esprit que pour l'analyse précédente, nous
fixons le nombre de Reynolds & Re = 200, le coefficient d’amortissement v = 1075 et 'ampli-
tude de la perturbation § = 1.5, et ensuite, nous faisons varier le coefficient de rigidité «. Par
exemple, dans le cas ou le coefficient de rigidité o = 107!, la Figure 1.11 présente ’évolution
des normes |U — Ug||p,2 et des taux de décroissance en fonction de deux contréles : 'un basé sur
le sous-espace instable ZL = G(u12) ® G(us4) et Vautre sur Z2 = G(u1.2) ® G(usa) © G(us)-

— Z}=6(i1.2) © Gz 2) 101} A= ’
- ay
0.30 —— 7Z=G(u1,2) ® Glu3, 4) ® Glus) e 722 Gli2) © Gl 0) @ Gluis)
12| — Expecteddecay w= 069 T
0.25 - -
D)
o =
=020 o107
H |
| >
501 =10
= [=
0.10 2
10
0.05
10°°
0 2 4 6 8 10 12 14 2 4 6 8 10 12 14 16
t t
. . 2 .
(a) Evolution de |U — Ug||p.2 (b) Evolution de log(||U — Ug||1.2)

FIGURE 1.11 — Comparaison entre les taux de décroissance lorsque ZL = G(p12) ® G(us.4) et
72 = 7L ®G(us), dans le cas ot le coefficient de rigidité @ = 107! et 'amplitude de perturbation
B =15.

Open loop Closed loop
00ex0 04 06 08 1 12 14 16 18 2 230400 000100 04 06 08 1 12 14 16 18 2 23040
n L . i

—— sl ——— - s—

I
I

FIGURE 1.12 — Snapshots du module de la vitesse du fluide a différents instants, correspondant
au coefficient de rigidité a = 1071, a 'amplitude de perturbation § = 1.5, et au sous-espace
instable Z2 = G(u12) ® G(us4) ® G(us). Dans la colonne de gauche (a)-(c)-(e)-(g)-(i), nous
montrons le module de la vitesse du fluide pour le cas sans controle, tandis que dans la colonne
de droite (b)-(d)-(f)-(h)-(j), nous montrons la vitesse du fluide lorsque le contrdle est appliqué.
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3. Influence de amplitude de perturbation.

Comme pour les deux expériences précédentes, en fixant Re

200 et v = 107°, nous fai-

sons varier le parameétre o et I'amplitude 8 de la perturbation. Par exemple, pour a = 1071,
nous montrons dans la Figure 1.13 I’évolution des normes ||[U — Ugl|g2, |7z et ||f||z2, pour
trois valeurs différents de I'amplitude S et les contrdles basés sur les sous-espaces instables
ZL = G(u12) ® G(psa) et Pautre sur Z2 = G(u12) ® G(usa) ® G(us).

— B=05
— B=10

0.008: 0.004:

. 0.006

0.002 }
— Y

0.003:

Il
_iml

0.001

s

0.008: B=15

. 0.006

002

FIGURE 1.13 — Evolution de ||U — Ug||p2, (b) ||n]|z> et (c) ||f||z2, pour trois valeurs différentes
du paramétre 3. Ligne (a)-(b)-(c) : Contréle basé sur Z1 = G(u1,2) ® G(u3.4). Ligne (d)-(e)-(f) :
Controle basé sur Z2 = ZL & G(us).

1.4

Perspectives

Ci-dessous, nous détaillons quelques perspectives.

— Modélisation

Tout d’abord, comme expliqué dans 'annexe A, dans la modélisation de la dynamique de
la structure, nous supposons des conditions homogenes sur 'extrémité droite de la poutre,
ce qui implique une simplification du modele. Cependant, il serait intéressant d’envisager
une condition non homogene a 'extrémité droite de la poutre qui tienne compte du terme
résultant de lidentité énergétique due & la contribution latérale sur la poutre. Etant don-
née qu’il s’agit d’une condition non standard, il est important de comprendre d’abord le
comportement de la dynamique de la structure de maniere isolée.

Un autre élément intéressant a inclure dans un modele plus réaliste consiste a permettre
a la poutre de se déplacer latéralement en plus de transverse. Cela impliquerait d’inclure
une équation supplementaire qui tienne compte de la dynamique du mouvement latéral.
Il faudrait alors préciser a la fois les conditions aux limites et les conditions cinématique
et dynamique. En principe, il n’est pas clair que les outils utilisés au chapitre 3 pour
étudier 'existence de solutions fortes soient directement adaptables a un tel contexte.
D’autre part, une mise en cevre de la strategie utilisée au chapitre 4 pour réaliser les
simulations numériques semble adaptable.
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— Simulations numériques

En ce qui concerne la stratégie utilisé tant dans la mise en ccuvre numérique du probleme
direct au chapitre 4 que dans le traitement du probleme de stabilisation au chapitre 6, il
serait intéressant de mener une analyse numérique d’estimation d’erreur.

D’autre part, la construction de la transformation ALE utilisée pour traiter le probleme
direct au chapitre 3 est basée sur ’extension harmonique de la trace de la vitesse du
fluide. Comme indiqué dans [Wicll], ce choix particulier est efficace pour les petites dé-
formations de la structure. Une premiere étape pour contourner cette difficulté consiste
a mettre en cevre des stratégies telles que celles proposées dans [Wicll] et [HC23], par
exemple.

— FEstimations de modeéles

La stratégie développée au chapitre 5 pour ’étude du probleme de stabilisation au niveau
théorique, ainsi que les simulations numériques dévéloppées au chapitre 6, ont été réalisées
en partant de I’hypothese que I'état du systeme est connu a chaque instant. En pratique,
cette hypothese n’est pas réaliste. Une altérnative a cette derniére consiste a utiliser une
estimation de I’état, basée par exemple sur des mesures de pression généralement sur le
bord de la structure. Avant de s’intéresser a une telle question pour le modele considéré
dans ce travail, une premiere étape pourrait consister a étudier un modele simplifié pour
la structure.
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Abstract of the current chapter

In this chapter,we consider the stationary Stokes system with mixed boundary conditions,
of Dirichlet and Neumann types, in a bounded non-convex curvilinear polygonal domain of
R2. We prove, in particular, a precise regularity result in heterogeneous Sobolev spaces taking
into account the fact that the expected regularity is of different nature near the corners of the
domain and near the Dirichlet-Neumann transition points. Then, we prove the analyticity of
the semigroup generated by the Stokes operator in an appropriate functional setting. We also

give a characterization of the stationary Stokes system as an operator equation.
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2.1 Introduction

2.1.1 Statement of the problem

We are interested in studying the stationary Stokes equation in a two dimensional curvilinear
polygonal and Lipschitz domain Q with boundary I' = 'y U I'),, where Dirichlet boundary
conditions are applied on I'y and homogeneous Neumann boundary conditions are prescribed on
I",,. The precise assumptions on 2 and I' are given in Subsection 2.2.1.

We consider the system

—diveo(w,7)=F in Q, divw =h in §,
(2.1.1)

w=gonly ow,m)n=0 onT,,

where F, h and g are given data and the Cauchy stress tensor o(w, ) is given by
1
o(w,m) =2ve(w) —7l, e(w)= i(VW +(Vw) "),

with v > 0 denoting the viscosity of the fluid. In order to present the main contribution of the
present paper, let us recall two regularity results concerning Stokes systems. From [MR10, The-
orem 9.4.5] we know that the solution (w, ) to the Stokes system (2.1.1) with mixed Dirichlet-
Neumann boundary conditions satisfies

(w, ) belongs to the weighted Sobolev space HZ(Q2) x H3(Q)
s (R1)
when F € L}(Q), h € Hf(Q) and g € HZ (T'y),

for all § € (6*,1), where §* € (0,1/2). The weighted Sobolev spaces H2(Q), H}(f2), and some
others are introduced in Section 2.2. Some other results concerning systems of the form (2.1.1)
may be found in [BGM10, Proposition A.1].

On the other hand, for the Stokes system with only a Dirichlet boundary condition, w = g
on I' =Ty and I';, = 0, under a suitable compatibility condition on h and g, we have

(w, ) belongs to the Sobolev space H%JFO‘(Q) X H%JFO‘(Q),

R2
when F € H 21%(Q), h € H2T(Q), g € H**(D) for all a € (0,a), ()
where the critical exponent o* € (0,1/2) depends on the angles at the corners of T

This result is proved in [Dau89, Theorem 5.5(a)] when g = 0 and extended to g # 0 in [BR,
Corollary 3.3].

One of the objectives of this article is to study the existence, uniqueness and regularity of
solutions to system (2.1.1) in heterogeneous Sobolev spaces. Here, the heterogeneous spaces
introduced in (2.2.7) are used to characterize functions having different regularity in distinct
zones of the domain ). In particular, we would like to recover simultaneously the regularity
in weighted Sobolev spaces, as in (R1), in a neighborhood of I',,, and to recover the fractional
Sobolev regularity, as in (R2), in a neighborhood of corners of I'y corresponding to Dirichlet
boundary conditions on both sides of the corner.

The main contributions of this article are outlineld below. X ,

— In Theorem 2.3.2, we show that if F € H 27*(Q), h € H2T*(Q), g € H2(T'y) (with

a € (0,a%)), and if, in a neighborhood of T',,, F and h belong to L% and H!, respectively,
then the solution (w, ) to system (2.1.1) belongs to H%“Y(Q) X H%JFO‘(Q), and in HZx H}
in a neighborhood of I';, (with § € (6%,1)). The precise result is stated in Theorem 2.3.2
in terms of the heterogeneous Sobolev spaces introduced in Section 2.2, see (2.2.7). The
main idea of the proof is to combine the regularity results (R1) and (R2) employing a
truncation argument.
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— One motivation for studying system (2.1.1) is to provide results needed to study a fluid-
structure interaction system investigated by the authors in Chapter 3. In that respect,
the study of the linear parabolic system

%’t"_divg(w,ﬂ) =F in (0,7) x Q, divw=h in (0,7) x €,

w=g on (0,7) xI'y, o(w,m)n =0 on (0,7) x I'p, (2.1.2)
w(0) = wq in Q,

with optimal regularity of the solutions is a crucial step. For this analysis, in addition
to the regularity in the heterogeneous spaces mentionned above, we need the analyticity

of the semigroup generated by the Stokes operator VT_L%:CM(Q). The precise result is
stated in Theorem 2.4.2. The proof of this result relies on Proposition 2.4.7, which in
turn relies on the existence of an extension operator £ : Q — (NZ, preserving both the
divergence-free condition and the trace on I';,. Here, Q is the orthogonal symmetrization
of the domain ) with respect to I';,.

With this property in hand, we are able to split the system (2.1.1) (or (2.1.2)) into three
parts: an operator equation for Pw (where P is the Leray projector in this functional
framework), an algebraic equation for (I — P)w, and a precise characterization of the
pressure 7. This is given in Theorem 2.4.3.

We have to emphasize here that the existence and the regularity of 7, obtained in Theorem
2.3.2, is not sufficient to deal with fluid-structure-interaction systems as those studied in
Chapter 3. Indeed, the splitting of 7 introduced in Theorem 2.4.3 plays a crucial role to
characterize the so-called added mass operator of the fluid-structure-interaction system
that we consider.

— The starting point for proving the two aforementioned results is the characterization
of the space V, 1. (©2) (the dual of the space V7 (Q) introduced in (2.4.24)) when
0 < s < 1/2. To the best of our knowledge, the result established in Lemma 2.4.5 has
not been previously reported in the literature. We emphasize that this characterization
is based on regularity results for the solution of a suitable elliptic equation with mixed
boundary conditions, see Subsection 2.4.1.

2.1.2 Motivation

Let us now explain why, in the fluid-structure interaction system investigated in Chapter 3,
we need to introduce the functional framework of heterogeneous Sobolev spaces.

The fluid-structure system considered in Chapter 3 models the interaction between the in-
compressible Navier-Stokes equations in a 2D rectangular domain with mixed boundary condi-
tions, and an elastic structure governed by the Euler-Bernoulli equation with a clamped bound-
ary condition at one extremity of the elastic beam and a Neumann boundary condition (a type of
free boundary condition) at the other extremity. Figure 2.1 shows the corresponding geometric
configuration.

A similar fluid-structure interaction system has been studied in [FNR19], but with clamped
boundary conditions at the extremities of the elastic beam. In that case the nonlinear problem
can be studied in the framework of the weighted Sobolev spaces H2(€2) and H}(Q), introduced
above.

In the case where a Neumann boundary condition is prescribed at one extremity of the elastic
beam, the linearized fluid-structure interaction system can still be studied in the framework of
the weighted Sobolev spaces HZ(2) and H}(Q). But this approach is not sufficient to deal with
the nonlinear fluid-structure interaction system with a Neumann boundary condition prescribed
at one extremity of the elastic beam. This is due to a mismatch between the regularity results,
obtained in the weighted Sobolev spaces, for solutions to nonhomogeneous linear models and
the corresponding regularity of some nonlinear terms of the model (which will play the role
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of the nonhomogeneous terms in a fixed point procedure). This is why the results presented
in the work are novel and essential contributions to deal with certain nonlinear fluid-structure
interaction systems.

Fd

Fluid domain

T Fll r
¢ La i Elastic structure n

Q

|

Figure 2.1 — Geometrical configuration used in the fluid-structure problem studied in Chapter 3.

2.1.3 Outline

The chapter is organized as follows. In Section 2.2, we introduce the classes of domains
and the notation used throughout the paper. In Section 2.3, we establish a regularity result
of system (2.1.1) in heterogeneous Sobolev spaces. Section 2.4 is divided in four subsections.
In Subsection 2.4.1, we present results concerning the Leray projector (see Corollary 2.4.1),
which are based on a careful analysis of a certain elliptic equation. Then, in Subsection 2.4.2,
we prove, the analyticity of the underlying semigroup associated to the Stokes operator on

1
A’ %:a(Q) Next, in Subsection 2.4.3, we present a useful representation of the pressure 7 of
system (2.1.1). Finally, in Subsection 2.4.4, we provide a characterization of system (2.1.1) as
an operator equation.

2.2 Classes of domains and functional setting

2.2.1 Classes of domains

We assume that € is a Lipschitz curvilinear polygonal domain in R?. More precisely, it
satisfies the following geometric hypotheses:

(H1) Q is bounded and connected.

(H2) The boundary I of Q is given by I' = ¥, T';, where each arc I'; is assumed to be smooth.
We also assume that for all 7,7 € {1,..., N}, with ¢ # j, we have either I; N T; = () or
I'iNT; = {J;;}, where J; ; denotes the vertex joining the arcs I'; and I';. We will denote
by J the set of vertices of I'.

(H3) At the neighborhood of any vertex J; ; € J, § is locally diffeomorphic to a neighborhood
of zero in a plane sector of angle 6; ; in (0, 2m).

We now state assumptions on I'y and I';;, where Dirichlet boundary conditions are applied
on 'y and homogeneous Neumann boundary conditions on I';,. See Figure 2.2.

(H4) We assume that there exists jo € {1,..., N} such that I';, = I'j,, where I',, is a segment
with extremities A and E. We also assume that there exist two lines ¢; and ¢ passing
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through A and F, respectively, such that ¢; N Q = {A} and fo N Q = {F}. In particular,
if D,, denotes the line containing I',, then the domain €2 is contained in one of the
half-planes supported by D,,.

Remark 1. Since I', = I'j,, we notice that we have I'q = Ujeq1,.. ), ij, L'i- The results of the
paper can be generalized without difficulty to the case where I';, is a union of several segments
I'; with i € {1,..., N}, without junction between two Neumann boundary conditions.

We use the fact that '), is a segment only to simplify the analysis of the Poisson equation
with mixed boundary conditions (see Proposition 2.4.2 and Lemma 2.4.1), but the results can
be easily extended to the case where I';, is a smooth curve, as in [MRR20, Proof of Theorem
4.2].

Notice that regularity results similar to those of Lemma 2.4.1 are stated in [Dau88, Chapter 8,
Corollary 23.5, and Remark 23.6, page 197] in the case where I, is a regular curve and the
angle condition stated in (H4) is satisfied. The assumption (H4) is also used in the proof of
Lemma 2.4.7.

Remark 2. The last constraint imposed in (H4) simplifies the analysis we develop in Section 2.4
which involves deducing the regularity of solution to the Poisson equation with mixed Dirichlet-
Neumann boundary conditions from the regularity of the solution to the Poisson equation with
only Neumann boundary conditions, but in a larger domain obtained by symmetry.

When this geometric constraint is not satisfied, it is necessary to use an additional truncation
argument in order to avoid the self-intersection of €2 with its symmetric. We do not explicit this
technical step in this work.

Figure 2.2 — Example symmetrization.

2.2.2 Functional setting
Usual and weighted Sobolev spaces

We first set L2(Q) = L?(;R?) and, for s > 0, H*(Q) = H*(Q;R?). We also introduce the
following functional spaces:
H%d(Q) ={uce Hl(Q) |u=0 on Iy},
V?Z’Fd(Q) ={ucl?Q)| divu=0inQ, u-n=0onTIy},
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The dual of Hf. (), with L*(2) as a pivot space, is denoted by HI?dI(Q) We denote by Vfdl(Q)
the dual of V%d(Q) with Vg,rd (Q) as pivot space. We have

Vi, (92) = V)1, (Q) = VL (Q)

an

with dense and continuous embeddings. For 0 < s < 1/2, we introduce the spaces
2, () = [L2(Q), Hy, ()]s,

equipped with the classical Sobolev norm ||-[|m=. The dual of Hf. (2) is denoted by Hp”(€2).
For the definition of interpolation spaces using the complex method we refer to [Tar07], [Tri78].

For s > 0, H*(Q) = H*(Q) N L3(Q), where L3(Q) = {f € L*(Q)| fof = 0}. The dual of
H5(Q), with L3(Q) as a pivot, is denoted by H~%(Q).

We now introduce weighted Sobolev spaces as in [MR10]. For 5 > 0, we introduce the norms

1/2
1wl = (Z Z/ IT |asz| d:c) . weC®(Q;R?)

k|=01i=1 JeJg
M=o c (2.2.1)

1/2
Pl = (Z/ II 7‘2’3 0" d:c) , peC®(LR)

|k|=0 JeJg

where r; stands for the distance to the junction point J € J, k = (k1,k2) € N2 denotes a
two-index with length |k| = ky + k2, 0F denotes the corresponding partial differential operator
and w = (wy,wz). We denote by H%(Q;RQ) (respectively, Hé(Q)) the closure of C*°();R?)
(respectively, C°°(£2)) in the norm H||H% (respectively, HHH},)

Exponent of weighted Sobolev spaces

We need to introduce an exponent ¢* € (0,1/2) related to the presence of mixed Dirichlet-
Neumann boundary conditions for the Stokes problem.

e Due to [MR10, Theorem 9.4.5], there exists 6* € (0,1/2) associated to the Stokes system
in © with mixed Dirichlet/Neumann boundary conditions

—divo(u,p) =F in Q,
divu=h in Q, (2.2.2)
u=g only, o(u,p)n=0 on T},

such that (u,p) obeys

Il + il < Cs (¥l + Al + el ) (2:23)

for all 6 € (6%,1).

Remark 3. Notice that the result from [MR10] that we mention above is stated for a polygonal
domain and not for a curvilinear polygonal domain. However using a diffeomorphism and a
localization argument as in [MRR20, Proof of Theorem 4.2], the results from [MR10], that we
need here, can be extended to the case of curvilinear polygonal domains.
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Regularity exponents

We now need to introduce a regularity index o* € (0,1/2), which will be used throughout
the article. This index depends on the angles at the corners of I' and on the type of boundary
conditions prescribed on both sides of the corners. It allows us to state regularity results for the
Stokes and Poisson problems in € and in Q defined by

Q=QuUl,US,Q, (2.2.4)

where S, is the orthogonal symmetry with respect to D,,, where D, is the straight line in R?
containing I';, (see Figure 2.2).
We set

*

o := min{asp, asm, apn}, (2.2.5)

where the parameters agp, agy, and apy are defined below:
e From [Dau89, Theorem 5.5(a)] we know that there exists agp € (0,1/2) associated to the
Stokes equation in €2 with homogeneous Dirichlet boundary conditions

—divo(u,p) =F in Q, divu=h inQ, u=0 on T,

such that (u,p) satisfies

lullygg oo + 10l g < CalIFI e+ bl 3-0);

Lg

for all a € (0, asp).

e We denote by agys € (0,1/2) the regularity index associated to the Stokes system in 2
with mixed Dirichlet/Neumann boundary conditions (2.2.2). For all 6 € (6*,1), from [MRI10,
Lemma 6.2.1] we have the continuous embeddings H2(Q) — H279(Q) and H}(Q) — H'7(Q).
Thus, we set agpr == 1/2 — 6*.

e We denote by apy € (0,1/2) the regularity index associated to the Poisson problem in Q
with homogeneous Neumann boundary conditions

—Ap =( in Q, gi:() on I = 9Q.

The parameter apy is introduced in [Dau88, Chapter 8, Corollary 23.5, page 197] and is such
that for all @ € (0, apn), we have

”SOHH%Jra@) < COZHCHer%Jra(ﬁ)'

(H_%+°‘(S~)) is defined similarly to H_%+Q(Q).)

Heterogeneous Sobolev spaces

Let us denote by Jzq C J the set of corner vertices corresponding to a junction between
two Dirichlet boundary conditions. Let & and V be two disjoint open subsets of R? such that
Jaqa CU and I',, C V. In particular, V does not countain any corner with a Dirichlet-Dirichlet
junction. Let us now introduce any cut-off function ¥ € C>°(R?) satisfying 0 < ¥ < 1 and

UV=1inU and ¥ =0in V. (2.2.6)
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Let o € (0,*) and ¢ € (6*,1). We introduce the following heterogeneous Sobolev spaces

H*%Jra,O(Q) {Pem i @in-vreri@}.

L) :{p€H2+O‘Q\(1— )p € HY(Q }

(2.2.7)
H2+a19 ) ={pe Hit @)1 -v)pe H}O)},
2+a29 :{ € H2T(Q)|(1 — ¥)v € HX(Q }

which are respectively endowed with the norms

1/2
1Pl gan = (IFI2 o+ 1= OFE)

Ta
1/2
1203 = (P12 3o+ L= Ol )

1/2
Pl y s 2= (P12 3 + 1= pl)
1/2
. 2 2
ol g = (IRl g+ 12 = Dullfy)

Notice that those spaces actually depend on the choice of the cut-off function ¥, but this
choice will be fixed all along this chapter. That is the reason why, for simplicity, we do not
explicitly mention ¥ in the notation we propose for those spaces.

2.3 Existence, uniqueness and regularity

Let us assume that F € Hlidl(Q), h € L*Q) and g € H%(Fd). We will say that the pair
(w,7) € HY(Q) x L?(Q) is a variational solution of the system (2.1.1) if and only if it satisfies
the following mixed variational formulation:

a(w, @) = b, ) = (F,$)gq 1 gy for all § € HE (),
b(w, 1) :/ hy for all o € L*(Q), (2.3.1)
Q

w =g on [y,

where

a(w,¢) = 21//

Q

e(w) : e(¢) and b(w,v) = / (divw) 9.
Q
Such a solution exists and is unique as stated in the following result.
Theorem 2.3.1. Let us assume that (F,h) € HI?dl(Q) x L*(Q) and g € H%(Fd). System (2.1.1)

admits a unique variational solution (w,n) € H(Q) x L?(Q).

Proof. Since g € H3 (Tq), there exists a lifting v € H'(2) such that v = g on I, satisfying the
estimate ||v||g1 < C||g]|g1/2. Then, we look for the solution w to (2.1.1) in the form w = w+v.
We notice that the couple (W, ) satisfies

CL(W, d)) - b(¢77T) = <F7 ¢>H;dl’H%‘d - CL(V, ¢) for all d) € H%‘d(Q>7

b(w, ) = / hap — b(v, 1) for all 1 € L*(9), (2.3.2)
Q

w =0 onIy.
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The existence of a unique solution (W, 7) € H'(Q2) x L?(Q) to the system (2.3.2) follows from
the Babuska-Brezzi Theorem [GR86, Theorem 4.1, Chapter I]. For the proof of the surjectivity
of the operator div(-) € L(Hf (), L*(Q)) we refer the reader to [EG21, Lemma 53.9, p. 409].

g

We now establish a regularity result in heterogeneous Sobolev spaces for the solution of
system (2.1.1).

Theorem 2.3.2. Let o € (0,a*) and 6 € (6*,1). Assume that F € H7%+a’0(9), h e H%““J(Q

3
and g € H%(I‘d). Then, the variational solution (w, ) of system (2.1.1) belongs to H} +OL’Q(Q) X

l—&-oz,l

Hy (2). Moreover, there exists a constant Cy 5 > 0 such that
I gy g s (g Wl + Bl ) - 23)

Proof. Let (w,7) € HL(Q) x L?(Q) be the solution to (2.1.1) whose existence is shown
in Theorem 2.3.1. Let us consider the cut-off function ¥ defined in (2.2.6). Then, the pair
(wi,m1) = (Iw, Ur) satisfies

—diVJ(Wl,’]Tl) = F1 in Q,
divwy; = hy in Q, (2.3.4)
w; =Vg only, wi =0 on I,
where
Fi =YF +71VV¥ — v (WAVY +2(VV¥ - V)w) — v(divwVV¥ + V(w - VU))
and
hi =UYh+ VU .- w.

Since (w, ) € HL(Q2) x L?(), we have that F; € H_%+Q(Q) and h; € H%+O‘(Q), with 0 < o <
a*. Then, it follows from [Dau89, Theorem 5.5(a)] and [BR, Theorem 3.2 and Corollary 3.3]
that

1wl g + Il gen < ca(nFuH;;M 1Al g + Nl g )- (2.3.5)
d
On the other hand, we notice that the pair (wq,m) = ((1 — ¥)w, (1 — ¥)7) satisfies:

—diVO’(Wg,TI’g) :FQ, in Q,
div Wo = h2 in Q, (236)
W2 = (1 - \I])g on Fda

o(wg, me)n =0 on I'y,
where
Fo=(1—-U)F —7VV +v(WAU +2(VY - V)w) + v(divwVV¥ 4+ V(w - VI))

and
hs =(1—-Y)h —w-VV.

Since (1 — ¥)F € L%(Q) and (1 — ¥)h € H*(Q), we deduce that Fo € L2(Q2) and hy € H'(Q).
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Then, from [MR10, Theorem 9.4.5], we deduce that (wa, ) € H3(Q) x H}(Q) and

Iwallggz + ol

(2.3.7)
< O(HFHH;%M 1B, g+ lgl g + 10— O)F L2 + (1= ©)h ).
d
Moreover, thanks to [MR10, Lemma 6.2.1], we have the estimate
Iwall ggea + Im2ll g s
(2.3.8)

< C(HFHHE%M IR g + lglgg + 10— D)F L2 + (1= D))
d

Finally, combining (2.3.5), (2.3.7) and (2.3.8) we obtain (2.3.3). This completes the proof. [

2.4 Rewriting the Stokes system as an operator equation

The goal of this section is to rewrite the system (2.1.1) as an operator equation. First, in
Subsection 2.4.1, we begin by presenting some results concerning the Leray projector, which
involve a careful analysis of a specific elliptic equation. In Subsection 2.4.2, we introduce the
Stokes operator and prove the analyticity of its underlying semigroup. In Subsection 2.4.3, an
expression of the pressure 7 is determined in terms of w, F and g when A = 0. In Subsection
2.4.4, the operator equation characterizing (2.1.1) is introduced.

2.4.1 The Leray projector
Let us recall the following result established in [NR15, Lemma 2.2].

Proposition 2.4.1. We have the following orthogonal decomposition

L2(Q) = VO, (Q) & VA (Q), (2.4.1)

n,l'y

where H (Q) = {p e H'(Q) |p=0onTy}. Moreover, the orthogonal projection P € L(L*())
from L2(2) onto Vg,l‘o (Q) s characterized by

PF=F —Vq — Vo, (2.4.2)
where q1 and qo are solutions of the following elliptic problems:

q1 € HY(Q), Agq =divF in Q,

o (2.4.3)
%z(F—Vq1)~n on I'y.

@ € Hi (), Agp =0 in Q,
The variational problem satisfied by ¢ = ¢1 + g2 is

Find q € H%n (©) such that

(2.4.4)
/ Vq-Védr — / F-Vodr, Yée Hb (9).
Q Q
For all F € L?(Q), Problem (2.4.4) admits a unique solution and
lallmy < ClFIL2. (2.4.5)

We would like to obtain other stability estimates when F € H*(Q) for —1 < s < § + o*.
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Because of the presence of mixed boundary conditions involved in Problem (2.4.4), it is
convenient to associate to (2.4.4) a variational problem in the larger domain O involving only
Neumann boundary conditions. For a given q € L?(2), we denote by § = £,q the extension of ¢
to Q defined by
q(z) ifzeq,

2.4.6
—q(Spz) if x € S, 0. ( )

q(x) = (Eq)(x) = {
For a given F € L2(Q), with F = F1&, + F»& = F,7i + F.7 where 71 is the unit normal to I'y,
outward € and 7 is such that (73, 7) is an orthonormal basis of R?, we denote by F = £F the
extension of F to 2 defined by

F(x) ifx e,

. o (2.4.7)
F,(Spx)n — Fr(Spx)7T if z € §,.

F(z) = (€F)(x) = {

The following proposition is a consequence of definitions (2.4.6) and (2.4.7).

Proposition 2.4.2. Let F belong to L2(Q) and let F € L2(Q) be the extension of F defined by
(2.4.7).
A function q € Hf, (Q) is solution to (2.4.4) if and only if ¢ defined in (2.4.6) is solution to

Find § € H'(92) such that
- _ (2.4.8)
/~Vq~- VU dx = /~F VWdz, Y¥eH(Q).
Q Q

Proposition 2.4.3. Let F belong to L2() and let F € L2(Q) be the extension of F defined by
(2.4.7). )
Problem (2.4.8) admits a unique solution ¢ € H(Q2) which satisfies the following estimates:

1,50 g < Ca ”FHH%M@? Ya € (0,a%), (2.4.10)
1@lyy01 @) < Cs IFllge)s Vs € (1/2,1/2+a%). (2.4.11)

Before proving that proposition, to show (2.4.11) when s € (—1/2,0), we are going to use
the transposition method. For that, we introduce the adjoint problem

Av=cind X _oonT =, (2.4.12)
on
with ¢ € L3(Q).

Lemma 2.4.1. The variational solution to (2.4.12) satisfies

<C

Il gy < CallCl - pragys Vo€ (0,07),

HXH;.Ll(ﬁ) < Ca HCH(Hl(ﬁ))” (2.4.13)

and

HX”HH-e(ﬁ) < Cs ”C”Hs—l(ﬁy Vs € [0, 1/2 —+ a*).

Proof. Estimate (2.4.13); is a consequence of [Dau88, Chapter 8, Corollary 23.5, page 197].
Estimate (2.4.13)2 is a consequence of the Lax-Milgram Lemma. Estimate (2.4.13)3 can be
obtained by interpolation from (2.4.13); and (2.4.13)s. O
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When F € L2(Q), it is possible to check that § is solution to (2.4.8) if and only if, for all
s € (—1/2,0], q is solution to

Find § € H*t1(Q) such that

_ - . (2.4.14)
<CI7 C)Hs—&-l(ﬁ)”}{—s—l(ﬁ) = _<F> VX>HS(§),H—S(§)’ VC €EH (Q)v
where x is the solution to (2.4.12).
Lemma 2.4.2. For all s € (—1/2,0], Problem (2.4.14) admits a unique solution and
||a||HS+1(§) < (s ||FHH5(§)' (2'4'15)

Proof. When F € L2(Q), for any s € (—1/2,0] (2.4.22) follows from (2.4.14) and (2.4.13).
Indeed, since —s — 1 € (—1,—1/2), Lemma 2.4.1 implies that the solution x of system (2.4.12)
belongs to H~*71(2). Furthermore, x|, - ) < C4||<]] =.. Then, this estimate together

s+1(Q H—s—l(Q)
with (2.4.14) allows us to obtain

||§||Hs+1(§) = S_U.I_)1 _ ‘<(77 C>’HS+1(§),H*S*1(5)’
CEHT Q)
16l o 1 =1
= s [FE Vg6
CEHT Q)
161 )=
< sup HFHHS(ﬁ)HvXHHfs(ﬁ)
e (2.4.16)
||C||H_S_1(6)=1 o
< s [Pl
CEH™* Q)
160 o1 g =1
< sup HFHHs(ﬁ)HCHH—e—l(ﬁ)
CeH™7H(Q)
1€l =1
< CSHFHHs(ﬁ)'

This proves the estimate (2.4.22) when F € L2(Q). From (2.4.22) when F € L2(Q), it follows
that if Problem (2.4.14) admits a solution, this solution is necessarily unique. To prove the
existence of solution to Problem (2.4.14) for a given F € H5(Q), with s € (—1/2,0), we use a
density argument. We approximate F in H*(Q) by a sequence (Fy);, in L2(Q) converging to F
in H5(€2). We denote by g the solution to (2.4.14) or to (2.4.8) corresponding to Fj. Since
qr — Gm satisfies N N

||(7k - ameHerl(ﬁ) < Cs ||Fk - FmHHs(ﬁ)a

the sequence (i )y is a Cauchy sequence in H*T1(Q). Tts limit ¢ in H*T1(Q) is solution to (2.4.14)
and it satisfies (2.4.22). O

We are now in position to prove Proposition 2.4.3.

Proof of Proposition 2.4.3. The existence and uniqueness of § € H!(2) solution to (2.4.8)
together with estimate (2.4.9) follow from the Lax-Milgram Lemma.

Estimate (2.4.10) follows from [Dau88, Chapter 8, Corollary 23.5, page 197].

For s € [0,1/2+ ™), Estimate (2.4.11) can be obtained by interpolation between (2.4.9) and
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(2.4.10).
Estimate (2.4.11) for s € (—1/2,0) follows from Lemma 2.4.2. This completes the proof of
Proposition 2.4.3.

The following proposition is a direct consequence of Propositions 2.4.2 and 2.4.3.

Proposition 2.4.4. Let F belong to L2(Q). In addition to (2.4.5), the solution q € Hlln (Q) to
Problem (2.4.4) satisfies
gl s < Cy, HFH bragq Va € (0,a%), (2.4.17)

HE Q) = Q)’

lallms+1) < Cs[|Fllgs), Vs € (=1/2,1/2+a”). (2.4.18)

We can also use the transposition method to extend the notion of solution to the variational
problem (2.4.4) when F € H*(Q2) with s € (—1/2,0). For that, we introduce the adjoint problem

0
Ax =( in Q, 8—X =0only, x=0onT,, (2.4.19)
n

with ¢ € L?(9).
Lemma 2.4.3. The variational solution to (2.4.19) satisfies

Ca €]l - Va € (0,a%),

Il gy < .

< Ca /y
Il 1y < HCH(H;nm» (2.4.20)

and

Xl mrs) < CsllCllms-—10), Vs €10,1/2+ ).

Proof. The result follows from Lemma 2.4.1 and a symmetry argument as in Proposition 2.4.2.
O

When F € L2(Q), it is possible to check that g is solution to (2.4.4) if and only if q is solution

to
Find ¢ € H*T1(Q) such that

(2.4.21)
(@, Qs r-s1 = —(F, VX)ms s, V¢ € H*HQ),
where x is the solution to (2.4.19), and s € (—1/2,0].
Lemma 2.4.4. For all s € (—1/2,0], Problem (2.4.21) admits a unique solution and
lqll =10y < Cs IF lms), Vs € (—1/2,0]. (2.4.22)
Proof. The proof is similar to that of Lemma 2.4.2. O
The following corollary is a direct consequence of Proposition 2.4.4.
Corollary 2.4.1. The operator P € L(L%(Q)) defined by
PF=F — Vg, (2.4.23)

where q is the solution to (2.4.4) or to (2.4.21), is also continuous from H*(Q) into itself for all
s €10,1/2 + a*). It can also be extended by continuity to a bounded operator in H*(Q2) for all

€ (=1/2,0).
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2.4.2 Stokes operator and the analyticity of its underlying semigroup

For 0 < s < 1/2, we introduce the space

o0, (Q)=Hp (Q) NV (), (2.4.24)

n,l'y

equipped with the H}. Sobolev norm, and we define V, 1. (Q2) as the dual of Vj . (€2) with
V%Fd(Q) as pivot space, equipped with the dual norm of V¢ 1 (Q).

n,Fd
Lemma 2.4.5. Let s € (0,1/2). The following assertions hold:
(i) P (H,(Q) = V3 1, ().

n’Fd

s

(ii) There exists an isomorphism between the spaces V%,Fd(Q) v and V.1, (). Thus,

the space V. 1. () can be identified with a closed subspace of Hp7(€2).

Proof.

(1) The inclusion D follows directly from the definition of the space V7, . (Q2) (see (2.4.24)).
The other inclusion is a consequence of Corollary 2.4.1.

(i) Tt suffices to prove that the norms ||-||g-s and [|-|ly—s are equivalent in V) 1, (). In-
Ty n,I'y ’

deed, if the two norms are equivalents in V%Id(Q), the result follows from the fact that
the space V%Fd(Q) is dense in V. (€2). Let us now show the equivalence of the norms
in V%Fd(Q). We follow the approach used in [GS11, p. 246]. We split the proof into two
steps.

Step 1: Let us assume that v € Vg’Fd(Q). Then, using assertion (i), we obtain

C oy lvwis

_ ’<V7 h>LQ‘
||VHV_S = sup R
WEH%d(Q) ‘|“HHf~d

= [[vllg -
whd wevy () HWHHid Hr,
Step 2: Let a € (0,a*). Let us assume that v € V%Pd(Q). Then, using continuity of the
Leray projector P from Hf (€2) into H. (2) (see Corollary 2.4.1), we obtain

(v, W)12| (v, Pw)r2|

g 3 o= 0
¢ weH; () Hy  weH; () H;

<C sw (v, PW)12|

wenp () [Pwlmg,

<C sw (v, 2)12|

z€V;, 1 () HZHH;d

= ClIvlly, -

This completes the proof.
0

The Stokes operator (Ag, D(Ap; V2 1 (€2))) in VO

TL,Fd n’Fd

(©) that we will consider is defined by
D(Ao; Vi1, () = {w € H2T(Q) NV}, () | Ir € H3(Q) such that dive(w, ) € L2(Q)
and o(w,7)n = 0 on I‘n},

Aow = Pdivo(w, ).
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For all § € (7/2,7), let us define the sector ¥y by
Yg={AeC|larg(\)| <0}.

Theorem 2.4.1. There exist Oy € (7/2,m) and C > 0 such that
1 C
[(AL — Ao) Hc(vg’rd(g)) < ik for all X € 3q, \ {0}

In particular, the unbounded operator (Ao, D(Ao; V?L’Fd(ﬂ))) is the infinitesimal generator of an

analytic semigroup on V%,Fd(Q)'

Proof. According to [DL99, Proposition 3, p. 380], it suffices to show that there exist \g > 0
and Cy > 0 such that

ax(v,v) = (Ao = Ao)V, V)12(q) = COHVH%/ILd(Q) for all v € D(AO;V%Fd(Q)).
The previous inequality is verified with A\g = 1 and Cy = Cp(v) > 0. O

For all o € (0, a*), we introduce the heterogeneous space

_1 _1
Vi) = {v eV, 2Q) [ (1-w)ve LQ(Q)} (2.4.25)
equipped with the norm
1
2
o = (VIR + 1101 = BvIE2) (2.4.26)
n,I‘d Fd
_1
forallveV, %:a’O(Q). Here, W is the cut-off function introduced in (2.2.6).

_1
Proposition 2.4.5. Let a € (0,a*). The space V, %ja’O(Q), equipped with the norm ||| _1..,
' Vn,Fd ‘

defined in (2.4.26), is a Hilbert space.

1
—§+Oé,0
n7rd

1
_§+

“(Q) and
1o,
L?(2) are complete, using Lemma 2.4.5, there exist v € an: (©2) and u € L%(Q) such that

Proof. Let (vi)r be a Cauchy sequence in V. (). Next, since the spaces V.

n,I'y

1
. —§+O’
Vi —— > vin Hp> () (2.4.27)
and
(1—V)v, — uin L*(Q). (2.4.28)
k—+o00
From (2.4.27) we deduce that
1,
(1-0)vy — (1-T)vin Hp.2 Q). (2.4.29)
k—+o00 d

Then, from (2.4.28) and (2.4.29) and the uniqueness of the limit we deduce that u = (1 — ¥)v.
This completes the proof. O

According to Corollary 2.4.1, the Leray projector defined by (2.4.23) belongs to
E(H_%JFO‘(Q)) for all a € (0, ™).
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Proposition 2.4.6. For all « € (0,a*), the Leray projector P € E(H_%‘H"(Q)) also belongs to
E(H_%"_O"O(Q)),

Proof. We will show that there exists a constant C' > 0 such that
IPF, 1o+ 10— 0)PFlle < C (R 3,0+ 10— OF|g2) (2.4.30)

for all F € H2+*0(Q)). Since P € £L(H 2+%(Q2)), in order to obtain (2.4.30) it is sufficient to
prove that

(1= 0)PFllgs < € (|0 = ©)F e + ], _y...)- (2.4.31)

We notice that
(1 - U)PF = (1 - U)F — V((1 — ¥)q) — Vg, (2.4.32)
where ¢ is solution to (2.4.21) with s = —1 + . Next, from Lemma 2.4.6 below, we obtain that
q€ H%+a’1(Q) and then, thanks to (2.4.32) we deduce the estimate (2.4.31). O

Lemma 2.4.6. If F belongs to H_%+O"O(Q) with o € (0,a%), then the solution q to (2.4.21)
with s = —1 + a belongs to H%*'a’l(ﬂ) and satisfies

Jall s gy < Co Il aogys ¥ € (0.0°). (2:4.33)
Proof. Firstly, since HQHH%M(Q) < CaHFHHf%M,o(Q) for all o € (0,1/2) (see Proposition 2.4.4),
it suffices to show that

11 = W)l < CallFll, s Vo€ (0.07). (2.4.31)

The function p = (1 — ¥)gq is solution to the equation

Ap = div((1 — U)F) + ¢A(1 — ¥) —2Vq- VU + F - VU in Q,

0 ov
%z(l—W)F-n—q% onTy, p=0 onT,.
We write p = p1 + p2, where p; is the solution to

Ap; =div((1 — ¥)F) in Q, Zpl =(1-Y)F-n only, p1=0 onl,,
n

and by p2 the solution to

v
Apy = —qATU -2V VU—F- v im0 22— 9% our, p=0 onr,.
on on

Since
(1= W)F(|L2(q) < [[Fl,

7%4»04,0(9)7

the needed estimate for p; in H*(Q) follows from (2.4.5). Next from

leA(1 — W)~ 2Vq- V¥~ F - VU < C|F|,

AN by

Lemma 2.4.3 and Lax-Milgram Lemma we deduce that ||pz2|| 1oy < C ||FHH_%+Q’0 o The proof

(D)

is complete. ]

In Lemma 2.4.7 below, we show that [V?L’Fd(Q),VI?dl(Q)]S =V, 1,(Q) for all s € (0,1/2). The

n,
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proof of this lemma relies on an interpolation result in the Dirichlet case proved in [MMOS,
Theorem 2.12]. More precisely, by using an extension and symmetry argument, we reduce the
problem to the Dirichlet case.

Let Q defined by

Q=QUT,Uq. (2.4.35)

The construction of O (see Figure 2.3) is given below.

1.

We first construct the symmetric domain S, € of 2 with respect to the line D,, containing
the segment I',.

. From assumption (H4) we know that there exist in particular two half-lines ¢; and ¢y

passing through the endpoints A and E of the segment I',,, such that /; N Q = {A} and
loNQ = {E}. The choice of these half-lines is not unique. We denote by £; and £, the
symmetric half-lines of ¢; and /s, respectively, with respect to D,,.

. We now select an arbitrary point B # A on the half-line Ell, and then define the point

C such that AC 1 BC. We denote by D the midpoint of the segment BC. Similarly,
we select a point F' # E on the half-line £, and define G such that EG L FG. We then
denote by H the midpoint of the segment F'G.

We define the segments Al and EJ, passing through D and H, respectively, in such a
way that the segment I.J does not intersect the domain 2.

. Finally, we define  as the polygon QO =AIJE (see Figure 2.3).

> |

Figure 2.3 — Construction of Q.

Remark 4. We highlight that the particular construction of Q is motivated by the definition of
the extension operator £° (see (2.4.37)). Specifically, thanks to the step 4, where the segments
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Al and EJ are constructed in a such way that they pass for the midpoints of the segments BC
and F'G, respectively, allows us to preserve a desired trace property. See proof of Lemma 2.4.7
below.

We first introduce the following spaces:

Vh(Q) = {¥ e LX) | dive =0 in Q, ¥-n=00n 00},

V() = HY(Q) N V2(Q) and VE(Q) = H*(Q)NVI(Q).

Lemma 2.4.7. Let s € (0,1/2). The following assertions hold.

(i) There exists an extension operator E satisfying

0 00 1 10
B € £(VY,r, (), VA(@) N L(VE, (), Vi), 2150
Ee L(V,r, (), V5(Q),
where Q is defined in (2.4.35).
(i) [Vor, (@), Vi, Q)]s =V} 1, (Q) and [V}

n,l'y n,l'y

Proof.

(1) After a possible rotation of the domain 2, we assume that the origin of the coordinate
system is located at T',,. We denote by Cq the half-plane containing 2 (this is possible
thanks to assumption (H4) stated in Subsection 2.2.1). We also denote by £% : L2(2) —
L?(Cq) the zero extension operator. We now introduce the operator £° : L%(Cq) —
L2(2) defined by

if C
(&%) (21, 22) = 11(21’22) 1 (21, 22) € Co, (2.4.37)
u(zy, z2) if (z1,22) € Q\ Q,
where u(z1, z2) = (U1, uz) with
ﬂl(zl, ZQ) = 3U1(—2’1, 2’2) - 2u1(—2z1, 22), (2 4 38)

Uo(z1, 22) = —3ua(—21, 22) + dug(—221, 22).

We then define the operator E : L2(Q2) — L2(Q) by E = £50 £%. Let us notice that the
following equality holds in the sense of distributions:

diva(zr, z2) = =3 (divu) (—z1, 22) + 4 (divu) (=221, 292).
Thus, in particular, if diva = 0, then divii = 0. On the other hand, if u € H()

and u|Fd = 0, then u SN, = 0. We remark that, at this point, we use the particular

construction of €.

Thanks to this construction of the operator E, we can verify (2.4.36).
(ii) Let us first observe that [VY .. (), Vl?dl(Q)]S =V 1 () is a consequence of the equality

n,Fd 7’_L,Fd
(VO 1, (), Vi ()]s = Vi 1 () and [Tar07, Lemma 41.3, p. 196], since

n,lg
Vi () = (Vi (9) = [V, (@), Vi Q). for all s € (0,1/2).

n,['g n,l'y

Let us show that [V%Fd(Q),V%d(Q)]S =V, r,(©) for all s € (0,1/2).
Let us first consider the restriction operator R satisfying

R € L(VI(Q), VS (Q)NLVEQ), VT, (Q). (2.4.39)

n,l'y
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Let v € [V? Fdl(Q),VILd(Q)]s. Thanks to (2.4.36) we obtain that Ev € [V2(Q), V§(€)]s.

But, from [MMO08, Theorem 2.12] we know that [VO(Q), Vi(Q)]s = V(). Thus,
Ev € V5(Q) and then in particular v € Vo, ().
o Vi) ClV;

n,lg

(), Vi, (Q)]s.

Let v.€ V7 (). Then from (2.4.36) it follows that Ev € V5(Q). Once again,

by invoking [MMO8, Theorem 2.12], we deduce that Ev € [V9(Q), V}(Q)],. Then,
— R(Ew) € [V 1, (), V], (9)],.

an

g

1
ata

Let us now introduce the Stokes operator on erd

(62).

Using Lemma 2.4.7 and the fact that Ag is an isomorphism from D(Ag; V7, Fd(Q)) into V9 r, ()

and from D(Ap; Vrd (Q)) into VFd (©) (this follows from the Lax-Milgram theorem), we deduce
that Ag is also an isomorphism from

D(A0: V, 2.(9)) = [D(Ao; VO r, (). D(Ao: Vi ()],

(). Ve @)y, =V, E(9).

-« n,l'gq

(2.4.40)
into [VY

n,l'g

But, since D(AO;VE;(Q)) = V%‘d(Q)»

D(Ag; V,, 27°(9)) = [D(Ag; VO, (), VE, ()]

n,lg s—a’

We now establish the sectoriality of the Stokes operator (Ao, D(Ao; V,, F: Q) inV, %d “(Q).

Proposition 2.4.7. Let a € (0,*). There exist 0y € (7/2,7) and C > 0 such that

_ C
(AT — Ag) 1”c<v*%+a(m) < o for all X € %y, \ {0}. (2.4.41)
n,I'y

Proof. We split the proof into three steps.

Step 1: (Estimate in V?L’Fd(ﬂ)—norm). Since (AO,D(AO;V%Fd(Q))) is the infinitesimal gen-
erator of an analytic semigroup on V%Fd(Q) (see Theorem 2.4.1), there exist Cy > 0 and
0o € (m/2,m) such that

H(M—Ao)_lFllvo IIFHVO E (2.4.42)

=7
for all A € £\ {0} and for all F € V0 r, (€.

Step 2: (Estimate in VI?;(Q)—norm). We claim that there exists C; > 0 such that

||(A17A0)—1F”V;dl < ¢ ||F|yV 1 (2.4.43)

Al
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for all A € ¥g, \ {0} and for all F € V%Fd(ﬂ). Indeed, let u := (A — Ag)~'F. Then,

Au—divo(u,q) =F in Q,
diva =0 in £, (2.4.44)
u=0onTly o(u,gn=0 onl,.

Thus, u satisfies in particular

A / u-p=—2 / c(u) : (@) + (F,@)y-1 1 forall g € VI (). (2.4.45)
Q Q Pg’ " Tq

Using the same idea employed to prove coercivity in Therorem 2.4.4, it is possible to show that
there exists a constant C' > 0, independent of A, such that

lullv;, < CIFly,. (2.4.46)
We now introduce the set
D= {o e Vi@ | lelvy, <1}

By applying Cauchy-Schwarz inequality on the first term on the right-hand side of (2.4.45), and
then using estimate (2.4.46), we obtain

s = 1 st ]<u Phviive,

(2.4.47)

<2usup/|5 )||e(@ |+Sup‘<F <p>V ey
€D

< CIFlly.
d
from where we deduce the estimate (2.4.43).

Step 3. (Conclusion). From Lemma 2.4.7 and the interpolation between (2.4.42) and (2.4.43)
we deduce that for any € € (0,1/2)

Cq

M — Ag) 'F| -
(¢ 0)” IIVn o

1
< Cy ( ) o |F ||V— for all A € Xy, \ {0} and for all F € V2 r, ().
n d

T
(2.4.48)
Now, taking e = 1/2 — a € (0,1/2) in (2.4.48) and using the fact that V%Fd(ﬂ) is dense in

_lig
vzt (©) we deduce that
n,Fd

Ta

< © forall A € Yy, \ {0} (2.4.49)

M — Ag) 7t

O

_1
Proposition 2.4.8. The domain D(Ap; Vy 2:_CY(Q)) of the Stokes operator Ao is dense in
n,Ty

1,
V.r, ().

_1
Proof. Since Vn %+Q(Q) is a Hilbert space, according to Proposition 2.4.9 presented in the
Appendix B at the end of this chapter, in order to show that D(AO,VF 2+a(ﬂ)) is dense in
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1 -
nf:a(Q), it suffices to prove that there exists C' > 0 such that
- _1
|(AT — AO)VHV’%”(Q) > /\CHVHV—%M o for all v € D(AO;VFn%;a(Q)) and for all A > 0,

n,ly n,ly

(2.4.50)
and that the operator I — Ay is onto.

Let 6y € (m/2,m) be the angle determined in Proposition 2.4.7. Then, since (0,00) C Xy,
Proposition 2.4.7 implies that

1,
HOJ—AO)_IFHV—lm(Q) < —|F]| _1.. o for all F € an: (©) and for all A > 0, (2.4.51)

where C' > 0 is the constant appearing in (2.4.41). Then, using this estimate with F = (A —
—1+a .
Ap)v, where v € D(Ap; VFZFd (©2)), we obtain that

c
— _ -1 _ - _
My e gy = IOT = A0) O = Aol yo < SIOT = Aol g (2:452)
Ld d d
from where we deduce estimate (2.4.50), that is,
IO = AWVl g 2 CAIVI
Vi@ v.i@

with C = 1 /C. On the other hand, the surjectivity of the operator I — Ay follows from the
fact that I — Ag is an isomorphism from D(Ao; V%Fd(Q)) into V?L’Fd (©) and from V%d(Q) into
Vfdl (Q) (this follows from the Lax-Milgram theorem). This completes the proof. O

In the following theorem we establish the analyticity of the underlying semigroup associated to
_1
the Stokes operator (AO,D(AO;VTL’%;FQ(Q))).
_1
Theorem 2.4.2. The unbounded operator (Ag, D(Ao; V,, %ja(ﬂ))) is the infinitesimal generator
_1
of an analytic semigroup on an:a(ﬂ).

Proof. Thanks to [EN06, Theorem 4.6, p. 95|, it suffices to show that Ay is sectorial and

_1
densely defined in V %:Q(Q) These two properties are established in Propositions 2.4.7 and
2.4.8, respectively. O

2.4.3 Expression of the pressure

In this subsection, when h = 0, we rewrite the pressure 7 in (2.1.1) in terms of w, F and g.

Let us first observe that, formally, the pressure 7 in system (2.1.1) is the solution of the el-
liptic equation

0
Ar =divF in Q, a—ﬂ =F-n+vAw-n on Ty, m=2ve(w)n-n on I',. (2.4.53)
n
We write 7 in the form m = g + p, where ¢ is the solution to (2.4.21) with s = —% +a and p
formally satisfies the elliptic equation

J
Ap=0 in Q, 8—p =vAw-n on Iy, p=2ve(w)n-n onI,. (2.4.54)
n
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From Lemma 2.4.6 it follows that the solution ¢ of system (2.4.21) belongs to Hé‘“"’l(ﬂ)
when F € H_%+O"0(Q).

Following [FNR19], in order to define the variational problem satisfied by p = m — ¢, we
introduce the problem

Find p € L%*(Q) such that

, (2.4.55)
/ pCdr =2v(e(w),VoX) 1 . 1., — 21// e(w)n - Vydz,
Q 7H 2 Fd

H?2

for all ¢ € L%*(Q), where Y is solution to (2.4.19). In this definition we use the fact that
w € H%+°‘(Q) and that the solution x to (2.4.19) belongs to H%JFQ(Q), for all & € (0,a") if
¢ € L3(f2). Since V is linear and continuous from L?(Q2) into H~}(Q) and from H'(Q) into
L2(Q), it is also continuous from H%“'O‘(Q) into H-1/2+2(Q). Thus, if Vx belongs to H%“'O‘(Q),
V2x is well defined as a function belonging to (H_%“‘O‘(Q))Q, and problem (2.4.55) is meaningful.

Lemma 2.4.8. The variational problem (2.4.55) admits a unique solution p € L?(£2).

Proof. Let us introduce the linear functional L : L?(2) — R given by

L€) = (W), V20 g gy 4o — 2V [ (Wi 9,

where x is solution to (2.4.19) with source term ¢ € L?(Q). Let us notice that

2v{e(w), V2x) < Clle(w)l 3 —a IV

H%_Q,H_%+a — H—%-Fa
< Cl[Wlyg3. €11
and
20 [ e(win- Vx < Clle(w) ey IVl
d
< Cl[Wlyg g €]

Thus, L € £(L*(Q2),R). Then, the result follows from the Riesz representation Theorem. O

Remark 5. By taking the supremum over all ¢ such that \|§HH_%+Q = 1 in (2.4.55), we can

(©) '
prove that p belongs to Ha e (©2). But we cannot prove that p belongs to H%+O‘(Q). This result
will be obtained as a consequence of the first statement in Lemma 2.4.9.

Let us introduce the operator N, defined by
N, € L(H2T(Q), L%(Q)), N,w = p, (2.4.56)
where p is the solution to system (2.4.55), and the operator N, defined by
N, € L(H 27*0(Q), H2t*1(Q)), N,F =g, (2.4.57)
where ¢ is the solution to system (2.4.21).

Lemma 2.4.9. Let a € (0,a*) and 6 € (6*,1). Let us assume that F € H_%JFQ’O(Q), h =0 and

3 1
ge H%(Fd). Let (w, ) € H§+a72(9) X H62+a’1

Then,

(Q) be the variational solution to system (2.1.1).

T=q+p,
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where q is the solution to (2.4.21) with s = —3 —|— o and p is the solution to the variational
problem (2.4.55). As a consequence, p belongs to HZJr " () and

ol e g < © (!\F\IH5+Q,O(9) + ”g”H%(pd)> .

1)

Proof. We first prove the following identity

— (div U(W,ﬂ),VX>H7%+a7H%7a = —/QWC + /prd:):, (2.4.58)
for all ¢ € L%(Q), where x is the solution of (2.4.19). Let (wy), be a sequence in H?()
converging to w in Hs*e () and let (73)x be a sequence in H'(Q) converging to 7 in H%“"(Q).
Since div, the divergence operator, belongs to L£(L2(Q), H~1(Q)) and to L(H(Q), L?(Q2)), by
interpolation it also belongs to E(H%+°‘(Q), H_%JFO‘(Q)). Thus we have

- <d1V U(Wk7 ﬂk)? VX>H_%+Q,H%_Q

N o (2.4.59)
“hotoo —(divo(w, ), X>Hf%+a7H%ﬂ-
Using that o(w,7)n = 0 on I';,, we have

- <d1VU(Wk, Wk)’ VX>H_%+Q,H%_Q

—/ divo(wyg, m) - Vx
Q

= (VW ) e gd e — [ oW I T

_ 2

= —/QmAx +20{VX, e(Wh)) - Jve 3o (2.4.60)

— 21// e(wg)n - Vyx —/ o(wg, m)n - Vy
Iy

/TFkC+/NWkC / (Wg, m)n - Vx

k—>+oo — 7rC+/NvWC / (w, ) X:_/QWC'i’/QNvWC-

The identity (2.4.58) follows from (2.4.60) and (2.4.59).
On the other hand, we recall that the solution ¢ to (2.4.21) with s = —% + « satisfies

(F, VX0 - e g = —/QqC (2.4.61)

(), H27%(Q)
together with the estimate (see Lemma 2.4.6)

(2.4.62)

Il < ClIF| - g a0

HEel () (@)
Finally, since

— (dive(w, m), VX>H = (F, V)O (2.4.63)

o), HE (@) o), HZ (@)’

substituting (2.4.58) and (2.4.61) into (2.4.63) yields

f/QWCqL/Qva(:f/QNpFC.
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Thus, m = p +q.
The regularity of p follows from those of 7 and ¢ (see estimate (2.4.62)). O

2.4.4 System reformulated as an operator equation

3
Let a € (0,*) and § € (0%, 1). Let us introduce the lifting operators D € E(H% (Fq),Hj +a’2(Q))

1 (6%
and D, € L(H2(Ty), H2 " (Q)) defined by:

(Dg, Dyg) = (w, ), (2.4.64)
where (w, ) is the solution of (2.1.1) when F =0 and h = 0.

Theorem 2.4.3. Let a € (0,a*) and § € (6*,1). Assume that F € H7%+Q’O(Q), g€ H%(Fd)
344 1iq
and h =0. A pair (w,m) € H§+ 2(Q) X H(;2+ 1(Q) is a variational solution of (2.1.1) if and

only if Pw, (I — P)w, and w are solutions to the following system

— AgPw + AgPDg = PF
{ 0w+ Ao U8 ’ (2.4.65)

(I - P)w= (I — P)Dg, == Nyw+ N,F,
where the operators N, and N, are introduced in (2.4.56) and (2.4.57), respectively.

3 1
Proof. Let (w, ) € H; +a’2(Q) x Hy +a’1(Q) be the solution of (2.1.1) given by Theorem 2.3.2.

We set w = w + Dg and m = 7 + D,g, where the couple (W, ) satisfies
{— divo(w,7) =F, divw =0 in Q, (2.4.66)

w=0onTly oW, 7)n=0 onTl,,.

Then, we have w € D(Ap), —Aow = PF,and (I — P)w = (I — P)w+ (I — P)Dg = (I — P)Dg,
because Pw = w. Since W = w — Dg, we obtain —Ayw = —AgPw = —AgP(w — Dg), from
which we deduce (2.4.65)1. The expression of the pressure 7 is obtained in Lemma 2.4.9.

Let us now prove the converse of the statement. Since the solution of system (2.1.1) is
also a solution for the operator equation (2.4.65), it only remains to show the uniqueness to
(2.4.65). Let us first notice that (Agw,w)g2 = 0 implies that w = 0. Then, if —AoPw = 0 and
(I — P)w =0, we deduce that w = 0. This completes the proof. O
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Appendix A: Study of the Stokes resolvent system
Given ) in the sector X, \ {0}, with 6y € (7/2,7) as in Theorem ??, we consider the system

Au—divo(u,p) =F in Q,
divu=0 in Q, (2.4.67)
u=0onTly o(u,pn=0 onl,.

Theorem 2.4.4. Let A € 3y, \ {0}. For all F € H (Q C)?, system (2.4.67) admits a unique
solution (u,p) € H'(£;C)% x L?(;C). Moreover, there exists C > 0 such that

laller @) + lIPllzz(@) < CllFlaz o) (2.4.68)

Proof. We first introduce the Hilbert spaces
Ve ={veHt (207 |divv=0 in O} and Vg = {v e H} (% R)? | divy =0 in Q.

We then associate the following variational formulation to the problem (2.4.67) in the space V:
Find v € V¢ such that

a(v,p) = <f,¢>H;dl’H11—‘d for all ¢ € Vg, (2.4.69)

where

(v, @) — /\/QV~¢—|—2V/95(V) . (). (2.4.70)

To show that there is a unique v € V¢ satisfying (2.4.69), we will use the complex version of
the Lax-Milgram Lemma (see [EG21, Lemma 25.2, p. 15]). For the continuous sesqulinear form
a over V¢ X Vg, let us verify the coercivity on V. Let v € V. We distinguish two cases for
A€ Xy, \ {0}:

e RA > 0. If RA > 0, then

R(a(v,v) =R\ [ v 20 [ o) = Cllviy |
Q Q I'q

and therefore the coercivity is verified.

e '\ < 0. Assume that RA < 0. In this case, after taking ( = isgn(%)\)|f\\| in [EG21,

Lemma 25.2, p. 15], we get

R(Ca(v. V) “”/\ 2> sin (m — 60) V] -
B b,

Then, the variational problem (2.4.69) admits a unique solution v € V.

Let us now recover the pressure. We first introduce the Hilbert space
Ug = {ve HY(Q;R)? | divv =0 in Q}.

Since Ur C Vg, taking ¢ € Up as test functions in (2.4.69), we get

(A\v —vAv — F, <p>H_17H(1) =0 for all ¢ € Ug. (2.4.71)
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After taking the real and imaginary parts in identity (2.4.71) we deduce from De Rham Theorem
that there exist g, q; € L?(€;R) such that

R(Av—-vAv—-F)=—-Vg,

and
S (A\v —vAv —F) = —Vg;.

We finally define ¢ = ¢, +iq; € L%*(€;C). O
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Appendix B: Technical result adapted from Pazy’s book

In this appendix, we show the following result:

Proposition 2.4.9. Let (X,||-||x) be a reflexive space. Assume that the unbounded linear op-
erator A of domain D(A), is such that there exists C > 0, satisfying

IAI — A)z||x > CA||z||x  for all z € D(A) and for all X > 0, (2.4.72)

and the operator I — A is onto. Then, the following assertions hold:
(1) A is closed.
(13) A — A is onto for all A >0, i.e., RN — A) = X for all X > 0.
(791) The domain D(A) is dense in X.

The three assertions stated in the proposition are established in [Paz83] in the case C' =1 in
(2.4.72). Assertions (i) and (i7) are shown in [Paz83, Theorem 4.3 (a), p. 14-15], while assertion
(7i7) is proved in [Paz83, Theorem 4.6, p.16]. In the proof of the Proposition 2.4.9 presented
below, we revisit the arguments presented in [Paz83].

Proof of Proposition 2.4.9.
(i) Using the fact that I — A is onto together with estimate (2.4.72) for A = 1, we deduce

that (I — A)~! is bounded and thus closed. Then, I — A is closed an therefore also A is
closed.

(73) Let us consider the set
A={A|0<A<oo0 and RN —A)=X}

Let A € A. By (2.4.72), X belongs to the resolvent set p(A). Then, since p(A) is open,
a neighborhood of A is in p(A). The intersection of this neighborhood with the real line
is in A and therefore A is open. On the other hand, let A, € A such that A\, — A > 0.
For every y € X, there exists x,, € D(A) such that

AnZn — Az, = y. (2.4.73)
From estimate (2.4.72) it follows that ||z, || x < A Yy|lx < K for some K > 0. Now,

AnllZn — Tmllx < [ Am(Tn — 2m) — Al(Tn — Tm) || x
< An = Amlllznllx < K[An = Aml-

Therefore (x,,), is a Cauchy sequence. Let z,, — x. Then, by (2.4.73), Az, — Az —y.
From (i), A is closed, and then, x € D(A) and Az — Az = y. Therefore, R\ — A) = X
and A € A. Thus, A is also closed in ]0, co[. Finally, since 1 € A and ]0, oo[ is connected,
A =]0, 00].

(i43) Let z* € X' be such that (z*, ) x' x = 0 for every x € D(A). We will prove that z* = 0
on X. Since I—Ais onto, it suffices to show that (z*,z—Az) v = 0 for every x € D(A),
which is equivalent to (2%, Az) v = 0 for every € D(A). Let x € D(A). Then, by (i)
there exists x,, € D(A) such that x = x, — (1/n)Ax,. Since Az, = n(x, —x) € D(A),
T, € D(A?) and Az = Az, — (1/n) A%z, or Az, = (I — (1/n)A)"t Az. From (2.4.72), it
follows that ||(I — (1/n)A)"!|x < 1/C and therefore || Az, | x < (1/C)|Az|x. We also
have that ||z, — x| x < (1/n)||Az,|x < (1/Cn)||Az||x and therefore x,, — x. Then,
since || Az, | < K and X is reflexive, there exists a subsequence (Axy, )i of (Azy)y such
that Ax,, — y weakly. On the other hand, since by (i) A is closed, then y = Az.
Finally, we have

(%, Az, ) xr x = (2™, Tn, — ) x =0. (2.4.74)

)
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Letting ny — +oc in (2.4.74), we obtain (z*, Az) y = 0. This holds for every x €
D(A) and therefore 2* = 0 and thus, D(A) is dense in X. This completes the proof.

Appendix C: Justification of the identity (2.4.55) (formal compu-
tations)

We consider the system

d
P — yAw-n on 'y, p=2ve(w)n-n on I, (2.4.75)

Ap=10 in Q
pOm,an

where (w, ) is the solution of the system (2.1.1).

The aim of this appendix is to present the formal computations to get the 1dent1ty (2 4.55)
in the definition of the very weak notion of solution for (2.4.75), as introduced in (2.4.55).

Let us consider auxiliar the system
. 195%
Ax =( in Q, o 0onTy x=0 onT,. (2.4.76)

We claim that

/QpC = 21//98(W) : Vi —2v /Fd e(w)n - Vy. (2.4.77)

After multiplying the first equation in (2.4.75) by Vx, and then performing some integration by

parts, we get
X
fs = fowe
Ix

=-—v [ Aw-ny+ 2u/ e(w)n-n-= (2.4.78)
T, T, on

=—v Aw-nx+2u/ e(w)n- Vy,
Ty I'n

from where we deduce that

/Q,oC = —U/Fd Aw -ny + 21// e(w)n-Vy. (2.4.79)

n

In the chain of equalities (2.4.78), to go from the second line to the third, we use the fact that

X = 0 on I'y,, which allows us to deduce that Vx = gn on I'y.

After multiplying by Vx the first equation in (2.1.1), we get

/QF -Vx — /Q V- -Vx=— /Q div (2ve(w)) - Vx. (2.4.80)

Let us first notice that after performing some integration by parts on the second term of the
identity (2.4.80), we obtain

— [ div(2ve(w)) - Vx =2v | e(w): V3x —2v [ e(w)n-Vy
) Q r
= 21//Qs(w) t V2 — 2v /Fd e(w)n-Vy — 21// e(w)n- Vy.

n

(2.4.81)
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On the other hand, since divw = 0 in 2, we can rewrite the second term of the identity (2.4.80)

as follows:

—/div(?u&?(w))~VX:—y/ Aw - Vx
Q Q
:V/diV(Aw)-X—V/wa-n
Q r

=—-v [ Awy-n.
Ty
After combining identities (2.4.81) and (2.4.82), we get

—v AW-IIXZQV/S(W):V2X72I//
Ty Q Ty n

Finally, replacing (2.4.83) in (2.4.79), we obtain the identity (2.4.77).

e(wn-Vy — 21// e(w)n-Vy.

(2.4.82)

(2.4.83)



Chapter

Existence of a local-in-time strong solution of
the fluid-structure system

Abstract of the current chapter

In this chapter, we analyse a system modeling the interaction between the incompressible
Navier-Stokes equations in a 2D rectangular domain with mixed boundary conditions, and a
structure governed by a damped Euler-Bernoulli beam equation. The structure, which is as-
sumed to be clamped at one end and free at the other one, is immersed in the domain occupied
by the fluid. We prove the existence of a local in time strong solution.
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3.1 Introduction

3.1.1 Description of the model

In this paper, we study a fluid-structure interaction problem coupling an incompressible and
viscous Newtonian fluid modeled by the incompressible Navier-Stokes equations, and an elastic
solid S, obeying a damped Euler-Bernoulli beam equation. The elastic solid, which is immersed
within the fluid, is clamped at one end to a rigid cylinder S, and free at the other end. See
Figure 3.1.

—L/2 0 r, & L

Figure 3.1 — Reference configuration.

The reference configuration €2 of the fluid domain is given by
Q= ([-L/2, L] x [-£, )\ S,
where S = S, US.. The boundary I' of €2 is divided into

[ =T,Ul, Ul UT, UT,,

where
Iy ={- /2} [ 4,
Iy = {(r(cos(d) — cos(@o)),rsin(Q)) | 0 € [0p,2m — 6o}, r>0,0p € (0,7/2),
Iy=T; F*urf
Tyw=[-L/2,L] x {—¢}U[-L/2,L] x {¢},
In ={L} x [-¢,4],

with Ty = [0,£5] x {—e}, T'T = [0,£4,] x {e} and T = {£,} x [~e,e]. We also set [y = '\ T',,.
See Figure 3.1.

When the dynamic is active, the interaction between the fluid and the structure involves a
deformation of the geometry as is illustrated in Figure 3.2.

Let T > 0. For a given function n defined from (0,7) x (0,¢s) to R that describes the
displacement of the centerline of the beam, we denote by {2, the fluid domain at time ¢ and
by L'y = F;(t) U Fﬁ(t) ur ( ) the fluid-structure interface, where I () and F;r(t) represent the
bottom and the top of the structure respectively, and Fn( n the lateral part, see Figure 3.2. Here,

we assume that the elastic part S of the structure is completely described by the displacement

71 of the centerline. More precisely, I‘;( " n(t) and Fe( 1) are given by

P;(t) = {(371777@,961) —e)|z1 € [0768]}7 F;;_(t) = {(xlan(tvxl) +e)|z1 € [0768]}
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Qn(t)

Figure 3.2 — Physical domain. The green-dashed lines denotes the reference centerline.

and
Thiy = {(s, 22) | ma = (1 = N)(—e +n(t,£5)) + Me +n(t, L)), A€ [0,1]}.
For 0 < T < o0, we set
T T
Q= U (x2u). == U (B xTh),
te(0,T) te(0,T)
QT =(0,T)xQ, ¥T' =(0,T) x T,
»I'=(0,T7)xT;, T =(0,T) x Ty,
»I'=(0,T)xT,, I =(0,T) x .

In the model, the fluid velocity u and the pressure p satisfy the incompressible Navier-Stokes
equations

du+ (u-V)u—dive(u,p) =0 in QZ, (3.1.1a)
divu=0 in QJ, (3.1.1b)
u=g onXf, u=0onxl u=0 on %7, (3.1.1¢)
u =€ on Zg, o(u,p)n =0 on X7, (3.1.1d)
u(0) =u’ in Q, (3.1.1e)

where the fluid stress tensor o(u,p) is given by

o(u,p) =2ve(u) —pl, e(u)= %(Vu + (Vu)T),

with v > 0 denoting the fluid viscosity.

We assume that the displacement of the centerline 1 is modeled by the damped Euler-
Bernoulli beam equation

O+ a2y + By, = H(u,p,n) in (0,T) x (0, £5), (3.1.2a)

n=0 and 9,7 =0 on (0,7) x {0}, (3.1.2b)
2 3

0z,m=0 and 0;,n=0 on (0,T) x {/}, (3.1.2¢)

n(0) =0 and 9n(0) = ny in (0,4,), (3.1.2d)

where the parameters a > 0 and v > 0 are ccinstants relative to the nature of the structure.
Throughout the paper, we assume that A2 = % with domain D(A2) = Hfo 25}(07 ?5) stands for

the bi-Laplace operator on (0,/s) and we set B = (Ag)% with domain D(B) = H{20} (0,45) (see
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Section 3.2.1). With this choice of B, system (3.1.2) is known as a damped Euler-Bernoulli beam
equation with a structural type damping (see [CR82]). The source term H on the right-hand
side of the structure equation is given by

H(u,p,n) = = (0 (wp)n},) + o0 (wp)n, ) ) /14 (0un)? - &, (3.1.3)
where
O':t(u,p) = U(u(ta L1, n(ta xl) + 6),p(t, L1, n(ta .7)1) + 6)),
and n;r( " (resp. n;(t)) is the unit normal to F;r(t) (resp. F;(t)) exterior to ,;y. This expression

for H is derived from the system’s energy identity. See Appendix A.

The equations (3.1.1) and (3.1.2) have to be completed by the so-called kinematic-dynamic
interface coupling conditions. The matching kinematic condition has already been included in
system (3.1.1) and is given by

u = 1€ on Eg.

The dynamic coupling condition is encapsulated in the function H defined in (5.1.2) that appears
on the right-hand side of equation (3.1.2). This term describes the force exerted by the fluid on
Ty ooy

3.1.2 Discussion

Following the article of Quarteroni et al. [QTVO00], there have been many works studying
the coupling between the incompressible Navier-Stokes equations with beam or plate equations.
Let us present a non-exhaustive brief review below.

Concerning the study of the existence of weak solutions, to the best of our knowledge, the first
result in this direction was done by Chambolle et al. [CDEGO05], where they studied a system
coupling the 3D incompressible Navier-Stokes equations and a 2D damped plate equation. This
result was later extended by Grandmont [Gra08] to the undamped case. In both works, which
are also valid in the 2D /1D setting, the existence of weak solutions holds as long as the structure
does not touch the fixed part of the fluid boundary. Recently, Casanova et al. [CGH21], show
in the 2D/1D undamped setting, the existence of global in time weak solutions regardless of a
possible contact between the structure and the fixed part of the fluid domain.

Regarding the study of strong solutions, to the best of our knowledge, the first result was
obtained by Da Veiga [Bei04] in the case where the dynamic of the structure is governed by a
damped Euler-Bernoulli beam equation. There, the author shows a local-in-time existence result
under the assumption of a smallness condition on the data. Later, this result was improved by
Lequeurre [Leql1], who proves the same local in time existence result showed by da Veiga, but
without the assumption of smallness condition on the data. The study of the undamped case
is done in Badra et al. [BT19], where the authors show the existence of a local in time strong
solution.

The model studied in the present paper considers a structure immersed in a fluid, with one
end free, but with the restriction that its displacement is only tranversal. The main contribution
of this work is the proof of the existence of a local-in-time strong solution to system (3.1.1)-
(3.1.2), see Theorem 3.2.1. Let us now describe the strategy used in the proof, along with the
main difficulties encountered in the analysis.

Since the fluid domain evolves over time, we rewrite the system in a fixed reference domain
by introducing an appropriate change of variables. After performing the change of variables, we
must deal with the presence of additional nonlinearities in the new system written in the refer-
ence configuration. To address the nonlinear problem in this framework, we employ a classical
approach. First, we associate to the nonlinear problem a linear one involving nonhomogeneous
source terms, where the latter represent the nonlinearities. Then, after solving the linear prob-
lem, we use the Banach fixed point theorem to treat the nonlinear problem. The crucial points
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are the establishement of the well-posedness of the linear problem and the Lipschitz estimates
used in the fixed point argument. Indeed, both steps are interconnected in the sense that the
regularity imposed on the inhomogeneous data of the linear problem must be appropriate to ob-
tain the estimates of the nonlinear terms in the fixed point argument. This key aspect reduces
to studying the spatial regularity of the fluid velocity and pressure in the linear inhomogeneous
problem. More precisely, we have to study the regularity of w and pressure 7 of the stationary
Stokes system

{—diva(w,w) =F in Q, divw =h in Q, (3.1.4)

w=gonly, ow,m1)n=0 on T},

where F', h and g are stationary data. Here, F and h play the role of the nonlinear terms obtained
after rewriting the system in the reference configuration. We first highlight that the domain 2
has reentrant corners at A and B (see Figure 3.1). Secondly, we emphasize the presence of
the junctions points between Dirichlet and Neumann boundary conditions at vertices C' and
D. To the best of our knowledge, a first regularity result that take into account the two issues
mentioned above is the one stated by Maz’ya and Rossmann in [MR10, Theorem 9.4.5]. This
result allows us to deduce that the solution (w, ) of the system (3.1.4) satisfies the following
regularity:
(w, ) belongs to the weighted Sobolev space HZ(Q) x H3(Q)

when F € L2(Q), h € H'(Q) and g € H3 (Ty),

for all § € (6*,1), where §* € (0,1/2). The weighted Sobolev spaces H3(Q2), H}(Q) are intro-
duced in (3.2.2).

Next, the crucial question to answer is determine whether all the nonlinear terms encoded in
F and h belong to L2(2) and H'(Q), respectively. In this regard, based on [FNR19, Lemma 6.3],
the answer to this question is negative. In fact, there are certain terms in F for which we are
unable to establish the L2-estimate, for instance, the term w,,7. Indeed, the cited lemma above
states that if w € HZ(Q) and n € HY(—L/2, L) with n(0) = n(¢s) = 0, then w,,n belongs to
L2(2). The core argument of the proof of this result relies on the assumption 7(0) = n(f) = 0.
However, in our setting, this is not generally the case, as n(fs) # 0. For this reason, we must
seek an alternative regularity result. In particular, an adapted version of (3.1.5) is provided
by the authors in Section 2.3 of Chapter 2, in terms of heterogeneous Sobolev spaces. The
heterogeneous Sobolev spaces are introduced in 3.2.1.

(3.1.5)

3.1.3 Outline

The remainder of this paper is organized as follows. In Section 3.2, after introducing the
notation of the different functional spaces, we perform a change of variable to rewrite system
(3.1.1)-(3.1.2) in the reference configuration and state the main result of the paper. Section 3.3
is devoted to rewrite the nonhomogeneous linear system as an operator equation. We rewrite the
stationary Stokes system in Subsection 3.3.1 and the structure equation in Subsection 3.3.2. The
coupled linear fluid-structure system is rewritten as an evolution equation in Subsection 3.3.3.
In Subsection 3.3.4 is studied the analyticity of the underlying semigroup. An existence and
uniqueness result for the nonhomogeneous linear system is presented in section 3.4. In Section
3.5, we estimate the nonlinear terms. In Section 3.6, we show the main result of the paper by
using a fixed point argument. Finally, some technical results are collected in Appendix.

3.2 Notation and statement of the main result

Throughout this paper, the letter C' will denote a constant (independent of 7') which may
vary from line to line.
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3.2.1 Notation
Usual and weighted Sobolev spaces

We set L2(Q) = L?(Q;R?) and H*(Q) = H*(Q;R?) for s > 0. We also introduce the following
functional spaces:

Hf () ={ueH(Q) |u=00n Ty} fors>1/2,

an“d( y={uecLl?Q)| divu=0inQ, u-n=0on1Iy},

Vi, (@) = Hp, () Ny, (),

H{g;(0,45) = {p € H'(0,45) | p(0) = 0},

H{gy (0, 65) = {u € H*(0,4s) | p(0) = 9z, 1(0) = }

Hiy,3(0,65) = {p € H*(0,£5) N Hy, (0, 45) | 93 u(ls) = 0},

Hio3(0,65) = {p € H*(0,£5) N H, (0,45) | @ IM( s) = 0y, u(ls) = 0},
{0}((0 T) x (0,£5)) = L*(0, T; H{py (0,45)) N H' (0, T; L?(0, £5)),
H?, 1 ((0,T) % (0,£5)) = L0, T3 H{y 140, £5)) N H?(0,T; L*(0,£,)).

All of the previous spaces are endowed with the natural norms.

We introduce the space of the inflow conditions
3
H(T;) = {g =(g1,92) | g2 =10 and g, € H2(T;) N H&(Fi)}, (3.2.1)

equipped with the norm (g1, ¢g2) — ||gl||H§(F_).
If we identify V%Fd(ﬂ) with its dual and, if Vl?dl(Q) denotes the dual of V%d(Q), we have

VI, (Q) = Vi, (2) = Vi (Q)
with dense and continuous embeddings. For 0 < s < 1/2, we introduce the intermediate spaces
0, () = [L*(Q), H, ()]s

For the definition of interpolation spaces by using the complex interpolation method see e.g.
[Tar07] or [Tri78]. The dual of H}, (€2) is denoted by Hp7(€2).

Let us denote by J the set of vertices of I'. For 5 > 0, we introduce the norms

1/2
|WHH2 = (Z Z/ H 5 |8sz| daj) , weEC®(;R?)

=1 JeJ
=0 © (3.2.2)

1/2
Ipll sy = (Z/ (T 5)1okpP? d:c) , peC™(LR)

|k|=0 JeJg

where r; stands for the distance to a junction point J € J, k = (ki,k2) € N? denotes a
two-index with length |k| = k1 + ko, O denotes the corresponding partial differential operator
and w = (wy,w2). We denote by H%(Q;RQ) (respectively, Hé(Q)) the closure of C°°(Q;R?)
(respectively, C*°(€2)) in the norm H‘HH%(Q) (respectively, HHH}i(Q))

Throughout this chapter, we will use the following regularity exponents introduced in Sub-
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section 2.2.2 of Chapter 2:
*e€(0,1/2) and 6" €(0,1/2). (3.2.3)
Heterogeneous Sobolev spaces
Let € > 0. We introduce the cut-off function ¥ € C*°(R?) satisfying 0 < ¥ < 1,

U=1on (—L/2,ls+¢/2) x (—=£,0) and ¥ =0 on (ls+¢e,L) x (—£,71). (3.2.4)

—¢ ! - L
—L/2 Ty Lty bate L

Figure 3.3 — Decomposition of the domain €.

We also define Qs = ({5 +¢/2,L) x (—¢,¢). We now introduce the heterogeneous Sobolev
spaces

H2+0(Q) = {F e H 2™(Q )](1—\D)F€L2(Q)}

H2tol(Q p€H2+O‘ N1 —W)p e HY(Q
(3.2.5)

v e HiT(Q)|(1 — ¥)v € H2(Q

)= 1
=1
=1
=1

3
m
=
[ 1
+
Q
;
—
|
"@
m
$
H,_/ H/_/

which are respectively endowed with the norms

1Bl g o= (IFIZ, 10— )FIE)
Il 30 = (112 4 oo+ 10— Wl
190, s = (1912 g 10— wplz)"”
ol gz 1= (12 + 100 W)

3.2.2 System in the reference configuration

This subsection is devoted to rewriting the system (3.1.1)-(3.1.2) in the reference configura-
tion. The spatial variable in the physical domain is denoted by x = (x1,x2), while the spatial
variable in the reference configuration will be denoted by z = (21, 22).

For r > 1/2, we denote by & the trace operators belonging to £(H'(Q), oz (%)), which are
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defined by

(75 @)(x1) = gq(z1,€) and (v ¢)(x1) = q(z1,—e) for all z; € (0,4,). (3.2.6)

Let us now introduce an appropriate extension of any function defined on [0, 4] to [-L/2, L].
We set n — En, where

0 if 21 € [~1/2,0),
En(xz1) = n(zq) if 21 € [0, 4], (3.2.7)
(3n(20s — x1) — 2n(3ls — 2x1)) O(x1) if 1 € [4s, L],

where 0 € C*([¢s, L]) is a nonnegative function with values in [0, 1], which is equal to 1 in
[ls,0s+e/4] and to 0 in [l5 4+ /2, L], for some 0 < € < (L — £5)/2. The following proposition is
a direct consequence of definition of £.

Proposition 3.2.1. For allT >0 andn € H?ézes}((O,T) x (0,45)), the following assertions are
satisfied.
(1) For all0 < ag<1/2,

En e L*0,T; H*T%(—L/2,L)) N H?(0,T; L*(—~L/2,L)).

and 1+ 27

2a0—
Ene H 2rea (0,T;H2Y(=L/2,L)), for all T € (0,3a0/4).
In particular, (En)(t,-) is a map of class CL.
(13) For all0 < ey < L,
(577)|(60,L) € LQ(Oa T; H4(805 L))
(@4) (Enlie,res2,n) = 0.

For a given n € Hf‘(’f&}((o, T) x (0,45)), we set
nt(t, - e) = (En)(t,-) on [-L/2,L] and n (t,-,—e):= (En)(t,-) on [-L/2,L)].

We now introduce two C* functions x* and x~, with values in [0,1], such that xT(23) = 1 in
[5,4] and xT(22) = 0 in [/, £, x (22) =1in [, —§] and x~(22) = 0 in [-§,].

For T' > 0, we introduce the set

E(0,T) = {n €H[J, ,((0,T) x (0,¢,)) such that 525
‘ 3.2.8
min{¢ — e +n(t,2) | (t,2) € [0,T] x O} > (£ - €)/2}.

where _
n%(t,z) = (FXT + (0 F 22)0.,xT) 75 (¢, 21), with (¢, 2) € [0,T] x Q.

For 1 belonging to E(0,T'), we consider the map X (¢,-) : Q — Q) defined by X(t,2) = z =
(z1,22), where

xr1 = 21,
2l — e Ft(t, 1)) + Oyt (t, 21) (3.2.9)

{—e

Ty = xT(22) + (1 — x*(22)) 22,
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for all z = (z1,22) € Q. Given 0 < g9 < L introduced in Proposition 3.2.1, let us set

OR = ([50765] X ([_& —6] U [eaf])) U ([ZsaL] X [—f,f]),

Op = (Q2\ Or) U ([e0,e1] x ([~€, | U[e,1))). (3:2.10)

See Figure 3.4.

¢ C
OL OR
A
e
,,,,,,,,,,,,,,,,,,,,,,,,,, e
B
0 D
—L/2 0 &o £ L L

Figure 3.4 — Decomposition of the domain €.

The following Proposition is a consequence of the definition of the mapping X given in (3.2.9)
and Proposition 3.2.1.
Proposition 3.2.2. Let T > 0. For alln € E(0,T), the mapping X defined in (3.2.9) satisfies:
(i) X(0,9Q2) =Q.
(13) For allt € [0,T], we have that X (t,1;) =Ty, X(¢t,Ty) =Ty, X(t,T,) =T, X(t,T5) =
Fn(t) and X(t, Fn) = Pn.
(iii) X € L*(0,T; H*t%(Oy)) for all 0 < ag < 1/2, and X € L?(0,T; H*(ORg)).
(iv) X € H?(0,T;L2(2)).
(v) X(t,-) is a C'—diffeomorphism from Q onto Q-

We will denote by Y the inverse of X. We also set J(t, z) = (J*)1<;j<2 = (VX)7L(t, 2) for
all (¢,z) € (0,T) x €. Let us notice that for X defined in (3.2.9)

{—e

. 3.2.11
(—e+ni(t,2) ( )

det(J) =

In order to transform the system (3.1.1)-(3.1.2) in the reference configuration, we introduce the
change of unknowns

u(t,z) =u(t, X(t,2)) and p(t, z) = p(t, X(t, 2)), (3.2.12)

for all (¢,2) € (0,T) x Q. We get that (4, p,n) satisfies the system

9 — divo(d,p) = Fs(4,p,m) in QT (3.2.13a)
div i = div Ggiv (4, 7) in Q7 (3.2.13b)
i=g' on¥!, a=0onxl =0 onx7, (3.2.13c)
=176 onX!l o(Tpn=0 onXxl, (3.2.13d)
u(0) =up in Q, (3.2.13e)
020 + a2y + y(A2)30m = — B+ 7o b+ Fu(@,p,m) in (0,T) x (0,4,), (3.2.13f)
n=0 and 9,,7=0 on (0,7) x {0}, (3.2.13g)
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92n=0 and 92n=0 on (0,T) x {(}, (3.2.13h)
n(0) =0 and 7,(0) = 79 in (0, ), (3.2.13i)

where the nonlinear terms F s édiv and F s are given by

~
~

92a
Fri(U,p,n) =—-(U—-9X)-J Vuz—l—uz e (J'WJI’J — 0k,j0¢,5)

82@
9 O (3.2.14)
(% k,g\ 14,5 5 — T - ~ . y A
B3 G (e Wq)i v (V (Vi (s = cof (VX))),
1=1,2, R
Gaiv(1,7) = (Ig2 — cof (VX))@ (3.2.15)
and
=~ 8171 8Yk 8u2 8Yk 8172 8Yk
_ + YR YL YR + a7 R
Fs(u777) - ny.s </)7‘71 [ aZk 8:[72 + ; 8zk 8:1;‘ ‘|> s azk 8:1:2
ot 0Y; Dty 0Y; Dl OY; (3.2.16)
_ Uy 0rg U Ory — U2 OXf
+ ¥ <7730 [ k azk 81‘2 Z 8Zk 8x ‘|> 2V’YS zk: 372]{387552

The explicit change of variable for the map X (¢,-) given in (3.2.9), is presented in the Appendix
B.
3.2.3 Statement of the main result

Following [MRR20], we introduce the definition of Sobolev spaces in the time-dependent
domain €2, ).

Definition 3.2.1. Let a € (0,a%), § € (6%,1) and T > 0. For any n € E(0,T), we say that u

belongs to L*(0,T; H2+a 1( Q) (resp. HY(0,T; H7%+Q’O(Qn(,))) if there exists X belonging to
L?(0,T; H2+a0(OL)) NL2(0,T;H*(Og)) N H2(0,T;L2(Q)), with 0 < ag < 1/2, such that for all
t€[0,T), X(t,-) is a Ct—diffeomorphism from Q onto Qp4), and when U defined by

u(t,z) =u(t, X(t,2)), forall (t,z) € [0,T] x 9,
3 (6}
belongs to L?(0,T; H§+ 2(Q)) (resp. HY(0,T; H_%“‘vo(Q))). Similarly, we will say that p
L (6%
belongs to L*(0, T} H;Jr ’1(9,7(,))) when D, defined by

p(t,z) =p(t,X(t,2)), forall (t,z)€[0,T] x Q,

1
belongs to L*(0,T; H? +a’1(Q)).
We are interested in solutions (u,p,n) to system (3.1.1)-(3.1.2) satisfying

+a2

uc L2(O T, I‘I2 (Q ())) ﬁHl(O T, H77+a0(Qn(.)),

pe L20,T:H: ™ (9,0), (3.2.17)
n € L*(0,T; Hy,1(0,45)) N H?(0,T; L*(0,£y)).
Definition 3.2.2. We say that the triple (u,p,n) is a strong solution to system (3.1.1)-(3.1.2)

over the time interval (0,T), when it satisfies (3.2.17), equations (3.1.1a)-(3.1.1b) in the sense
of distributions in QZ, equation (3.1.2a) in the sense of distributions in (0,T) x (0,4s), equa-
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tions (3.1.1c)-(3.1.1d)-(3.1.2b)-(3.1.2¢) in the sense of traces, and the initial conditions stated
in (3.1.1e) and (3.1.2d).

Before presenting the main result of the paper, let us introduce some additional notation.
Let a € (0,a*) and 0 € (6*,1). We introduce the space

3 «
Zr = (L2<0,T; H; () N HY(0,T H5+a*°<ﬂ)>)

X (3.2.18)
x L2(0, T3 Hp ' (Q)) x Hygly 1((0,T) % (0, £)),
equipped with the norm
H(uap777)HZT = HuH 5 %+a,2 ~liao0
L2(0,T;H; (Q)NHL(0,T;H™2747(Q)) (3 9 19)
+ ||p||L2(0,T;H5%+ayl(Q)) + HnHH?EfZS}((O’T)X(07£S)).

We also introduce the set

B(T, Ryuo, ) = {(8.5.m) € Zr | |(8.5.m) 2 < R, n € E(O.T) 520

and §(0) = o, 7(0) = 0, 7:(0) = 13}
Let us now state the main results of the paper.

Theorem 3.2.1. For all ug € HY(Q), 08 € H%O}(O,Es) and g' € H{lo}(O, 1, H(T;)) satisfying

u =0 onTy, ug=0 onI,.UTy,
’ 0 - ’ T (3.2.21)
ug =15(0,:)€ on Iy, divug =0 in €,

there exist T € (0,1) and R > 0 such that the system (3.2.13) admits a unique solution (Q,p,n)
in B(T,R,ug,n3). In addition, if we set

u(t,z) =a(t, X (t,z)) and p(t,x) = p(t, X *(t,z)), for allz e Qpey, t €10,T7,

where the map X(t,-) : Q@ — Q) is the one introduced in (3.2.9), then (u,p,n) is a solution
to system (3.1.1)-(3.1.2).

Remark 6. Theorem 3.2.1 can be extended to the case in which the damping operator B in equa-
tion (3.1.2a) is given by B = (A2)", with domain D(B) = D((A2)"), for 1/2 < r < 1. Through-
out the proof developed in this paper, the damping operator B only plays a role in proving the
analyticity of the semigroup generated by it. However, thanks to [CT89, Proposition 3.1], the
analyticity of the semigroup associated to B = (A2)", with domain D(B) = D((A2)"), is valid
for all r € [1/2,1]. We emphasize that the case r = 1/2 of structural-type damping considered
in this work is primarly motivated by an ongoing study on a stabilization problem, where this
specific choice enables the application of the approach used in [FNR19].
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3.3 System rewritten using the semigroup formulation
Let us consider the non-homogeneous linear system given by

Oyv —divo(v,p) =Fy in QT

divv = div Ggjy in Q7

v=glon¥ v=0onXLUxl v=(8& onXl,
o(v,p)n=0 on Eg,

v(0) = vp in Q,

0i¢1 = ¢ on (0,7T) x (0,4s),

BiCa + aA2(1 +7(A2)3¢ = —Fp+ 5 p+ Fs in (0,T) x (0,£,),
¢1 =0 and 0;,¢1 =0 on (0,7) x {0},

926 =0 and 82 ¢ =0 on (0,T) x {£},

¢1(0) =0 and ¢2(0) = ¢ in (0,4s).

(3.3.1)

In this section, we shall rewrite system (3.3.1) as an operator equation when F; = 0,
Gaiv = 0 and Fs = 0 (see Proposition 3.3.4). First, in Subsection 3.3.1 we recall some results of
the steady stationary Stokes system presented in Chapter 2. Next, in Subsection 3.3.2 we study
the structure equation. The analysis of the coupled linear fluid-structure interaction system
(3.3.1) is presented in Subsection 3.3.3.

3.3.1 Steady Stokes system

We consider the stationary Stokes system

{—div ow,m)=F inQ, divw=~h in Q, (3.3.2)

w=g only, o(w,m)n =0 onT,,.
Let us first start recalling some useful properties stated in Chapter 2.

¢ Regularity result. In Theorems 2.3.1 and 2.3.2 of Chapter 2, we show the following ex-
istence, uniqueness and regularity results for system (3.3.2).

Theorem 3.3.1. Let assume that o € (0,a*) and § € (6%, 1).

(i) Forall (F,h,g) € Hfdl(ﬂ) x L?(2) x H%(I‘d), system (3.3.2) admits a unique variational
solution (w,m) € HY(Q) x L3(Q).

(i3) For all (F,h,g) € Hféﬂy’o(Q) X H%Jra’l(Q) X H%(Fd), the variational solution (w,)

3 1
of system (3.3.2) belongs to H§+a’2(Q) X H52+a’1(Q). Moreover, there exists a constant
Cy > 0, such that

HWHH%+Q,2

: @) + ||7THH%+(!,1

5 ()

(3.3.3)
< Ca(IF - geaoggy 1Al 4w o) + I8l )

Remark 7. The case when h = div Ggjy, with Ggjy irregular, which will be used later in the
proof of Proposition 3.4.2, is treated in Appendix C.1.

We now introduce the lifting operators D and D,, defined by

3 a 1 a
D e L(H3(Ty), H; (), D, € L(H3(T,), H ™ (),
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such that
(Dg, Dpg) = (w, ), (3.3.4)

where (w, ) is the solution of (3.3.2) when F =0, h =0 and g = 0.

e Stokes operator. We begin recalling the following result stated in [NR15, Lemma 2.2].
Proposition 3.3.1. We have that

L3(Q) =Vi . (Q) & VH; (), (3.3.5)

7’L7F0

where HE (Q) = {p € H'(Q) | p=0on'y}. Moreover, the orthogonal projection P from L*(£2)
onto V(T)L,FO(Q) is defined by PF = F — Vq, where q is solution of the variational problem

Find q € H} () such that

) (3.3.6)
/ Vq-Vodr = / F-V¢dx, V¢ <€ Hp ().
Q Q
The following proposition is proved Corollary 2.4.1.
Proposition 3.3.2. The operator P € L(L?(Q)) defined by
PF =F — Vg, (3.3.7)

where q is the solution to (3.3.6), is also continuous from H*(Q) into itself for all s € [0,1/2+a™).
Furthermore, P € ,C(HféJra(Q)) and P € E(Hf%Jra’O(Q)).

For 0 < s < 1/2, we introduce the space

50, (Q)=Hp (Q) NV (), (3.3.8)

n,l'y

which is equipped with the Sobolev H}. —norm, and we define V1. () as the dual of V| . ()

TL,Fd

with V%Fd(Q) as pivot space, equipped with the dual norm of V2 . (Q).

n,Fd
Remark 8. Let s € (0,1/2). Thanks to Lemma 2.4.5 of Chapter 2, we can identify the dual

Il

space of V7 1. (), denoted by V| 1. (©2), with the closed subspace V%Fd (Q) Ta of Hp7(9).
We will use this identification throughout this chapter.
The Stokes operator (Ag, D(Ap; VY 1 (2))) in V%Id(Q) is defined by

n,l'yq
D(Ao; Vi1, () = {w € HET(Q) NV}, () | 3r € H3(Q) such that divo(w, ) € LA(Q)

and o(w,7)n = 0 on Fn},

Aow = Pdivo(w, ).
For all 0§ € (7/2,m), we define the sector ¥y by
Yg={AeC|larg(\)| < 0}.

The following theorem is proved in Theorem 2.4.1 of Chapter 2.
Theorem 3.3.2. There exist 6y € (7/2,7) and C > 0 such that

_ C
”()\I - AO) 1H£(V(’I)L,Fd(9)) < W7 for all A € 20, \ {0}

In particular, the unbounded operator (AO,D(AO;Vg’Fd(Q)) is the infinitesimal generator of an

analytic semigroup on V%Fd(Q).
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Since the domain ) satisfies the assumption (H1) — (H4) stated in Subsection 2.2.1 of
Chapter 2, the same proof of Lemma 2.4.7 (ii) can be used to show the following result.

Lemma 3.3.1. For all s € (0,1/2),

[V, (9, VI, (D)s = V3,1, (Q) and [V 1, (Q), Vi ()]s = V.5, ().

n,lg n,l'y n,l'q

1
. —5+a,0
Let us now introduce the Stokes operator Ag on Vn’%:a

(). In the same way as in Chapter
2, using the preceding lemma and the fact that Ag is an isomorphism from D(Ay; V%Id(ﬂ)) into
VO 1 (2) and from D(Ag; V1 (€)) into V() (this follows from the Lax-Milgram theorem),
we deduce that Ag is also an isomorphism from
_%+a
TL,Fd

D(Ao; V,. 2, () := [D(Ao; Vip 1, (2)), D(Ao; Vi, ()]

n,l'q 5«

, (3.3.9)
into [V 1, (), Vi (@)1, = AE(9))

n,l'gq n,lg

But, since D(AO;V;;(Q)) = Vi (9),

D(Ag; V, £ () = [D(Ags Vi, (), VE, (@],

n,lg n,I'y

We now recall the analyticity of the underlying semigroup associated to the Stokes operator

lig lig
(Ao, D(Ap; Vn}: (©2))) on anﬂ: ’O(Q) established in Theorem 2.4.2 of Chapter 2.

_1
Theorem 3.3.3. The unbounded operator (Ag, D(Ao; V,, %ja (Q))) is the infinitesimal generator
_1
of an analytic semigroup on an:a(Q).

e Expression of the pressure. Let us assume that h = 0. Formally, the pressure 7 in
system (3.3.2) is the solution of the elliptic equation

Ar =divF in Q, g—ﬂ =F-n+vAw-n onT'y, m=2ve(w)n-n onI',. (3.3.10)
n

We write 7 in the form m = g + p, where ¢ is the formal solution of the elliptic equation

Ag =divF in Q, gfl =F-nonly ¢g=0 onl,, (3.3.11)
and p satisfies the elliptic equation
. dp

Ap=0 in Q, I vAw-n on 'y, p=2ve(w)n-n onI',. (3.3.12)

Let us now introduce the operator N, € E(H_%+O"O(Q), H%Jro"l(Q)) defined by

N,F =g, (3.3.13)
where ¢ is the solution to system (3.3.11). Let us also introduce the operator
N, € L(H2T*(Q), L2(R)) defined by

Nyw = p, (3.3.14)

where p is the solution to system (3.3.12). These operators are well-defined (see Subsection 2.4.3
in Chapter 2)

We recall the following result established in Theorem 2.4.3 of Chapter 2:
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Theorem 3.3.4. Let a € (0,a*) and § € (6*,1). Assume that F € H_%‘W’O(Q), g € H%(I‘d)
3 1
and h =0. A pair (w,7) € H§+a’2(Q) X H52+a’1(§2) is solution to (3.3.2) if and only if

—AgPw + AgPDg = PF,
(I — P)yw= (I — P)Dg, (3.3.15)
m™ = N,w + N,F.

3.3.2 Euler-Bernoulli beam equation

In this subsection, we consider the structure equation

8t771 =13 in (OaT) X (0?68)7
1
i + al2n + (A2 =0 in (0,T) x (0, £y),
m =0 and Jz,m =0 on (0,7) x {0}, (3.3.16)
92 m =0 and 92 m =0 on (0,T) x {5},
n(0) = 0 and ny(0) = 1 in (0,4,).

In order to rewrite system (3.3.16) as an operator equation, we introduce the state space
Hy = H{py(0,45) x L*(0,£5), (3.3.17)

where we recall that H{%}(O,KS) = {u € H?*(0,4) | u(0) = 0z, 11(0) = 0}. The space Hy is
equipped with the inner product

0,
((m1,m2), (1, ) H, = /o (043;7715%1(1 + 772C2) dxy. (3.3.18)

Let us now consider the unbounded operator A2 = 8 2 with domain D(A2) = {0 . }(0 ls).

Since (A2 D(A?)) is self-adjoint and positive in L?(0, /), we can define the operator (A?)E as
in [Paz83, Section 2.6].

We now define the unbounded operator (As, D(As)) in Hs by

0 I
D(As) = D(AZ) x Hiy (0,4), As = (—M? —v(A2)5.> (3.3.19)

Theorem 3.3.5. The unbounded operator (As, D(As)) is the infinitesimal generator of an an-
alytic semigroup on Hg.

Proof. Since the unbounded operator (A2, D(A2)) in L?(0,4s) is self-adjoint, positive with
dense domain in L2(0, £;) and compact resolvent, by taking B = (A2)'/2 with D(B) = {0} (0,45)
in [CT89, Proposition 3.1], we conclude the result.

Proposition 3.3.3. Let us assume that 1) € H{lo} (0,45). Then, system (3.3.16) admits a unique
solution (n1,1m2) € Hf02zs}(((),T) x (0,£5)) x H=1((0,T) x (0, £y)).

Proof. Since (A,, D(As )) is the infinitesimal generator of an analytic semigroup on H, and
(0,79) € [D(As), Hyl1 o = {Oe }(0 ls) X {0}(0 ls), from [BDDMO07, Theorem 3.1, Chapter 1],
we deduce that the pair (11,72) belongs to L?(0,T;D(As)) N H(0,T; Hy). Thus,

m € L*(0,T; Hiy41(0,45)) 0 H' (0, T; H, (0, 45))
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and
2 € L*(0,T; Hy (0,45)) N H'(0,T; L*(0, £)).

This completes the proof. O

3.3.3 Coupled linear fluid-structure system

In this subsection, we are going to rewrite system (3.3.1) as an evolution equation when
h =0 and g' = 0. We start by introducing the lifting operators DY and D? defined by

(Dyn2, DEn2) = (w, ), (3.3.20)

where (w, 7) is solution of system (3.3.2). We also introduce the operator N; € L(L?(0,45), H'(Q2))
which is defined by Nyx = ¢, where ¢ is solution of

Ag=0 inﬂ,@:nonrj, @:—KOHF;,

P on on

S _ponTy\ (N7 UTYH), (3.3.21)
on

q=0onT,,.

Proposition 3.3.4. Let a € (0,a*), § € (6*,1) and T > 0. Assume that o € H>'((0,T) x
£ 1iq
(0,45)). Then, v € L*(0,T; H(?Jr 2(Q)) N HY0,T; H_%*'O"O(Q)) and q € L*(0,T; H52+ 1(Q)) is

a solution of the system

ov —divo(v,q) =0, divv =0 in QT,
v=0onYX, v=0 on ST UYL v=mé onXT,

3.3.22
o(v,gn =0 on BT ( )
v(0) = vY in Q,
if and only if,
Pv' = AgPv — AgPD? Pv(0)=P
v'= APy~ AoPDom, P(0) = Pvo, (3.3.23)
(I —P)v=(I—P)Din2, q= NyVv+ Ngnay.

Remark 9. The solution of the operator equation (3.3.23) has to be understood in the sense of
[BDDMO7, Definition 3.1(v), p. 129].

Proof. From Theorem 3.3.4 we know that the pair (v, ¢) belonging to
3.4 1iq
(L2(0,T; H(?Jr 2(Q) N HY0,T; H§+O"O(Q)) x L2(0,T; H(;2+ 1(Q)) is the solution to system

(3.3.22), if and only if,

Pv' = AyPv — AgPD1n, Pv(0) = Pvy,
(I —P)v=(I—P)D!n2, q= Nyv+ Np(—vy).

Then, according to the definition of the operator Ny (see (3.3.21)) we deduce that Ny(—0,v) =
Nsatng. O

We now proceed to rewrite the structure equation. Let us assume that F; = 0, g’ = 0 and
F, = 0. Since the pressure is given by ¢ = N,v + Ngno ¢, we have

1 _
O + alln + (A2 = = a4+ 77 q
= I N,V — v NeOima + 77 Npv + 5 NyOino.
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Thus,
1
(1+ I =75 INs) B + a2y + 7(A2)n, = —7 Nuv + 75 Nyv. (3.3.24)

Then, thanks to the identity v = Pv + (I — P)v and the relation (I — P)v = (I — P)D(s, we
deduce that equation (3.3.24) can be rewritten as follows:

1
(741 =5 IN) Ga + a2+ 1(A2) 21 = = 4 No(PV + Dy = PDimp)

(3.3.25)
+ 75 Ny(Pv + DZny — PD?ns).

Lemma 3.3.2. Let a € (0,a*). The operator Ks = I + (v — 77 )Ns is an automorphism in
L?(0,45). Moreover, K, is an automorphism in H(0, ().

Proof. We set Ly = (v — 75 )Ns. We observe that since v/ Ny and ~; N, belong to
L(L*(0, L), H%(O,Es)), the operator Ly is a compact operator in L?(0, £). Thus, to conclude is
enough to show that L, is positive. Let us consider ¢ = Ngk. After integrating by parts we get

0
R T L B N A A
Q Q o0 n

from where we deduce that the operator Ly is non-negative. Moreover, if Lgx = 0, then ¢ = 0
in Q, because ¢ = 0 on I'),. Therefore, Ly is positive. On the other hand, given ¢ € H*(0, {5),
we know that there exists a unique ¢ € L?(0,4s) such that ¢ = Ks¢ = ¢ + (7§ — 75 )NsC. Since
Ny¢ € HYQ), we have that (v — 75 )NsC € H%(OJS). Finally, since o € (0,a*), we deduce
that ¢ € H¥(0,¢5). This completes the proof. O

Now, we will proceed to write the system satisfied by the triple (Pv, (1, (2). We consider the

Hilbert space
1
Z=V_ % (Q)x Hs, (3.3.26)

TL,Fd

equipped with the inner product
(W, m1,7m2), (v, €1, G2))z = <U7V>H_%+Q(Q) + (1, m2), (G, @) w1

where (-, -) g7, is defined in (3.3.18). We recall that the cut-off function ¥ is introduced in (3.2.4).

1 (0%
We set VfL T, Q) = Hfl: Qnv? r,(£2). We now define the unbounded operator (A, D(A)) in
Z by
D(A) = {(Pv,1,C) € VER(Q) x D(A,) | Py — PDYGs € D(A: V, 1 ()},
and
A=A+ Bf_ + B{ + By + Bas, (3.3.27)
where

Ay 0 (—Ay)PD?
Ai=|0 o0 I , D(A1) = D(A), (3.3.28)
0 —aldl —y(A2)Y?

Pv 0
Bf| G |= 0 , D(Bi") = D(A), (3.3.29)
G K;7'FN,(Pv — PD%C + D¥(s)
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Pv 0
By| G | = 0 , D(B2) =D(A), (3.3.30)
G2 —(K7' = DaAG
Pv 0
Bs| ¢ | = 0 , D(B3) = D(A). (3.3.31)
G2 — (KL = D (A2)E

Remark 10. Concerning the operator (Bli, D(Bf[)), we remark that, at least formally,

Pv 0 0
Bf| ¢ |= 0 = 0 ,
2 K;'9$Ny(Pv — PDY(y + D3¢o) K9 [UNy(Pv — PDYC + DY(2)]

where ¥ is the cut-off function introduced in (3.2.4). The precise definition of the trace of
UN,(Pv 4+ PDgny — Dgng) is established later in (3.3.38).

The following result is a consequence of Proposition 3.3.4:

Theorem 3.3.6. Let o € (0,a%), 6 € (6%,1) and 0 < T < 1. Assume that (; € H*?((0,T) x
L
0.0), G € HX((0.T) x (0.4,)), v € L2(0.T:HF ™3(@)) 1 H'(0,T:H-$+0(Q) and p ¢

1 .
L?(0,T; Hera’l(Q)). Suppose that Fy = 0, Ggiv = 0, g' = 0 and F;, = 0 in (3.3.1). Then
(v,p,C1,C2) is a solution of (3.3.1), if and only if,

J Pv Pv Pv(0) Pvy
p G =AlG ]|, [ QO =] 0],
G2 C2 ¢2(0) ¢3 (3.3.32)

(I - P)v=(I—P)D,
p = No(Pv — PD{C + D) + No0iCa.

3.3.4 Analyticity of the semigroup generated by (A, D(A)) on Z

The main result of this section is the following theorem:

Theorem 3.3.7. The operator (A, D(A)) is the infinitesimal generator of an analytic semigroup
on 7.

In order to show the theorem, we will first to prove that the operator (A;, D(A;)), with
D(A1) = D(A), is the infinitesimal generator of an analytic semigroup on Z. Then, thanks to
a perturbation result of generators of analytic semigroups is enough to show that the operators
(B, D(A)), (By,D(A)), (B2, D(A)) and (B3, D(A)) are A;—bounded with relative bound zero
(cf. A. Pazy [Paz83, Chapter 3, Theorem 2.1] or K-J. Engel and R. Nagel [EN06, Chapter III,
Theorem 2)).

For a € R and 6 € (0,7), we define the sector 3, ¢ by
Yoo ={AeC||arg(A —a)| < 0}.

Theorem 3.3.8. The following assertions hold:

(t) There exists a € R and 0 € (7/2,7) such that the sector ¥, is contained in the resol-
vent set p(Ay) of the unbounded operator (A1, D(A1)). Moreover, there exists a positive
constant C such that

C
A —al’

(AT = A1) Y@y < for all A € B4\ {0}. (3.3.33)
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(i2)
(iii)

Proof.

(4)

(i)

The domain D(A) of the fluid-structure operator defined in (3.3.27) is dense in Z.

The unbounded operator (A1, D(A1)) is the infinitesimal generator of an analytic semi-
group on 7.

The proof is divided into two parts.

e Study of the resolvent set p(A;). Thanks to Theorem 3.3.3, we know that there
exists ¢y € (w/2,7) such that the sector g, is contained in p(Ap). On the other hand,
[CT89, Proposition 3.1] implies the existence of as € R and 65 € (7/2,7) such that the
sector X, g, is contained in p(Ay).

We now set the sector X, 9, where a = max{0,as} and 0 = min{f,6,}. Given A € X9
and (F, g, h) € Z, we consider the operator equation (A\I — A1)(Pv,n1,m2)" = (F,g,h)".
Following the proof given in [Ray10, Theorem 3.6, p. 5411], we have that

Pv _ _ v _ _ F
m | = (O‘I —OAO) L0 (M- A) 1((;114_0)21))31) (AT — As) 1) Z € D(A).
72

e Estimate of the resolvent of (A;, D(A)). The proof is similar to the one presented
in [Ray10, Theorem 3.6, p. 5411].

The proof makes use of Proposition 2.4.9 presented in the Appendix B at the end of
Chapter 2. We consider two cases.

e Suppose that a = 0. Then, since (0,00) C X,p, from estimate (3.3.33) we deduce
that _
(AT — Ay)v]jz > AC||v||z for all v.e D(A) and for all A > 0. (3.3.34)

On the other hand, the surjectivity of I — A; follows from the first part of the proof of
assertion (¢). Thus, from Proposition 2.4.9 we conclude that D(A) is dense in Z.

e Suppose that a = as. In this case, from (3.3.33) we deduce that
|(AM — A1)z > AC||v]z for all v € D(A) and for all X > 0, (3.3.35)

where A; := A; — al, with D(A;) = D(A). Once again, the surjectivity of the operator
I — A, follows from the first part of the proof of assertion (7). Thus, the densitiy of D(A)
in Z follows from Proposition 2.4.9.
According to [EN06, Theorem 4.6, p. 95], it suffices to show that the operator (A;, D(A))
is sectorial and densely defined. These two properties are established in the assertions
(7) and (i7), respectively.

O

Theorem 3.3.9. The operators (By,D(A)) and (By,D(A)) are Aj—bounded with relative
bound zero, i.e., for all a > 0, there exists C, > 0 such that

IBE(Pv,ni,m2) 'z < all A1(Pv,nu,m2) |z + Cal (P, 1,72) |2,

for all (Pv,n1,m2) € D(A).

Proof. We will only consider the operator (B;, D(A)). Thanks to [EN06, Lemma 2.13, p. 132
and [ENO06, 2.15(i), p. 134], it is suffices to show that Bj" € L(D(A),Z) is a compact operator.
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Let us first notice that

Pv 0 0
Bf | ¢ | = 0 = 0 ,
G2 K ' Ny(Pv — PDYCy + D¥(a) K ' [WNy(Pv — PDYC + DY(o)]

(3.3.36)
where VU is the cut-off function introduced in (3.2.4). From Theorem 3.3.8 (i), we know that for
all A € R satisfiying A\ > a, where a is the parameter appearing in the cited theorem, and for all

1o,
(F,g,h)" € Vn’iij (Q), there exists (Pv,n1,m2)" € D(A) such that
Pv F
()\I — Al) m = g . (3337)
yp h

Assume that (I — P)v = (I — P)D?n2. We will show that there exists C' > 0 such that

v v
[UNW(PY = PDYG + DGl e ) < C||F||V;%:a(m. (3.3.38)

We proceed by density. We assume that F € V%,Fd(Q). Then, (v, p,m,n2) satisfies

Av —diveo(v,p) =F, divv=0 in Q,

v=mn8 onls, v=0onTy\Tls, o(v,p)n=0 on T,

A —nz =g in (0, 4s), (3.3.39)
Ao + a2y + ’y(Ag)%nz =h in (0,4s),

m(0) =1m,2(0) =0 and 11,42(€s) = N z22(ls) = 0.

We solve the above system by first solving the structure equation. It is possible to check that
(m,m2) € Hf{lo zS}(O,KS) X H{20}(0,€5). Moreover, there exists C; > 0 such that

+ <c ( |lh )
Iy, , 0.0 +Illaz ©.0) < Cr{l9laz) 0.0 + IPlz200)

In particular, we can choose Cy > 0 large enough such that

Il 000 < O (I 00 + Whlizios ) < CHII 4o (3340

Then, using Theorem 3.3.1, we obtain that v € H3T(Q) and p € Hz"*(Q). In addition, by
using the same argument as in Proposition 3.3.4, we can express the pressure p as

p = Ny(Pv — PD/(s 4+ D?(2) + ANsng2. (3.3.41)
We now set vi = Uv and p; = Up. We notice that the couple (vi,p;1) solves

{)\vl —divo(vi,p) =Fy, divvy = in Q, (3.3.42)

vi =Uneé on s, v=0 on (['y\Ts)UT,,

where

Fi =UF +pVV¥ —v (VAY +2(V¥ - V)v+ V(v-VV¥)) and K= VU -v.



3.4. Existence and regularity results for the non-homogeneous linear system 88

1,
Since UF € HFd2+ (Q), p € L*(Q) and v € H'(Q2), we deduce that

_1
F, e HFd2+a(Q)7 WUno€y € H%(Fd) and k € H%_FQ(Q).

Next, from [Dau89, Theorem 5.5(a)] and [BR, Theorem 3.2 and Corollary 3.3], we deduce in
particular that there exists C'5 > 0 such that

le”H%Jr < C3HF||V7%+a(Q) (3.3.43)

n,I'g

Q)

Thus, using (3.3.40) and (3.3.43) to estimate the terms appearing in the equality (3.3.41), we
get

[WNy(Pv — PD{C + DG < ANl 14

1
H2T%(Q)

0 < Iy

n,lg

‘(@)

The last estimate, together with the density of V%Fd(Q) inV, 2+a(Q), allows us to conclude
estimate (3.3.38). Now, since v} [V N,(Pv — PD, + DY(3)] € HC“(O,ZS)7 from the fact that

;1€ L(H*(0,¢5)) and that the embedding H(0,¢s) < L?(0, {s) is compact, we deduce that
Bf € L(D(A),Z) is a compact operator. This completes the proof. O

The proof of the following theorem may be adapted from [Ray10, Lemma 3.9].

Theorem 3.3.10. There exists 01,02 € (0,1) such that By € L(D((—A)"),Z) and Bs €
L(D((-=A)?),Z).

Proof of Theorem 3.3.7. From assertion (iii) of Theorem 3.3.8 we know that the operator
(A1, D(A)) generates an analytic semigroup on Z. Then, using Theorems 3.3.9, 3.3.10 and
[Paz83, Chapter 3, Theorem 2.1] (see also [EN06, Chapter III, Theorem 2]), we deduce that the
fluid-structure operator (A, D(A)) generates an analytic semigroup on Z. This completes the
proof of Theorem 3.3.7.

3.4 Existence and regularity results for the non-homogeneous
linear system

Before presenting the result of the well-posedness for system (3.3.1), we will start by intro-

ducing an appropriate lifting associated to the inflow data g’ on I';, and another one associated

to the data Ggjy that appears in the divergence condition in system (3.3.1).

e Lifting of the inflow data g’ on I';. Let us consider the following system:

—dive(z(t),7(t)) =0 in Q,
divz(t) =0 in £,

z(t) =gi(t) on Ty, z(t) =0 on I, UL, Uy,
o(z(t),7(t))n=0 on I'y,.

(3.4.1)

The following proposition is a direct consequence of Theorem 3.3.1 (ii).
Proposition 3.4.1. Let a € (0,a*), 6 € (6*,1) and 0 < T < 1. For all g' € Hj}o}(O T;H(T;)),
system (3.4.1) admits unique solution (z,m) € H'(0,T; H2+a2(Q)) H(0,T; H2+a1(Q)).

Moreover, there exists a positive constant Cy 5, independent of T', such that

< : . 4.2
12l ozt I b o oy S Cool@l oy (642
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e Lifting of the divergence data Ggiy in 2. We seek a lifting w of the data Gg;v appearing
in the divergence condition in (3.3.1) satisfying

§ (6%
w e L2(0, T H2 7%(Q)) n HY(0, T H-270()). (3.4.3)

First, we explain why the approaches used in [FNR19, Theorem 10.2] and [MRR20, Proposi-
tion 5.1] cannot be directly applied separetely to our setting. Then, we show how these two
strategies can be combined to define the desired lifting.

First, unlike the lifting introduced in [FNR19, Theorem 10.2], where direct conditions on Gy
are imposed, it is not possible to apply this idea to our setting. Indeed, if we follow this approach,
we should assume that

3
pta

_1l.,
Gaw € L2(0,T;HZ () n H'(0, T:Hy 2 ().

However, in the fixed point argument we cannot estimate all of the term% involved in Ggjy in
those norms. For instance, the estimation of the term (9,,77 )u; in the H27%(£2)—norm would

require that d.,7i € Hg+a(—L/2, L), which is not possible due to Proposition 3.2.1. For the
definition of Ggjy, we refer the reader to (3.6.22).

A second approach is the one proposed in [MRR20, Proposition 5.1}, where the authors construct
a lifting based on a quasi-stationary Stokes system. More precisely, the lifting w is solution of
the equation

{— divo(w,7) =F in Q, divw = div Ggjy in Q, (3.4.4)

w=0only, o(w,min=0 onT,,.

The way to adapt that idea to our setting is by requiring the following regularity:
_1
div Gy € L2(0, T; H2*1(Q)) and Gaiy € H'(0,T:Hp 2 ().

Nevertheless, the problem with this approach arises from the fact that we cannot ensure the

_1 1
regularity w € H(0,T; Hrd2+a’0(9)) from the condition Gg;, € H*(0, T} Hp’ +a’0(Q)). Indeed,

_1
since Gaiv € Hp +Q(Q), we must define the solution w of (3.4.4) by transposition. In doing so,
we obtain that w and the adjoint states (®,) satisfy

A\'%
< ) C>H;d%+a

= (Gaivs V¥) 1.0 1., (3.4.5)

1_
277 H H
7Hrd r, T

—
for all ¢ € HE (), where (®,7) is solution of system
—dive(®,9) =¢ inQ, div® =0 in Q, (3.4.6)
®=0onTly o(®,yY)n=0 onl,. o

We note that the right-hand side of identity (3.4.5) is well-defined provided ¢» € H %_O‘(Q). How-
ever, we cannot ensure this regularity because of the reentrant corners present in the domain
fluid Q.

Let us now explain how we combine the approaches mentioned above in order to obtain a
lifting w with the desired regularity (3.4.3). Roughly speaking, the idea consists in splitting the
fluid domain into two parts, Or, and Og, as shown in Figure 3.5. Then, in the region Oy, which
does not include the reentrant corners, we apply the strategy of [MRR20, Proposition 5.1], based
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on a quasi-stationary Stokes system, while in the region O we use the approach described in
[FNR19, Theorem 10.2].

Vi c
OL OR
A
e
---------------------------- B —e
¢ D
—L/2 0 0 & 2, L

Figure 3.5 — Representation of the split fluid domain 2.

Let us start by introducing some notation. Let €3 and €1 be two positive constants satisfying
g0 < €1 < £5. Let us set

Or = ([eo, £s] x (=€, —eJ U [e, 0])) U ({65, L) x [=£,4])
Or = (2\ Or) U ([e0, 1] x ([, —e] U e, 1)) .

We introduce the cut-off function 6 € C> (R2) satisfying 0 < 6 <1,
O =1on[-L/2,e)] x[—£,€ and 6 =0on |1, L] x [—£,]. (3.4.7)
We consider the following decomposition of Ggjy:
Gaiv = 0Gqiy + (1 — 0)Gaiy- (3.4.8)

Let (wr(t),pr(t)) be the solution of (3.3.2) with F =0, g=0and h = div(ngiV), where 0G qiy
satisfy
~ 1
div(0Gay) € L*(0,T; H2T1(Q)) (3.4.9)

and _ )
0G gy € HY (0, T; H 2720(Q)). (3.4.10)

Let wg := (1 — 0)Ggiy, with (1 — 0)Gyjy satisfying

~ 310
(1-0)Gai € L2(0, T HZ () 0 HY(0,T; H-3+0()),
(1 - g)Gdiv =0 in 927 (3411)
(1-0)Gaiw =0 on 2%, (1 —0)Ggi)n =0 on X7,
Let us now set
W= W[ + WR. (3.4.12)

As a consequence of Theorem 3.3.1 and Lemma 3.C.2, we have the following result:
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Proposition 3.4.2. Let a € (0,a*), § € (6*,1) and 0 < T < 1. Under the assumptions
(3.4.9) and (3.4.10), along with condition (3.4.11), the function w defined in (3.4.12) belongs

3
to L*(0,T; H§+a’2(ﬂ)) N H(0,T; H7%+Q’O(Q)). Moreover, there exists a constant Co 5 > 0
independent of T, such that

Iwl | +wl

3 1
(0,mH2 T (@) HY(0,T;H™21%0(Q))

< Cos([div (6Gai)

+ 110G qiv
@) 10Gaiv ||

LQ(O,T;H%JFO"l HI(O,T;H7%+Q’O(Q)) (3413)

+

1 - 0)Gyiv .
S L2(0,T;H§+”"2<m)mH1(o,T;H*%“’“m»)

We are now in position to establish the main result of this section.

Theorem 3.4.1. Let a € (0,a*), § € (6*,1) and 0 < T < 1. Let us assume that vo € H'(Q),
& e H{lo}(o,es), F; e L*(0,T; H-210(Q)), gi € H{lo}(o, 1; H(T;)) and Fy € L*(0,T; L?(0,4)).
Let us assume that Gaiy satisfies assumptions (3.4.9) and (3.4.10), along with condition (3.4.11)

and Ggiv|i=o = 0, and let w denotes its lifting defined as in (3.4.12). We assume in addition
the following conditions:

vo=0 onTy, vo=0 onI,UT,,
vo = (2(0,-)€ on 'y, divvy =0 in Q, (3.4.14)
(PVanacg) € [D(A)7z]l/2a Pvy € [D(A07V0 (Q)) v (Q)]l/Qv

n,l'q > T n,lg

3ta

Then, system (3.3.1) admits a unique solution (v,p,(1,(2) belonging to L*(0,T; H§+ ’2(9)) N
1 (e

HY0, T H™3700(Q)) x L2(0,T5 H T (9)) x H*2((0,T) % (0,65)) x H>'((0,T) x (0, £,)), sat-

isfying the estimate

v 3 —+ ||V
| IIL Fraz g [ vl

+
2(0,T;H62 (Q HI(O,T;H_%+&’O(Q)) Hp||L2(O,T;H§+a’1(Q))
+ ICull a2 o,y x (0,60)) + €2l 210,y % (0,04)
< Cr(Ivolle @ + gl 2oy + 198 2y + 18 1 0.0
3.4.15
+ ”Ff||L2(0,T;H—%+“’°(Q)) sl 201y % 0.0)) ( )

+ Hdiv <§Gdiv)

+ 160G g
@) 10Ggiv|]

1
L2(0,T;HE+o H(0,T;H ™ 2T*0(Q))

+ H(l — 0)Gasy

3 1 )
L2(0,H2 T (@)nH (0,1 H 2T 0(Q)) /]

where Cp, > 0 is a constant independent of T
Proof. We split the proof in two steps.
e Step 1. Reformulation of the system (3.3.1).

Let (z(t), 7(t)) be the solution to system (3.4.1). Let w be the vector field given in (3.4.12). We
set v=v —w—zand p=p—pr — 7w Next, the couple (v, p) satisfies
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0yv —dive(v,p) =F; — 0w + 2vdive(w) — 0;z — Vpr, in QT

divv =0 in Q7,

v=0 on E;fp, v=0 on EEUEZ, v = (€2 on Ef{,

o(v,p)n=0 on I ¥(0) = vo — w(0) — z(0) in Q,

0i¢1 = ¢ in (0,T) x (0,45), (3.4.16)
0o+ aA2G +(A2)3G = =P+ P+ Fe in (0,7) x (0,44),

¢1 =0 and 0,,(1 =0 on (0,7) x {0},

92.¢ =0 and 82¢ =0 on (0,T) x {{},

¢1(0) =0 and ((0) =¢§ in (0,45).

We notice that the structure equation can be rewritten as follows:
1
(7+ 0 =7 1N 9rGa + @A+ (A2)2Co = =3 No(PY + DG — PDYG)
+ 7% Ny(PV + DJC2 — PDJC2) — v NpF 475 N,F
ty T =T+

where F := F;y — Oyw + 2vdive(w) — 0;z — Vpr. Thus, from Theorem 3.3.6 we have that the
solution (v, D, (1,(2) of (3.4.16) satisfies

PV pPv\ (PF PY(0) Pvo
d
i G|=A|l G |[+] 0], (o) [=1 0 [,
G2 G2 H ¢2(0) @ (3.4.17)

(I = P)v = (I = P)DJG
P = Ny(PV — PD¥C + DC2) + Ny(a + N,F,

where H = K; ! (= N,F + v, N,F + Fs + vFm — ;7). We observe that

||PF||L (07T7V_§+a 0) < C <||Ff||L2(O’T;H_%+a,O) + ||6tWHL2(O,T;H_%+O"O)
"y (3.4.18)
+||d1v5(w)||L2(0’T H-3+e0) + ||g||L2 0,1;H3 (1)) + 1l tgHLz 0,1;H3 (I'))
and (
1 |2 0/m5r20,000) < CUF AN o pogg-3va0y + 1EsllL20,72200,00))
L2(0,TH™ 2 (3.4.19)
+”gHL2 (0,1;H3 (T; +H tgHL201H2(F )

where C' > 0 is independent of T'. In the last two estimates we used (3.4.2).
e Step 2. Regularity of solutions to system (3.4.16).

In order to show that the constants that appear in the estimates below are independent of
T, we proceed as follows. Let us set

— F if0<t<T, — H if0<t<T,
F and =
0 ifT<t<1, 0 ifT<t<l.

Notice that PF € L*(0,1;V,, 2JrOlO(Q)) and H € L?((0,1) x (0,4,)). Next, instead of system
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(3.4.17), we consider the following problem:

d gv ]37 PF F:V(O) Pvg
dt G|=A[&G |+ 0 |, te(0,1), GO = o
: &)\ 6O) \ ¢

Since A is the infinitesimal generator of an analytic semigroup on Z (see Theorem 3.3.7) and
(Pv0,0,¢9) € [D(A),Z}, /2, the maximal regularity result [BDDMO07, Theorem 3.1, p. 143]
implies that (P¥,(;,(,) belongs to L?(0,1; D(A)) N H'(0,1;Z) and satisfies

| PV + ISl 20,1 % (0,60)) T 1C2ll 21 ((0,1) % (0,60

_1
HY(0,1V, 277

B B (3.4.20)
<C <||V0||H1 + 16N 1 0,00) + HPFHB( v hran + HHHL?(O,l;L?(O,ZS))) ,
LV,

where C' is independent of T. Let us notice that by construction we have (Pv,(1,(2) =
(Pv,(4,(y) in [0,T]. Then, from (3.4.18), (3.4.19) and (3.4.20) it follows that

||P‘7|\H1(O’T;V;%:a) F 1Sl za2¢(0,1) % (0,65)) T 1G21l 5121 ((0,7) % (0,4))

< HPVHHI(O B IS llzra2¢0,0)x0,00) + [1Call 210, % (0,00))

IE) n,Iy

(3.4.21)

7%+a,0

<C||v + 119 + || PF
< (H olle + 162111 (0,0) + | IILQ(O’T;anrd )

+ HH”LQ(O,T;LQ(O,ES))) :
We analyze separetely the regularity of (y, (> and v, p.

— Regularity of ¢; and (3. The fact that ¢; € H*2((0,T) x (0,4s)) and (3 € H>'((0,T) x
(0,45)) follows from (3.4.21).

1,
— Regularity of v and p. From (3.4.21) we deduce that Pv € H'(0,T; HF;Jr (Q)). We
1y,
claim that (I — P)v € H'(0,T;Hp? (). Indeed,

I(L = P)v| I = P)DG|

Hl(o,T;H*%“‘(Q)) = I( Hl(O,T;H’%“‘(ﬂ))
< C|[(I = P)D{G| 1 0,rL2 () (3.4.22)
< O|Gll a2 (0,1 % (0,64)) -

To deduce the last estimate we first use the transposition method to define the solution
of the mixed Stokes system with Dirichlet data (a: € L?(0,T; L*(0,4s)), and then we

1
conclude by invoking the Riesz representation theorem. Thus, v € H'(0,T; H? +O[(Q)).

Let us now consider the system

—divo(v,p) =F — 0,v, divv =0 in ©,
V=_06 only, v=0onI;UlULy, o(v,p)n=0 on I,

_lig
Since F — 9, € L*(0,T:Hy” () € L2(0,T;H () and ¢ € L(0,T; Hiy, (0,4,)),
Theorem 2.3.1 implies that

v € L*(0,T;HY(Q)) and p € L*(0,T; L*(Q)).
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Let us now consider

v —divo(v,p) =F, divv =0 in Q7
V=06 onXl, v=0on X uUxT Ul o(¥,p)n=0 on X7,
We will show that
~ 2 34a,2 1 _1l.h0 ~ 2 lia
ve Ll 0,T;H; (Q)NH(0,T;H 27*"(Q)) and p e L*(0,T;Hy 7 (2)). (3.4.23)

Let us set (Vi,p1) := (¥v, Up) and (va,p2) := ((1 — ¥)v, (1 — ¥)p). To show (3.4.23), it
is suffices to prove that

V1 € L20, T; H2t(Q)) n HY(0,T; H 2t*(Q)) and p1 € L2(0,T; H2T(Q))  (3.4.24)
and
Vo € L2(0,T; H2(Q)) N HY (0, T; L%(Q)) and pp € L*(0,T; HE(Q)). (3.4.25)

_1 _1
— Proof of (3.4.24). Firstly, since v e H' (0, T;Hp 2 *(%2)), thenv1 € H'(0,T;Hp. 2 ().
Let us now observe that (v1,p1) solves

—div J(\Nfl,ﬁl) = F1 — 85/1, diV\~71 = h1 in QT,
Vi=U(E on X!, vi=0on Xl uxTuxl uxl,

where
F1=UVF 4+ pVV — v (VAY +2(VU - V)V+ V(v-VV¥)) and h) = V¥ . V.

_liy _ _ _
Since F € L%(0,T; HF;’* (), p € L?(0,T; L*(Q)), v € L*(0,T; H'(Q)) and 9;v, €
1.,
L?(0,T; HFd2+ (Q)), we deduce that

_lig
F - 01 € LX(0,T;Hp 2 (Q), hy € L2(0,T; H2H(Q))
and Uires € L2(0, T; H2(T'y)).

Then, after applying [Dau89, Theorem 5.5(a)] and [BR, Theorem 3.2 and Corol-
lary 3.3], we obtain

V) € L0, T; H2T(Q)) and py € L(0,T; H2T(Q)).

This concludes the proof of (3.4.24).
— Proof of (3.4.25). Let us first observe that (va,p2) satisfies

8{\72 —div O'(ivfg,ﬁg) = F2, diV\~12 = h2 in QT7
Vo= (1-V)(& on XL, vo=0 on 3L\ 3T, o(Ve,p2)n =0 on X1,

where
Fy=(1-U)F —-pVV¥ +v (VAU +2(VU - V)V + V(v-VV¥)) and hy = -VV¥ - V.
Since (1—-V)F € L?(0,T;L%(Q)), p € L?(0,T; L*(2)), v € L*(0,T; HY(Q)), we deduce

that
Fy € L2(0,T;L%(Q)) and hy € L*(0,T; H'(Q)).
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We will now construct two lifting functions: one corresponding to the boundary data
(1 — ¥)(2€2, and another corresponding to the divergence data hy.

e Lifting for the boundary data. Let us consider the system

{— divo(wi,m) =0, divw; =0 in Q, (3.4.26)

\X/’l = (1 — ‘II)CQéQ on FS, \X/’l =0 on Fd\Fs J(Wl,%l)n =0 on Fn

Since (o € H>1((0,T) x (0,£)), thanks to [MR10, Theorem 9.4.5] and the transposi-
tion method, we deduce that

w1 € L*(0,T; H2(Q)) N H' (0, T;L%(R)) and 7 € L*(0,T; Hj (Q)). (3.4.27)

e Lifting for the divergence data. Let us consider the system

(3.4.28)

—diVO'(VVQ,ﬁ'Q) == 0, diVV~V2 - hg in Q,
WQ =0 on Fd, O'(WQ,%Q)II =0 on Fn.

1
Since ho € L2(0,T; H'()) N H(0, T} HFd2+a(Q)), from [MR10, Theorem 9.4.5] and
Lemma 3.6.1 we deduce that

Wy € L2(0,T; H2(Q)) N H' (0, T;L%(R2)) and 7 € L2(0,T; H} (Q)). (3.4.29)
Setting W := w; + wg and 7 := T + 72, we deduce from (3.4.26) and (3.4.28) that

w € L2(0,T; H2(Q)) N H (0, T; L*()) and 7 € L*(0,T; H}(Q)). (3.4.30)
After setting vo = w + z and py = T + ¢, we observe that (z, q) solves

04z —divo(z,q) = Fo — Oyw, divz =0 in QT
Z=0onX%}, o(zq¢gn=0 onxl.

Since Fo —9;w € L?(0,T; L%(Q)) and the semigroup generated by the Stokes operator
(Ag; V2 1. (Q)) on V%Fd(Q) is analytic (see Theorem 2.4.1 in Chapter 2), the maximal

n,l'y

regularity result [BDDMO7, Theorem 3.1, p. 143] with the constraint (I — P)z = 0
implies in particular that

2] 1 0,702(0)) < € <HF2HL2(O,T;L2(Q)) + ||5tV~VHL2(o,T;L2(Q))) : (3.4.31)
Then, from [MR10, Theorem 9.4.5] we deduce that the system

—divo(z,q) = Fy — 0w — 0z, divz =0 in Q7
z=0on%} o(z¢gn=0 on Xl

admits a unique solution
zZ € L*(0,T;H3(Q)) and ¢ € L*(0,T; H:(Q)). (3.4.32)
Thus, from (3.4.29), (3.4.31) and (3.4.32) we deduce that
Vo € L2(0,T; H2(Q)) N HY(0, T; L%(R)) and pp € L*(0,T; HE(Q)).

This completes the proof of (3.4.25).
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Then, v and p satisfy the regularity stated in (3.4.23). Finally, using the fact that v=v+w+2z
and p = p + 7, and noting that the regularity of w and z is the same as that of v (thanks to
Propositions 3.4.2 and 3.4.1, respectively), and that the regularity of 7 is the same as that of p
(again, thanks to Proposition 3.4.1), we deduce that

vl

HV”L%O,T;H?M’Q) i H(0TH 5+

=+ el

LQ(O,T;H(S%MJ)
+ 1Cull za2 (0,1 % (0,60)) T+ 1C2ll 2.1 ((0,7) % (0,4))
< C (ol + 168002 + 1Bl oo (3.4.33

+ HFsHLQ((o,T)x(o,zs)) + HW”LQ(QT;H?JFQ,Q) + [|Oew ||

L2(0,T;H*%+°"°)
gl 210 + 10l 2 01mr,))) -

The estimate (3.4.15) follows by using (3.4.13) in (3.4.33). This completes the proof. O

3.5 Estimates of nonlinear terms

In this section, we shall estimate the nonlinear terms F I @div and ﬁ’s in the corresponding
appropriate norms. See Appendix B for the definition of Ff, Gy and Fj.

3.5.1 Auxiliary results

Lemma 3.5.1. Let ag € (0,1/2). There exists a constant C > 0, depending only on ag, such
that, for all 0 < T < 1 and all n € H?é?es}((O,T) x (0,45)) with n(0) = 0, the extension En
defined in (3.2.7) satisfies

||57I||L<>o(o,T;H2+ao(—L/2,L)) < CTB(Hat??(O)HH;O}(o,ZS) + HU”LQ(O,T;H%O,ES)) (3.5.1)

+ Hat277||L2(O,T;L2(O,€s)))‘

Proof. Let us first observe that from the definition given in (3.2.7) it follows that there exists
a positive constant C' independent of T such that

IEN(E, N aztao(— 2,0y < Cln(t, ) g2+e0(0,0,) for a.e. t € (0,T).
From the last estimate we obtain

HSTIHLoo(o,T;H2+ao(—L/2,L)) < CH”HLOO(O,T;HH%(O,ZS))‘ (3.5.2)

In what follows we will prove that there exists a constant C' > 0 independent of T" such that

170l oo (0,7, 112+ 90 (0,0,)) < CT5(||8t77(0)||H;O}(o,zs) + 19l 20,7540, ) (353
+Hat277HL2(0,T;L2(0,£s)))'
We split the proof in three steps.

e Step 1. Interpolation and scaling arguments.
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Let us first observe that by interpolation we have
Hy 1 ((0,1) % (0,65)) = H'%0/2(0,1; H*%0(0, ). (3.5.4)
Moreover, there exists a positive constant C' such that

| < Ol st 0. 1S o022 0.1 (3.5.5)

19

1—*(o 1;H2+90(0,05)

for all ¢ € H{o 0, }((0, 1) x (0, £5)) satisfying ¢(0) = 0 and 9;¢(0) = 0. Then, thanks to Poincaré’s
inequality, we have

1/2+ap/4 1/2—ap/4
1q < Ol ot o 193¢ ot 0.0y (3.5.6)

Hl‘* 0,1;H2+40(0,45))
On the other hand, from the continuous embedding H'~%/2(0,1) < L>(0,1), we have

H'=%/2(0,1; H>T%0(0, £,)) < L>=(0,1; H*T%(0, £;)). (3.5.7)
Moreover, there exists a positive constant C' such that

€1l oo 0,152+ 20 (0,2,)) < CIC| (3.5.8)

ag
H'™72 (0,1;H2%90(0,45))

for all ¢ € H{oe }(( , 1) x (0, 45)) satistying ((0) = 0 and 0;((0) = 0. Next, after combining the
estimates (3.5.5) and (3.5.8), we get

1l o122+ 0,0y < ClCI e strs 0.0 1OFC ot a2 0.0 (3.5.9)

for all ¢ € H{O 1.3 ((0,1) x (0, £,)) satisfying ¢(0) = 0 and 9,¢(0) = 0. Let ¢() = {(¢T), t € (0,1).
Then, since ~

HCHL2(0,1;H4(0,£S)) = T71/2HCHLQ(O,T;H‘l(O,&))7

- (3.5.10)
102¢ N L2(0,1:22(0,00)) = T*21107C N L2 (0. 22(0.04))
from estimate (3.5.9) we obtain
a 1/24a0/4 1/2—ap/4
HCHL‘X’ 0,T;H?t20(0,45)) < CT1/2 O/QHCHLé 3_79;14(0@ H82CHL/2(0 75)4/2 0,65))’ (3'5'11)
for all ¢ € H{O 1.3 ((0,T) x (0,£,)) satisfying ((0) = 0 and 9,¢(0) = 0. We highlight that the posi-

tive constant C'in (3.5.11) is the same as the one appearing in (3.5.9), which is independent of T'.
e Step 2. Lifting.

Before using estimate (3.5.11), we will introduce an appropriate lifting. Let us first introduce
the space H{ﬁs}((o, T) x (0,45)) endowed with the norm

1/2
T2, oaioen = (Flommiony + 10800y

From [LMT72, Theorem 3.2, p. 21 and Remark 3.3, p. 22] it follows that for the couple
(0,0n(0)) € {oe }(O ls) X {0}(0 ls), there exists a lifting 77 € H?(’)QES}((O, 1) x (0,45)) such
that 7(0) = 0, 9;17(0) = T'9n(0) and

HUHH?OQz L((0,1)%(0,65)) < CTH@m( )HH{lo} £5) (3.5.12)
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Let us set g(t) == n(t) — 7(t), where 7(t) :=7(t/T), t € (0,T). We observe that
C = H{oe }(<O7T) X (O7£s))7 E(O) =0, and 8t5(0) =

Then, applying estimate (3.5.11) to ¢, we get

. _ _11/2+a0/4
I = Al o 132 400(0.20)) < OT >l =l Loy Pro.e.)
) 12— a0 /4 (3.5.13)
X Ha (n— 77>HL2 (0,T3L2(0,L5))"
After using
171l 220 71 0,0y = T 217l 2(0.2: 14 0,0)) 5
Hafﬁ”LQ(O,T;LQ(O,ES)) = T73/2HalgﬁHLQ(O,l;LQ(O,KS))?
estimate (3.5.12), Young’s inequality and the fact that 0 < T' < 1, we obtain
I — ﬁ”LOO(O T;H2+20(0,0,))
(3.5.14)

< T (10mO) .

10y (0.6) + 1l 20,1 54(0,0,)) + ”at277||L2(0,T;L2(0,ZS))>?

where f =1/4 — 3a0/8 > 0.
e Step 3. Conclusion.

Finally, after combining the estimates (3.5.12) and (3.5.14), [LM72, Theorem 3.1, p. 19] and
using the fact that 0 < T' < 1, we obtain

‘|77HL°°(O,T;H2+“O(O,ZS)) <|n- 77||Lo<>(o,T;H2+ao(o,es)) + Hm|L°°(O,T;H2+“0(O,ZS))
< CT (11O, 0.0,) + Iz im0, (3.5.15)
+ 10nll2 07220800 )

where C' is a positive constant depending only on ag. This completes the proof of (3.5.3). O

Lemma 3.5.2. Let ap € (0,1/2). There exists a constant C > 0, depending only on ag, such
that, for all0 < T < 1 and all n € H{oe }((O,T) x (0,45)), the extension En defined in (3.2.7)
satisfies

HgnuLOO(O,T;H?(O,ES)) < C(HU(O)HH%MS}(O,ES) + HUHLZ(O,T;H“(O,ZS))

(3.5.16)
+ 02072200 )

HatgnHLOO(O,T;HaO(—L/2,L)) < C(H(%”(O)”H%O}(O’ZS) + “8tn“L2(O,T;H2(O,Zs)) (3 . 17)
+ 192020722060 )

1] e o zesgt 500 1oz < C MOy, 0.0y + 10l 2073020001 -

+ |07 77HL2(O,T;L2(O,€S)))7
where ¢* = 4/(1 4 2ayp).

Moreover, if £ — e + nf(t, z) > (0 —e)/2 in (0,T) x §Q, then there exists a positive constant
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C, depending only on £ and e, such that

[det(J)]| oo (0,1;12(02)) < C (1 + ||77”L2(0,T;H2(0,£5))) 7l 2 0,7;52(0,0)) (3.5.19)
where /e
det(J) = ettt (t,2) € (0,T) x Q.
Proof.

e Proof of (3.5.16). Let us first notice that from the definition of the extension of 7 given
in (3.2.7), it follows that there exists a positive constant C' independent of T" such that

1€t M az(—rs2,0) < Clin(t, a2, a-e t€(0,T). (3.5.20)

Next, from these estimates we deduce that

HgnHLOO(O,T;HQ(—L/Q,L)) < CHWHLOO(O,T;H?(O,ZS))' (3.5.21)

Using the estimates (3.5.21) and Lemma 3.C.3 with X = Hfo es}(O,ﬁs) and Y = L2(0,4,), we
obtain the desired esimate.

e Proof of (3.5.17). The proof is analogous to that of estimate (3.5.16) and is presented in
Appendix D.1.

e Proof of (3.5.18). The proof can be adapted from that of Lemma 3.5.1. The detailed argu-
ment is presented in Appendix D.2.

e Proof of (3.5.19). The estimate (3.5.19) is a consequence of [MRR20, Lemma A.4]. O

Lemma 3.5.3. Let so € (0,1/2). Then, for all s € (0,3), there exists a constant C > 0 such
that, for all F € H*°(Q) and 1 € H%Jrs(fL/Q,L), with 7 =0 on (—L/2,0)J(ls +¢/2,L), the
following estimate holds:

17E [ pr-2002) < Il 1| =50 (0)- (3.5.22)

1
H2T5(—L/2,L)

Proof. Since 7 = 0 on (—L/2,0)U(¢s + /2, L), we assume that Q = QFt UQ~, where QF =
(0, Ls+e/2)x((e,£) U (=L, —e)) U(ls, Ls+e/2) x (—e, e). Given p € H*0(Q2), with ||| gso() < 1, it
is sufficient to show that 7jp € H*0(QF). We will only prove that 7jp € L2(0,£s+¢/2; H* (e, £)) N
H*0(0,05 +¢/2; L*(e, £)). Let us first show that 5o € L2(0,4s + ¢/2; H*(e,{)). Since ¢(z1,-) €
H* (e, !) for a.e. z1 € (0,45 +¢/2) and 7] € H%+S(—L/2,L) — L>®(—L/2,L), we have

2 bate/2 2 2
1100 72(0,6, 12250 (e,0)) :/O In(z0)["lle(21, )0 e,0) 421
<o (2, 12172 0,0, 42 j2: 150 (c.0))

~12 2
S O, 1y P10 b2 100

from where we deduce that

1m0 20,65+ /2:F50 (e,0)) < C'||77||H%+s(_L/2 L)||90|\L2(o,zs+s/2;Hso(e,e))- (3.5.23)

Let us prove that 7 € H*0(0, (s+¢/2; L*(e, £)). Since [|7(21)@(21, ) L2(e,0) = [(z0) (21, )l r2e )
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for a.e. 21 € (0,45 +¢/2) and, z1 — 7(21) € H%+5(O,£s +¢/2), 21 = (21, )lL2(e,e) €
H* (0,05 + ¢/2), from [GS91, Proposition B.1] we have that

7701 Er50 (0,604 /2:2 (e,0)) < C'||77HH%+S(7L/2 L)||90HH50(o,es+s/2;L2(e,z))- (3.5.24)

From (3.5.23) and (3.5.24), we deduce that 7jp € L?(0, £s+e/2; H* (e, £))NH*0 (0, Ls+e/2; L*(e, £)).
g

Lemma 3.5.4. There exists a positive constant C, depending only on o € (0,a), s € (1/2,1/2+
«), such that for all 0 <T <1 and all v € L*>(0,T; H7%+Q(Q)) N LQ(O,T;H%JFO‘(Q)), we have

1(1_s,a l_s4o 34s_a
] s < ( + ) 1727732 a1 5.
IVl z200,m;m1+5 () < CT2\a7 272 ||VHLOO(O7T7H Lia || HL2 OTH2+°“(Q)) (3.5.25)
V1 e o s+ gy SCUVO gy + IV HLQOTHW(Q)) 5520
+ ||at HLQ OTH*QJra(Q)))

Proof.
e Proof of (3.5.25). Let us first notice that by interpolation we have that there exists a constant

C > 0 independent of T" such that

1

[v(t, )l

4
Q) H-

o
2

§+§
I (s ey < CllvEE I 52,

Next, using Holder’s inequality with p = 1/(3/4+s/2 —«/2) and p' = 1/(1/4 — s/2 + a/2),
we get,

%\w
w\m
|
R

2 1 _s,o (f
||VHL2(O,T;H1+5(Q))SCT(4 2 2)H HLOC(OTH_§+Q </ HV HH2+a )

=

This proves the estimate (3.5.25).

e Proof of (3.5.26). It is a consequence of Lemma 3.C.3 with X = H%Jra(Q) and Y =
H-2T(Q). O

3.5.2 Estimates of nonlinear terms

This subsection is devoted to the estimate of the nonlinear terms F s édiv and F 5

Let R > 0 and let ag € (0,1/2) be the parameter that appears in Proposition 3.2.2. Let us
also assume that up € H'(Q2) and 1) € H{lo} (0,£5). Let us recall that the set B(T, R, ug,n3) is
defined by

B(T, R, uo,13) = { (@, 5,7) € Zr | |(@ B, )|z, < B, n€ E(O,T)

(3.5.27)
and 1(0) = ug, 7(0) =0, 7:(0) = 773}’

where the space Zr is defined in (3.2.18).
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Estimate of f‘f

Lemma 3.5.5. There exist constants Cﬁf > 0 and B > 0, depending only on R, ag, ug and 19,
such that, for all0 < T < 1, all (4,p,n) € B(T, R,uq,n3), we have

IF (3, P, < Cp,T7. (3.5.28)

1) HL?(O,T;H_%“"O(Q))

Furthermore, for all (W',p',n'), (02,5 n?) € B(T, R,ug,n9), we have

(a2 =2 .2
1B/ @50 = By @507 g oo

T I (3.5.29)
< Cp, T7||(@", ' 0") — (@2, 5% )|z,

Proof. We recall that f‘f is given in Appendix B, (3.6.21).
Firstly, given the similarity between some of the terms present in F;, we will only show the

estimates (3.5.28) and (3.5.29) for some of them. In particular, we have selected the following
terms:

o Fl:= det(J)(azlni)gzala
o B i det() () 5

o F3 = det(J)(0.,7%) (;ZZ’ZI
.« Fiim det(J)(a;ni)gZ,

where
nt(t,e) = (En)(t,-) on [=L/2, L], n~(t,-,—e):= (En)(t,-) on [~L/2, L],

and det(J) = Ze—fn#’ Wlth n%(t, Z) = (ZFX:E + (6 F Z2)8zgxi) /)fli(t, Zl), (t, Z) & [O,T] X ﬁ

Secondly, let us observe that in order to show the estimate (3.5.28), it is sufficient to prove

1B @50 g gy 3oy < O, T (3.5.30)

and
1 (0, D, m)0, [ 20,7512 (00)) < CﬁfTﬁ- (3.5.31)

The Lipschitz estimate (3.5.29) can be obtained in a similar way to how we will proceed to
prove (3.5.28).

. f‘} By using the Holder inequality, the continuous embedding H*(Q)) — L*(Q) with 1/2 <
s <1/2+4 « and Lemmas 3.5.1, 3.5.2 and 3.5.4, we obtain

ou; .

det(J) (82177i) 9o U

' L2(0,T;L2(%2))

< C||det ()|l oo 0.1y xe) 1027 Nl oo (0.1 (~L/2.1))

ou;
82’1

HUIHLOO OTH2+O‘(Q)) X ‘

L2(0,T5H*(2))
< OT".

° f‘fc Let ap € (1/4,1/2) be the parameter that appears in Proposition 3.2.2. By using Holder’s
inequality and the continuous embeddings H%®(—L/2, L) < L*(—L/2, L) and H*(Q) — L*(Q),
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with 1/2 < s < 1/2 4 «, together with Lemmas 3.5.2 and 3.5.4, we obtain

det(J)n; .

< C||det(J)]| o0
L2(0,T;L%(Q)) 1det (Tl oo (0.7 x0)

ou;

822

% ”ntiHLOO(O’T;HGO(_L/ZL)) ‘ L2(0,T;H*(Q))

<CT?

. F?: From Lemmas 3.5.1, 3.5.2 and 3.5.3, we get

< C 1At ()l 010 1047 g b o0 1oy
" 0%,
8Z282:1

0%,
822821

det(J)(8z,7)

1
L2(0,T;H-21%(Q))

L2(0,T;H™ 3720 (Q))
< CT".

. f“}: Let ap € (1/4,1/2) be the parameter that appears in Proposition 3.2.2. Using the Holder
inequality and the continuous embeddings H(—L/2, L) < L*(—L/2, L) and H*(Q) — L*(Q),
with 1/2 < s < 1/2 4 «, together with Lemmas 3.5.1, 3.5.2 and 3.5.4, we obtain

det()(82 ) 2

20 0z 2 02))
2 + 8@2
< Cldet( )| oo 0,1y x ) 192,17 (| Lo (0,7 100 (~ 1/2,1)) 92 | 2 0.rum )
< CT?.
This completes the proof. O

Estimate of édiv

Lemma 3.5.6. There exist constants Cad' > 0 and 8 > 0, depending only on R, ag, ug and
nS, such that, for all0 < T < 1, and for all (W,p,n) € B(T, R,ug,n3), we have

|div (0Ga) (@, m)

5@ iv Aa
o+ 10 ()]

N B
S CYc:'divj—‘

1 1
L2(0,T;H 3! HY(0,T:H ™ 3+0(2))

(3.5.32)

and

1 — 0)Ga (4,
H( )G 77)‘ L2(o,T;H§+“’2(Q))mH1(o,T;H‘%“"O(Q)) Saiv

<Cs TP, (3.5.33)

where 0 is introduced in (3.4.7). Furthermore, for all (W', p',n') and (62, p2,n?) € B(T, R,ug,n9),
we have

| (div (0Gaw) (@, n') - div (0Gai.) (62,12))|

T ”gédiv(ﬁ17 771) - gédiV(ﬁz’ N

1
L2(0,T;H2 N (Q)

)
) HY(0,T;H2+0(q))

3.5.34
=9 (Gan @0~ Gan(@2 7)) o

L2(0,T;H§, S (@)NH (0,TH 3 H0(Q))
< Cg, T°l@,5"n") = (@,5° )|z,

d
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Proof. We recall that édiv is given in Appendix B, (3.6.22). We will only present the proofs
of estimates (3.5.32) and (3.5.33). The proof of the Lipschitz estimate (3.5.34) can be proved in
a similar way.

Let us show the estimates (3.5.32) and (3.5.33). We split the proof in three steps.

<Cs T&.

e Step 1: Proof of estimate Hdiv (éédiv) (T, n)‘ ottty < Caa,

We will only consider the term (9,,n* )8“1 In this case, the proof of

8u1
L2(0,T3L2) HV( !l )622)

may be adapted from the one of Lemma 3.5.5.

8’11,1
82’2

)

H(azm )5 <CT’ (3.5.35)

1
L2(0,T;H - 27%0)

e Step 2: Proof of estimate ||§édiv(ﬁ,n)|]H1(0 T b0 < C’adwTﬁ.
We will prove that
(82| 1, SCTP (3.5.36)

and

< CT”, (3.5.37)

9@ )TN g5y <

To prove estimate (3.5.36), we can proceed in a similar way as in the proof of Lemma 3.5.5.

In order to prove (3.5.37), we will show that

12Vl o gty < CT7 (3.5.38)

and
1D Ohil g - peey < CT (3.5.39)

Let us begin by proving (3.5.38). Let us first observe that thanks to the embedding H %Jra(Q) —
L?(2), Lemmas 3.5.2 and 3.5.4, we obtain the following estimate:

(@2 )|

L2(0,T;L2(2)) = CHaglmi”L2(07T;L°°(—L/2,L))- (3.5.40)

To conclude the proof of (3.5.38), we will show that
Hagltni||L2(O,T;L°°(7L/2,L)) <CT". (3.5.41)

Let us notice that for all ag € (0,1/2) we have that H/4=%/2(0,T) — L9°(0,T), with ¢* =
4/(1 4 2ap). We highlight that the continuity constant in the preceding embedding does not
depend on T (see [DPV12, Remark 6.8]). Then, by using Holder’s inequality and Lemma 3.5.2,
we obtain

_a*
/ ” 1t77 ”LOO L/2L)dt<Tq*72H 1t77 ”Lq (0,T;L°(— L/QL))SCTQ*72~ (3542)

This proves (3.5.41) and hence the estimate (3.5.38).
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Let us now prove (3.5.39). With Lemmas 3.5.1 and 3.5.3, we have the following estimate:

||62177 8tulHLQ OTH_§+Q(Q))
< CHamn ||L°° 0TH2+CL0( L/2 L) Hatu1||L2(0,T,H7%+a(Q))
<CT".

Thus, the estimate (3.5.32) follows from steps 1 and 2.

e Step 3: Proof of estimate (3.5.33).
Let ag € (0,1/2) be the parameter that appears in Proposition 3.2.2. Since n*(t,-) €
H*(ep, L) = L>(eq, L), from Lemma 3.5.1 we obtain

1L = )@= |

< Ozl

[

L2(0,T;H3+2(Q)) Lo (0,T;HE % (20, L)) L2(0,T;H3+2(Q)) (3.5.43)

< OT".

This completes the proof. O

Estimate of ﬁs

Lemma 3.5.7. There exist constants C > 0 and 8 > 0, depending only on R, ag, ug and n9,
such that, for all0 < T < 1, and for all (4, p,n) € B(T, R,up,7n9), we have

IFs(a, M 20,1852 (0,6)) < CﬁSTﬁ- (3.5.44)
Furthermore, for all (4!, p',n'), (62, p%, n?) € B(T, R,ug,n3), we have

||Fs(ﬁ17771) - Fs(ﬁ27 772)”L2(0,T;Ha(0,1zs))

o . (3.5.45)
< CT7||@Y 5", n") — (@, 5%, %)l z¢-

Proof. We first recall that Fj is given in Appendix B, (3.6.23). Analogously to the proof of the
Lemmas 3.5.5 and 3.5.6, we will only prove the estimates (3.5.44) and (3.5.45) for some terms
of Fs. In this particular case, we will only consider the term

 (detn @) 52).

Let us remark that in order to prove the Lipschitz estimate (3.5.45) we can proceed in a similar
manner as we will proceed to show (3.5.44).
Since v € L(H2T*(Q), H*(T'F)), it suffices to show that

To conclude the estimate (3.5.46) we will prove that

8'[,62

det()(0:7) 5

< CTP. (3.5.46)
L2(0,T; H2+°‘)

ou
‘det(J)(azln 522 v ST (3.5.47)
and
v ((det())(0. ) 252 <Cor’ 3.5.48
€ ( )( 2177 )822 L2(0T~H7%+a) — . ( J. )
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Let us first prove the estimate (3.5.47). Let ag € (1/4,1/2) be the parameter that appears in

Proposition 3.2.2. Using Hoélder’s inequality and the continuous embeddings H%(—L/2, L) —

LA(—L/2,L) and H*(Q) — L*(Q), with 1/2 < s < 1/2 + «, with Lemmas 3.5.1, 3.5.2 and 3.5.4,
we get,

ou

+,0u1

Jaet(n) @052

L2(0,T5L2())
822

< C del J oo 8 L>°(0,T;H% (— ‘ QO
H ( )Hl, ((0,7)x) || z1 7 || (0,T;H*0 ( L/QaL)) L2(()77 H=(82))
< C; .

This completes the proof of (3.5.47).
Let us now show (3.5.48). We will only consider the estimate

The proof of (3.5.49) is similar of that of Lemma 3.5.5. O

82’2

L %0y

+
023

1
L2(0,T;H ™21

det(J)(02,n™) <CT?.  (3.5.49)

1
L2(0,T;H 27T%)

det(J)d,,n

3.6 Proof of Theorem 3.2.1

Let us first recall the definition of the space Z7 given in (3.2.18):
2 S4a,2 1 “1lia0
Zp = (LY0,TsHF ()N H (0, T; H27%7(Q))
3+l 4,2
x L2(0,T; HZ ™" (Q)) x Hyy 1 ((0,7) x (0, 45)).
We now introduce the mapping N from Zr into itself, defined by
/\/’(‘I’ﬂ/% k) - (ﬁaﬁa 77) for all (¢7w7k> € ZT7

where (4, p,n) is the solution of the system
Ot — div o (4, p) = Fp(®, 1, k), divii = div Ga(®, k) in Q7
i=g onX, i=0onXLUX! d=mn6 onXxT,
o(d,p)n =0 on XL, 16(0) = up(X,(+)) in Q,
Oy + a2 + (A2 2y = —7F D+ 455+ Fa(®@,k) in (0,T) x (0, £,), (3.6.1)
n=0 and d,,n=0 on (0,7) x {0},

92n=0 and 03 n=0 on (0,T) x {{s},
n(0) =0 and 7:(0) = 19 in (0,s).

To prove the existence of a solution to the system (3.6.1), we will show that for an appropri-
ate radius R > 0, there exists T' € (0,1) sufficiently small such that the mapping N maps
B(T, R,uy,n9) into B(T, R,ug,n9) and it is a strict contraction in B(T, R, ug, 7).

Proposition 3.6.1. Let M be a positive constant satisfying

ol ) + 1790 0,00) + HgiHH{lO}(O,l;H(Fi)) <M. (3.6.2)

Then, there exists T € (0,1) such that N maps B(T, R, wg,19) into itself, where R = 2C, M, with
Cy, being the constant appearing in estimate (3.4.15). Moreover, for all (®,1,k) € B(T, R,ug,n3),
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all (B, k"), (®2,9%,k*) € B(T, R, ug,73), we have
IN(®. ¢, k)2, <R (3.6.3)
and

V(@ 0" kY = N (@2, ¢% k)| 2, < CTP||(®, 41, k) — (87,92 k)| 2, (3.6.4)
Proof. From Theorem 3.4.1 it follows that

1@, 5,01z < Cr(Ivollen + 19811 (0.0,) + Iz o im0

+|F (@, 0, k?)||L2(O’T;H_%+a,o) + |1 Fs (@, k)| 20,7 x (0,0))

+ Hdiv <§édiv(¢, k:))’ (3.6.5)

+ [0Gaiv (2, k)|

1
L2(0,T;HE o1 H(0,T;H™ 2 T0)

+ |1 = 0)Ga(@. k)

34a,2 1 )
r20,rH2 ) (0, rH T3 T0) )

where C7, > 0 is the constant appearing in estimate (3.4.15), which is independent of T". After
combining the estimates (3.5.28), (3.5.32), (3.5.33), (3.5.44), (3.6.2), in (3.6.5), we get

|85, m)llz, < CLM +Cp(Cg, +Cg, +C5)T”

We recall that M depends on the initial conditions ug,nJ and on the boundary data g’. Next,
for T € (0, 1) small enough we deduce that

1@, p,n)llzr < R.

From Lemma 3.5.1, we get

175 )| o 0.7y % (~1/2,0y) < CT?,
with C' > 0 independent of T. Then, by choosing 7" > 0 sufficiently small, we obtain that
{—e+nf > ({—e)/2forall (t,z) € (0,T) x Q. Therefore, we have that N(B(T, R, ug, n9)) C
B(T, R,ug,n9). Now, we are going to show that N is a strict contraction in B(T, R,ug,7n3). For
j=1,2, we set N(®/,47 kJ) = (4/,p’,7/). From Theorem 3.4.1 and the estimates (3.5.29),
(3.5.34) and (3.5.45), we obtain

1" 5"n") — (@2, 5% n?)llz,
A R NPBI®L ol LY (B2 2 1.2
SCL(CFf+CGdiV+CFS)T ||(¢ P,k ) (Q V7, k )HZT'

Then, if 0 < T < 1 is small enough, we conclude that N is a strict contraction in B(T, R, uy, 7]8 ).
O

Proof of Theorem 3.2.1. The first part of Theorem 3.2.1 follows from Proposition 3.6.1 and
the Banach fixed point Theorem. On the other hand, since X (,-) is a C! —diffeomorphism from
Q into 4, there exists a unique Y (¢, -) from €, into Q such that X (¢,-)~* = Y (¢, ). Defining
u(t,z) = u(t,Y(t,z)) and p(t,z) = p(t,Y (t,x)) we can verify that (u,p,n) satisfies the system
(3.1.1)-(3.1.2).
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Appendix A: Expression of the function H and simplification in
the modelling

In this section, we present the formal computations leading to the expression of the function
H = H(u,p,n) in the system

du+ (u-V)u—divo(u,p) =0 in Qg, (3.6.6a)
divu=0 in QJ, (3.6.6b)
u=g' onX!, u=0onxl u=0 onx7, (3.6.6¢)
u = 1,62 on ZZ, o(u,p)n=0 on X, (3.6.6d)
u(0) =u’ in Q, (3.6.6¢)
020+ aln +vBn; = H(u, p,n) in (0,T) x (0,£,), (3.6.6f)
n=0 and 9,7 =0 on (0,7) x {0}, (3.6.6g)
82117 =0 and 92 =0 on (0,T) x {£s}, (3.6.6h)

7(0) =0 and 91 (0) =713 in (0,£s). (3.6.61)

The computations rely on an energy equality. For simplicity, we assume that g = 0 on I'; and

Let us first derive an energy identity for the sub-fluid system (3.6.6a)-(3.6.6¢). By taking the
scalar product of both sides of the momentum equation (3.6.6a) with the fluid velocity u, and
then integrating over €2, ;), we obtain

/ AR u+/
0)

The first term in the previous identity can be rewritten with the aid of the Reynold’s transport
Theorem. Indeed, using the cited theorem (see [BF12, Theorem 1.2.1]), we get

d 2
g we=]

n(t)

u-Vju-u+ 21// le(u)|* - / o(u,p)n-u=0. (3.6.7)

Q) Q) O]

o)+ [ fuPu-n,
0!

n(t)
from where we deduce that
1d 1
/ Ju-u= f—/ lul> - 7/ lul*u - n. (3.6.8)
Qyt) 24t Ja, 2 Jry

Let us analyze the second term in the identity (3.6.7). From the divergence’s Theorem and the
incompressbility condition divu = 0 in €, it follows that

/ (u-V)u / uPu-n o= / uf’u - n. (3.6.9)
o) 2 ooy
Now, using identities (3.6.8) and (3.6.9) in (3.6.7), we obtain
ld 2 1 2 2
f—/ |u] —I—f/ |ul u-n—|—21// le(u)] —/ o(u,p)n-u=0. (3.6.10)
2dt Ja,q 2 Jr, Q) O (e)

Let us now derive an energy identity for the sub-structure system (3.6.6f)-(3.6.61). By multi-
plying both sides of the identity (3.6.6f) by 0,1, integrating over (0, ;) and some integration by
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parts, we get
1d [ 0 0
f—/ (10m]? + almea ?) +7/ [tz :/ H (u,p, )0 (3.6.11)
2dt Jo 0 0
Now, after adding identities (3.6.10) and (3.6.11), we obtain
1d 1
oo [l [ Puen [ g
2 dt Sy 2.Jr, Q)
(3.6.12)

1 d és 2 2 eS 2 gs
+**/ (10m[* + alne.| )+v/ [Ntaal —/ U(H,p)n-UZ/ H{(u,p,n)0m.
2dt Jo 0 () 0

This last identity suggests defining the function H such that

ls
/0 H(u,p,n)0m = —/ o(u,p)n - u.

n(t)

Let us analyze the right-hand side of the last equality. Indeed, let us first observe that

n(t)

¥4
LE (®) n(®)

J1 Jo J3

The curves T'T,

() and F;(t) are parametrized by

Ot (t,z) = (z,n(t,x) £ e), (t,z) € (0,T)x (0,0),
while the curve Ff;(t) is parametrized by
Db (t,0) = (L, (1 = N)(—e +n(t, £s)) + Me +n(t, £5))), (t,\) € (0,T) x (0,1).
Then,

n=-| " oult, B (4, 2)),plt @ (1, 1)k, - ult, (2, 2))[0F (4 2) | do

S /0 “ o(u(t, & (t,2)), p(t, O (£, 2)))n , m2/1 + 12 de,
and
Jo = — /OES o(u(t,® (t,x)), p(t, <I’_(t,w)))n;(t) cu(t, @ (t,x))| P, (¢, )| dx
_ /0 “ o(u(t, @ (t,x)), p(t, & (t,2)))m ey /1 + 02 da.
On the other hand, since the kinematic condition is given by
u(t, % (t,\) = f*(t,z), (t,\) € (0,7) x (0,1),

which is equivalent to

u(t, ®% (6, \)) = ni(t,£5)&, (t,\) € (0,T) x (0,1),

(3.6.13)

(3.6.14)

(3.6.15)

(3.6.16)

(3.6.17)
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we have that
1
J3 = */ o(u(t, 8% (1, ), p(t, % (£, ) )nl, - ult, B (1, A))[ @5 (£, A)| dA
0

1
__ / ot B (1, N), plt, B (1, \)) 0 1 (£, £4)822e AN
0

X (3.6.18)
— <2em(t,0) | oun(u(t, (5, 0), plt, B (1, X)) A
— _2en(t, ) /0 " a (B (8, 1)) dA,
Thus, the relations (3.6.15) and (3.6.16) suggest us to define H as
H(u,p,n) =— (U+(u,p)nf7“(t) + J_(u,p)n;(t)> 14 (0z,n)? - €2 (3.6.19)

Discussion about the term J;

As we can notice, the term Js given in (3.6.18) is not necessarily zero, since neither 7 (¢, )

nor / , U2 is necessarily zero. One possible way to compensate this term in the energy iden-
r

n(t)

tity would be to include it in one of the bondary conditions at the right end = = ¢; of the beam.
This would amount to treating a structure equation with a non-standard condition. However, as
a first step toward addressing such a problem in the future, we decide to consider homogeneous
conditions at the right end of the beam. In this context, we present numerical results showing
that the term J3 can be neglected after comparison with the viscous dissipation term.

To assess the order of magnitude of the term Js3 = J3(¢) in comparison with respect to the
viscosity dissipation D = 2v / le(u)?
n(t)
Reynolds number Re = 200, damping coefficient v = 1075 and the perturbation amplitude
B = 1.5 of the inflow condition, we consider three different values of the rigidity coefficient a:

1,10~ and 1072.

, we present three numerical simulations. Given a fixed

Figures 3.6, 3.7 and 3.8 show the evolution the viscosity dissipation D = D(t) and |J3| = |J3(¢)|
when the rigidity coefficient « is equal to 1, 10! and 1072, respectively. From these figures we
deduce the following:

e When a =1, D ~ 10}, while |J3| ~ 107°.

e When a = 107!, D = 10!, while |J3| ~ 10~%.

e When a = 1072, D =~ 10!, while |J3| ~ 10~%.

In all three cases analyzed, we observe that the viscous dissipation D is at least three orders of
magnitude larger than Js. Thus, it seems reasonable to neglect the contribution of Js.
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1 0.
—ol e Usl
0.8 0.00008
0.6 0.00006
= =
Q =
0.4 0.00004
0.2 0.00002
0.4
2 4 6 8 10 12 14

(a) D(t) vs t (b) [ J5(t)] vs t

Figure 3.6 — Comparison between the viscosity dissipation D = D(t) and J3 = Js3(t), when
a=1.

1 0.
—o| Vil
0.8 0.0008
0.6 0.0006
g g
Q =
0.4 0.0004
0.2 0.0002

0. 0.0000

t t

(a) D(t) vs t (b) | J5(t)] vs t

Figure 3.7 — Comparison between the viscosity dissipation D = D(t) and Js = J3(t), when
a=10""

1 0.
—o| e Uil

0.8 0.0008

0.6 0.0006

a =

0.4 0.0004

0.2 0.0002

0.4

2 4 6 8 10 12 14

(a) D(t) vs t (b) |J5(£)] vs ¢

Figure 3.8 — Comparison between the viscosity dissipation D = D(t) and J3 = Js3(t), when
a=10"2
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Appendix B: Change of variables

B.1  General change of variable formula

In this appendix we present the formulas used to obtain the nonlinear terms F r ﬁdiv and
F.
We set
u(t,z) =u(t,Y(t,x)) and p(t,z) = p(t, Y (t,x)).

Then,

Oyu; = Oy - (u-V)u); =) tj——, = —,
! ! — 0z; Ot ) %; 10z, 0x;" O ; Dz O
82171- oY, 9Y;, ou; 0%Yy, Op 0Y},
&rjaxm Z 02,02 Oz, Ox; Zk: Dz, 0x;0xm,’ 8% Z 0z, 0x; (3.6.20)
6uj BYk

divu = — .
kZJ: azk (%cj

B.2 Nonlinear terms coming from the geometric transformation (3.2.9)

In this section, we present the explicit formulas of the terms F s F’div and }?’5 that we obtain
for the geometric transformation given in (3.2.9).
After some computations, we obtain:

~ _0u;  (LF z)xiazlni ou; {—e 8uZA
F 7 s s = - - o F
* Fra(W,p,m) (“1321 (—e+ny 822“1 (—e+ni 8,22

+,.+ 95, + + 27
L T2 O _2V<(£:Fz>x 02111 ) a

E—e—l—n% 079 é—e—l—nf 021029
o (EF D E ? 9% (2ot Lot
(—e+ni 02221 (0 —e+ny)? x 073 (3.6.21)
o ((WF2)xTont\ ot 0 ((CF2)xTo,nT\ (LF 2)xFo.,nt o a
iy o I tro I I
82’1 f—e—}—nx 82’2 822 €—6+77X €—6+77X 62’2
v(l —e)? ! 0 ! T ot
(—e+ni0m \L—e+n | 0z
0 77X oty (UF 2)xto.,n* ouy T A
Vaizi < 6—6872’1_}_ 2 8722 +((I]R2 J )VQ)Z,
where, .
Y8, 7t
E—e—i—nx 822 €—e+nX6z2
+
~ L LF 2)xT0,,n* _
o Gaiv (T, 1) = _677_X6u1e1 G Zf - T 6. (3.6.22)
oF,(T,n) = -yt _fze 0w @_(KZFZ)XiaZlni@ (3.6.23)
ST = T (—e+nidzn  On (—e+ni Oz o
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_ {—e Oup Ous (£$z)xiazlni O0u9
—+ — - — 3.6.24
Y <€—e+77% O0zg Oz (—e+nE Oz ( )
l—e O0la l—e  _ 6&2)
w—— () - ———— — . 3.6.25
* Vﬁ—e+n,j<[75 (82’2) V6—6+77§[75 (822 ( )

Appendix C: Auxiliar results

C.1  Study of Stokes system with irregular divergence data (case 1)

Let a € (0,a*). Here, we will consider the decomposition of the domain Q as the one given
in Figure 3.4. In this section, we shall study the the Stokes system

{_ dive(w,p) =0 in Q, divw = divhg;, in Q, (3.6.26)

w=0onTly o(w,pn=0 onT,,

_1
when hg;, belongs to Hy. ? +Oé(Q) satisfies hgiy|o, = 0. Before to introduce the definition of what
we will understand by a solution of (3.6.26), let us consider the system

{— dive(®,¢) =¢ in Q, div® =0 in €, (3.6.27)

®=0onTly o(®,¢¥)n=0 onl,.

1
Definition 3.C.1. Let a € (0,a*). Let us assume that hgiy, € HF;JFQ(Q) with haiv|o, = 0. We

_1
say that w € Hp? +a(Q) is a solution to (3.6.26) in the sense of transposition if and only if

(w, C>H;d%+a 1a= <hdiv>v7f}>H_%+a . (3.6.28)

H2
g La g

for all ¢ € L2(Q2), where (®,) is solution of system (3.6.27).

_1
Lemma 3.C.2. Let a € (0,a*). For all hg;y € Hrd2+a((2) satisfying haiv|o, = 0, system
(3.6.26) admits a unique solution w € H_%+O"0(Q) in the sense of definition 3.C.1.

1
Proof. Let ¢ € Hf a(Q) satisfiying ¢|p,, = 0. By using a localization argument and [Dau89,
Theorem 5.5(b)], [MR10, Theorem 9.4.5] as in the proof of [BFGR, Theorem 3.2], we can

deduce that 9 € H%+“(Q) with ¥|p, € H%_O‘(OL). Then, arguing as in the proof of [BFGR,

C1
Theorem 17] we have that w|o, € Hp} +a((’) ). Moreover,

Wl —tva < Cllbail—tva VY (3.6.29)

H. 2" (0y) n2 o0 H2 *(0,)

On the other hand, taking ¢ € L?(Q2) with (o, = 0 and using a similar argument as above, we
can deduce that in particular ¢|p, € H %*Q(OL). Moreover,

IWlizon) < Cllbaivll -3 1a (3.6.30)

\Y
e oVt o0,

y

Then, the conclusion follows from (3.6.29) and (3.6.30). O
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C.2  Study of the Stokes system with irregular divergence data (case 2)

Let us consider the system

{— divo(w,7) =0, divw = hy in Q, (3.6.31)

w=0only oW, T)n=0 onT,,.

_1
Definition 3.6.1. Let a € (0,a"). Assume he € Hp 2 +&(Q). We say that w € L2(Q) is solution
to (3.6.31) if and only if,

2
()17

w-G=—(ho,p) _1., 1, or all G € L2(Q), 3.6.32
/ (h2, p) Fd§+ s @ f (€) ( )
where (@, p) is solution to

{_ divo(p,p) =G, dive =0 in €, (3.6.33)

p=0 onTy o(p,p)n=0 onl,.

1
Lemma 3.6.1. Assume hg € Hrd2+a(Q). System (3.6.31) admits a unique solution w € L?(Q)
in the sense of Definition 3.6.1.

Proof. Given G € L2(Q), we know from [MR10, Theorem 9.4.5] that there exists a unique

L
couple (p,p) € H§+ (Q) x H}(Q) solution to (3.6.33). Then, since H}(Q) < H%+O‘(Q), the
right-hand side in (3.6.32) is well-defined.

Let us consider the linear functional L : L2(Q) — R defined by

t-a

L(G) = — (ha, p .
(G) = = (1 g by

1
—i4a

2

HFd

Then,
IDG)I = ((h2:) gty | € Ozl g (Gl

d

Thus, L € £(L*(Q2),R). Then, the result follows from the Riesz representation Theorem. [

C.3 Auxiliar Lemma

Throughout this section we will assume that X and Y are two separable Hilbert spaces. We
will also suppose that X is continuously embedded into Y and that the range of X is dense in Y.

Let a and b two real numbers, finite or not, with a < b. We set
W(a,b) = {f € L*(a,b;X) | & f € L*(a,b;Y) } (3.6.34)
endowed with the norm

1/2
1 lwaey = (1F 2oy + 10 20y -

Lemma 3.C.3. Let 0 <T < 1. If f € W(0,T), then f € C([0,T];[X,Y]/2) and

[z, m31x,]1 ) < € <||f(0)||[x,yh/2 + 1 fllz20,7:x) + HatfHL2(o,T;Y)) , (3.6.35)
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where C' > 0 is independent of T .

Proof. We split the proof in three steps.
e Step 1. Intermediate estimate.

We claim that there exists a constant C' independent of 7', such that for all w € W(0,7T)
with w(0) = 0, we have

[0l Lo 0,13 1x, ], 0) < € (H@HLZ(O,T;X) + Hat@HLz(o,T;Y)) : (3.6.36)

Indeed, from [LM72, Theorem 3.1, p. 19] we have that there exists C' > 0 such that for all
w € W(0,00)

lwll 2o 0 00371 12) < C (0]l 2(0.001x) + 1950l 220,001 )- (3.6.37)

To conclude the estimate (3.6.36) we will proceed as follows. Let us first extend w to W(—o0,T)
by defining w(t) = 0 if ¢ < 0. Then, for ¢ > 0 we define w(T +t) = 3w(T —t) — 2w(T — 2t).
We see that this extension belongs to W (0, c0). Then, the estimate (3.6.36) follows from (3.6.37).

e Step 2. Lifting.

From [LM72, Theorem 3.2, p. 21 and Remark 3.3, p. 22] it follows that for fo := f(0) €
[X,Y]1/9, there exists a lifting f € W(0, 1), such that f(0) = fo and

£l < Cllfollx, v, o (3.6.38)

Let us set @(t) := f(t) — f(t), t € [0,T]. Then, by construction @ € W (0,T) and @(0) = 0.
Thus, using estimates (3.6.36) and (3.6.38), we get

1f = Fle=@rix v < CFONxyy, , + 12015 + 100|207 )- (3.6.39)
e Step 3. Conclusion.
Let us first notice that from estimate (3.6.38) and [LM72, Theorem 3.1, p. 19] we have

111z 0,107 2) < CHFOIixv1, 00 (3.6.40)

Let us now show the estimate (3.6.35). By using the estimates (3.6.38), (3.6.39) and (3.6.40),
we obtain

1l oo 0,131,700 0) < I = fHLoo(O,T;[X,Yh/z) + ||f|!Lw(o,T;[X,Y]1/2)
< C(1fO)llxyy,, + 1l 20.:3)
+ 110 f | z20.79) ) + CIFO) Iy,

< C(||f(0)||[x,y}l/2 + I fllzzo.rx) + HatfHLQ(O,T;Y))-

(3.6.41)

This completes the proof.

Appendix D: Proof of estimates (3.5.17) and (3.5.18)
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D.1  Proof of estimate (3.5.17)

It is sufficient to prove that

1967l oo (0,173 90 (0,05)) < O<||5t77(0)||H;O}(o,es) + 110l 20,1, 12(0,0,)) + ||at277HL2(O,T;L2(O,Zs)))'
(3.6.42)
Let us set f := Oyn. Notice that f € H{O}((O,T) x (0,45)), since n € H?(fes}(((),T) x (0,45)).
Then, using Lemma 3.C.3 with X = H{O}(O ls) and Y = L?(0,45), we deduce (3.6.42).

D.2  Proof of estimate (3.5.18)
It is sufficient to show that

10l - T 00, )) (Ham( )HH%O}(O,KS) + 10l 20,7, 12(0,0,)) + H6t277”L2(0,T;L2(0,€s)))'

(3.6.43)
We split the proof in three steps.
e Step 1. Interpolation and scaling arguments.
Let us set f := 0yn. Next, since n € H{oz }((O,T) (0,45)), f € H{O}((O,T) x (0,45)).
Let us first observe that by interpolation we have
Hyg ((0,1) X (0, £5)) = HY4700/2(0,1; HY/2H0 (0, £,)). (3.6.44)
Moreover, there exists a positive constant C' such that
3/4+ao/2 1/4—ag /2
g1l 117402015115/ 00 (0,0,7) < CllINT a0 1ot 0.0 1009 oo 102 0,000 (3.6.45)

for all g € H{Z(’)%((O, 1) x (0,¢5)) satisfying g(0) = 0. We remark that the Poincaré inequal-
ity was used in the last estimate. On the other hand, thanks to the continuous embedding
H'Y/4=00/2(0,1) < L7(0,1), with ¢* = 4/(1 + 2ag), we have

HYAZ00/2(0, 1, HY/240(0,5)) < L (0, 1; HY/#40 (0, £y) ). (3.6.46)
Moreover, there exists a positive constant C' such that
gl L+ (0,1;H3/2+a0(0,45)) = < Cl¢ll /s a0/2(0,1;H3/2+20(0,4,))> (3.6.47)

for all g € Hig ((0,1) x (0,£,)) satistying g(0) = 0.
Then, after combining the estimates (3.6.45) and (3.6.46), we obtain

3/44aqp/2 1/4—ag/2
CHgH/-i-o/ /4—ao/

L2(0,1;H2(0,¢5)) HatgHLQ 0,1;L2(0,L,))° (3648)

gl a* (0,1;H3/2+a0(0,44))
for all g € H?él}((o, 1) x (0,4s)) satistying g(0) = 0. Let g(t) := g(t/T'), t € (0,T). Then, since
||§||Lq*(O,T;H3/2+ao(07gs)) = Tl/q* HgHLq* (071;H3/2+ao (0,£5))°

191l 2207 7200.60)) = T N9 L2 (0.1 272 (0,02 (3.6.49)

10:ll L2 0.7, 22(0,000) = T2 11049 £2(0,1.22(0.0,))
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from estimate (3.6.48) we deduce that
- 3/44ao/2 1/4—a/2
”gHLq*(o,T;H3/2+ao(oe < CHQHL/z Oc;)fqz(oe ) H@tgHL/z 0?22(05 )’ (3.6.50)

for all g € H{Q(’)l}((o, T) x (0,4s)) satisfying g(0) = 0. We highlight that the positive constant C
in (3.6.50) is the same that appears in (3.6.48), which is independent of T'.

e Step 2. Lifting.

Let us first provide the space H?OE((O, 1) x (0,45)) with the norm

. 1/2
2,,(0.6)) + HatfHL2(0,1;L2(O,£S))> ‘

e (i e

From [LM72, Theorem 3.2, p. 21 and Remark 3.3, p. 22] it follows that for f(0) = 9n(0) €
H{O}(O {s), there exists a lifting f € H{Q(ﬁ((o, 1) x (0,45)), such that f(0) = f(0) and

”}THH?(’;}((OJ) x(0,65)) < CHf( )HH{l()} £s)* (3-6-51)

Let us set §(t) := f(t) — f(t), t € (0,T). Let us notice that by construction
fe H?ol}(( T) x (0,¢5)) and f(o) =

Then, from estimate (3.6.50), we get

7 3/44ag/2 1/2—ag/2
1F = Fller @esrzoo o) < CIF = Tl it .o 10 = Dl o ra0ey:  (3:6:52)

Let us estimate the right-hand side in (3.6.52). By using Young’s inequality and estimate
(3.6.51), we obtain

17 =TIz e 10T = DIhtoi o)
< (1020 *+ WP N0 R20.) % (MO N0 2 0.0y + NOFN o2 0..1)
C(203/4+ a0/ fl20sm2 0.0y + 2(1/4 = a0/2)10:f | 120.5220.0)
+2C (| £(O)]l 1 oes))

{0}

< C(Hf(O)HH{lO}(O,ZS) + 1 fll 220,752 (0,05)) + ||3tf||L2(0,T;L2(0,£s)))'
(3.6.53)
Next, using (3.6.53) in (3.6.52), we get

Hf - fHLtJ* 0,T;H3/2+a0 (0,4, <cC Hf(O)HHl 0,4 + ”f”L2(0,T;H2(O,€s))
(0.7; (0.6)) ( {0y (06 (3.6.54)

+ ||3tf”L2(o,T;L2(0,€s)))-

e Step 3. Conclusion.

We claim that N
11 0,1;13/2400 0,607 = CUF Ol 0,6 (3.6.55)
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Since f belongs to H?él}((o, 1) x (0,45)), we have that

17l2@1sm20.0) < CUF Ol .00y (3.6.56)

Thanks to [LM72, Theorem 3.1, p. 19] and estimate (3.6.51), we deduce that

17l ouaroen < CILEOllm, 0.0 (3.6.57)

By interpolation, we get
LF(E 0.0 < CIFE 50,00 17 ) {0, for ae. t € (0,1), for all s € [1,2].
In particular, if s = 3/2 + ag, we obtain
ry ry 1/2 1/2+
17t grs a0,y < Tty 1Tz
Thus,
1
ry * 2/(1/2+
LR sy e = [T, at
2 1-2 1+2
< O FYL 2o (200D / 17 0.

This proves the claim.

Let us now show the estimate (3.6.43). By using the estimates (3.6.51), (3.6.54) and (3.6.55),
we get

”fHLq* (0,T;H3/2%20(0,45)) < Hf - fHLq*(o T;H3/2+20(0,45)) + Hf”Lq*(o T;H3/2+20(0,45))

< (£ Ol 000 + 1207200
0l 2o mr0en) +CIFOm 00)  (3.658)
OO, 0.0 + 1 220758200,
+ HatfHL?(O,T;L?(O,ZS)))-

This completes the proof of estimate (3.6.43).



Chapter

Numerical simulations of the fluid-structure
interaction system

Abstract of the current chapter

In this chapter, we deal with the numerical approximation of a fluid-structure interaction system.
The system couples the incompressible Navier-Stokes equations in a two dimensional rectangular
domain with an elastic structure governed by a damped Euler-Bernoulli beam equation. To deal
with the change of the fluid domain over the time, we use a classical approach widely used in the
literature, namely the Arbitrary Lagrangian-Eulerian (ALE) approach. We then describe the
semi-implicit monolithic method employed, along with the presentation of the numerical results
obtained from its implementation. We also present numerical experiments aimed at analyzing
the spectrum of the fluid-structure operator.
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4.1. Introduction 119

4.1 Introduction

Thoughout this chapter, the notation used to describe the reference domain €2 and the phys-
ical domain (2, ;, as well as their boundaries, will be the same as that introduced in Subsection
3.1.1 of Chapter 3.

In this chapter, we deal with the numerical simulation of the fluid-structure interaction sys-
tem

du+ (u-Vyu—divo(u,p) =0 in QF,

diva =0 in Q%,

u=g on %Y, u=0 on BT UXL,

u = ;€2 on EZ, o(u,p)n =0 on XL,

u(0) =u’ in Q, (4.1.1)
815277 + O‘Agn + B = H(u,p,n) + fsin (0,T) x (0,s),

n=0 and J;,n=0 on (0,7) x {0},

92n=0and 02 n=0 on (0,T) x {£},

n(0) =0 and 9n(0) =719 in (0, L),

where u and p respresent the fluid velocity and pressure. Here, o(u,p) is the fluid stress tensor
given by

o(u.p) = 2ve(w) = pI, e(w) = 5(Vu+ (Vu)"),

with v > 0 denoting the fluid viscosity. The inflow boundary condition gl = gi—l—,@gf,, where gt is
time-independent, g, is a time-dependent perturbation of g, while  represents the perturbation
amplitude. The elastic part of the structure is governed by the reference centerline curve 7 of the
beam. The parameters a > 0 and v > 0 are constants relative to the structure. The damping
operator B is given by

B=A2=9!

xTy1?

D(B) = H{y 440, 4).

The expression of the force exerted by the fluid on F:]r(t) U F;( " is given by

H(u,p,n) = — (U+(uap)n;7r(t) + U_(u,p)n;(t)> V1 (O2m)? - &, (4.1.2)

where
ai(u,p) =o(u(t,z,n(t,x) £e),p(t,z,n(t,z) £e)),

Jr

+ + ) is the unit normal to LR (resp. I t)) exterior to {2,

and n (resp. n
As previously mentioned in Chapter 3, one of the main difficulties in studying a fluid-structure
interaction system lies in the fact that the fluid domain ) evolves over time. This issue
arises not only at the continuous level, but also represents a major challenge in the context of
numerical simulations. To address this difficulty, we employ the Arbitrary Lagrangian Eulerian
(ALE) approach (see [DGHS82]). In the literature, there exists a plethora of works in which this
strategy has been adopted (see, for instance, [QTV00], [QF04], [THO6], [FGGOT7], [Ricl5]). Let
us briefly describe this approach.

Let Q,..p C R? be a fixed reference domain. We consider the ALE map A : (0,00) X Qpey — R?
given by A = Iq,_; + Next, Where neyt (0,00) X Qper — R? denotes the fluid domain displace-
ment. The map A is assumed to be invertible. We also assume that the fluid domain ) is
parameterized as €2, ;) = A(t, Qcr). The fluid domain velocity w is defined by w = 9;.A. Thus,
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we can rewrite the incompressible Navier-Stokes equations in ALE formulation as follows:

{atu\A —divo(u,p) + ((u—w) - V)u=0 in Q,), (413)

divu =0 in Q,),

for all ¢ > 0, where 0;| 4 represents the ALE time derivative. In order to define the ALE mapping
A we use the classical harmonic mesh motion (see, for instance, [QTV00], [RW10]).

Another important aspect in the numerical approximation of fluid-structure systems concerns
the resolution strategies. Broadly speaking, we can consider two groups. The first one, known
as the Partitioned strategy, consists of solving the fluid and the structure subproblems inde-
pendently and coupling them through transmision conditions. This particular strategy allows
the use of existing ad-hoc solvers, although the price is the loss of efficiency with respect to the
second group described in the following. This second group, refered as Monolithic approach, is
characterized by the fact that the fluid and structure subproblems are solved simultaneously.
As pointed out in [Ric15], "this approach allows the use of implicit discretization techniques and
strong coupled solvers for the whole system"'. One the main drawback of this strategy is the
computational cost.

The strategy used in this chapter follows the monolithic approach presented in [Murl9], where
the author presents a monolithic algorithm for solving a fluid-structure interaction coupling
the incompressible Navier-Stokes equations and an incompressible neo-hookean structure. More
precisely, a semi-implicit algorithm is employed, where semi-implicit is understood in the sense
that the fluid domain is computed explicitly. A similar approach is proposed in [SM08] with the
difference that, instead of using a monolithic strategy, a partitioned one is employed.

The remainder of this chapter is organized as follows. In Section 4.2, we present a variational
formulation of system (4.1.1). In Section 4.3, we introduce the ALE mapping and describe
the time-marching process used to solve this formulation. In Section 4.4, we present numerical
experiments. In Subsection 4.4.1, we first present the spectrum of the fluide-structure operator
for different values of the rigidity coefficient «, ceteris paribus. We then, in Subsection 4.4.2,
provide the corresponding numerical simulations of the direct problem associated with the cases
studied in the previous subsection.

4.2 A variational formulation of the continuous system

Before presenting the variational formulation associated with system (4.1.1) and its corre-
sponding discretization, we begin by introducing the auxiliary variables n; := n and 72 := n14.
With this notation, the structure equations in (4.1.1) can be rewritten as a first-order system.
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Thus, the full system takes the following form:

du+ (u-V)u—divo(a,p) =0 in QF
diva=0 in Qm,

u=g' onXI', u=0 on 2T UXT

u =126y on Em, o(u,p)n =0 on XL

u(0) =u’ in Q,

n2 =m,in (0,7) x (0, 4s),

Ot + a2y +vBne = H(u,p,m) + fsin (0,T) x (0, £),
m =0 and J;,m =0 on (0,7) x {0},

92 m =0 and 92 m =0 on (0,T) x {{},

n1(0) = 0 and 99n(0) = nJ in (0,4s).

(4.2.1)

We set I'g =T, UT',,. In order to take into account the Dirichlet boundary conditions on I'y, we
introduce the Lagrange multiplier X = (X, Ao, A tops As,bot> )\S,lat)T, where:

\; is the multiplier associated to the boundary data g’ prescribed on T,
Ao is the multiplier associated to the null boundary data prescribed on Ty,

As top 18 the multiplier associated to the kinematic condition imposed on F;; ()’ (4.2.2)
As.bot is the multiplier associated to the kinematic condition imposed on F;l )’

Aslat is the multiplier associated to the kinematic condition imposed on th(t).

Then, the variational formulation of system (4.2.1) reads as follows:

Find 1,10 € L*(0,T5 HE, (0, 45)), u € HY(0,T; H—%M(Qm(t))) N L0, T; HY (Q,, 1)),
p e L*0,T; L*(Q,, 1)) and X € L*(0,T; H_%(Fd)) such that

/ atu'¢:af(u7¢)+b(¢ap)+c(u7u)¢)+/ )‘1¢+/ }\O(l')
71 (t) r; To
. . 1
+/ A top - ¢+/ Aot ¢,+/Ff]1(t) Aetat - &, Wb € HY(Q,, (),

711(t) n1(t)

b(u,9) =0, Vb € L2y, 1)),
/uT:/g T, VTGH%(F)a /UTZOa VTGH_%(FO)v
i Lo

J

.

T—/ 196y - T, YT € H™ 2(F+(t))

F;ms) o)
/F /_ M26s - T, VT E H_i(Fgl(t)),
11 () 771(75)
— 1 -0
/1“@ . m€ -7, VT e H 2(I) (),

1() 171 (t)

/ (O )¢ = / 12, V¢ € Hiy (0,45),

Ls
| @m)¢ = abm, ) + a2 O = [ Avsap- €
n1(¢)

Ls
~ [ A&+ [0 W Hy (0,0,
n1(t)
1 (4.2.3)

oS3

o




4.3. ALE mapping and the time-marching process 122

where the bilinear forms ay, b, a! and a? are given by

£(v) (9), blha) = | G@ive)
i (4.2.4)

U Ls
ai(nla C) = _a/O A771 : ACa ag(nQa C) = _7/0 A772 . ACa

ap(v, @) = —ZV/Q

n1(t)

while the trilinear form c is defined by
cluvig) = [ (Vv (4.2.5)
NO)

System (4.2.3) has to be completed with initial conditions.

Remark 11. In the variational formulation (4.2.3), we make an abuse of notation by using the
L? inner product instead of the appropriate duality pairing.

\
|

| .

Figure 4.1 — Physical domain at time level k.

4.3 ALE mapping and the time-marching process

In this section, we introduce the ALE mapping A4 and describe the time-marching procedure
used to solve problem (4.2.3).

Let us consider the ALE transformation A(t, ) : Qpcy — () defined by

Alt, ) =T+ /Otw(s, ) ds, (4.3.1)

where w(t, -) is solution of the elliptic equation
Aw=0inQ, w=ulp, onI'y, w=0 onI'\T;. (4.3.2)

Here, u|p, stands for the trace of the fluid velocity on I's. This classical approach to defining
the ALE mapping has been previously used, for instance, in [QTV00], [RW10]. This particular
choice is known to be effective for small deformations of the structure (see, for instance, [Wicll)).
Indeed, in Subsection 4.4.2, we present a numerical test that illustrates the deterioration of the
mesh when the displacement of the structure is no longer small. To address this issue, alterna-
tive strategies should be explored. We refer [Wicll] and [HC23], for instance.

The time discretization is treated by using the classical backward FEuler method. We denote by
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At the time step and t* = kAt, for k € N the time level k. For all k € N, QF := A(t*, Tef)
with boundary T* = T'; UTo U F’; UT,, where Ty = I, UT,, and T'* = F’;top urk,  urk
see Figure 4.1. We denote by u”, p¥ and A* the approximations of u(t*, ), p(t¥,-) and )\(tk, ),
respectively. Here, A¥ = (AF, )\0, A Lop> AP Dot )\s lat) | denotes the Langrange multiplier associ-

s,bo s,lat?

ated to the Dirichlet boundary conditions. We also denote by n¥ and 15 the approximations of
m(tF,-) and no(t*,-) defined on (0, £), respectively.

Then, assuming known u”, p*, e wk n’f and 775, let us consider the following intermedi-
ate problem used in the description of the algorithm presented in Subsection 4.3.1:

k+1

Find 1 € HY(QF), b+t € L2(QF), X e H 2(T*\ T,,), nit!, nht! e H{;, (0, €5) such that

aktl — uk
/k At b = ap (@, ) + b, ) + c(@H — wh kL )
Q
k+1 S
+/>\i ¢+//\ ¢_|_/ Xy top - &

s,top

+/ 520115 ¢7 / slat ¢7 vd) S Hl(Qk)

s,bot s,lat

b(GFH, ) =0, Vo € L2(QF),
/ okt :/ g1, VT e H*%(Fi), / "l =0, Vre H*%(FO),
T; 1_‘()

I

~k+1 _ E+1z
/k L R & -1, Vre H” (Fstop)
Fs,top FSJOP

~k+1 k+1z 4.3.3
/k TR . 772+e2 T, Vre H (Fsbot) ( )
Fs,bot Fs,bot

~k+1 _ k412 -1k
/k u T= & -1, VreH 2(I‘57lat),

s,lat

2 i —nf 2 k+1 2
| = [Tt e iy 0.0),
0
bs W§+1 — 15 ket k+1
| R =l O + a2 )
0 L
s kil
_/ )‘stop e2< 1+(77 )2

E.s Ak+ . Zs
_‘/0 )‘bot eQC\/ 1+ (n]f,m)Q +/0 fSC7 VC € H‘?O}(O)ES)

where

as(v.d) = =2 [ cv):e(@). W) = [ (@ive)a. cuv.g)=— [ (@-V)v-g,
Ls Ls
ai(ﬁh():—a/o A - AG, a?(m,()z—v/o Any - AC.

4.3.1 The time-marching process

In this subsection, we describe the semi-implicit algorithm used to solve the problem (4.2.3).
This approach was implemented in [Murl9] for a fluid-structure interaction system coupling the
incompresible Navier-Stokes equations and an incompressible neo-hookean structure.

Given the solution at the instant t*, u*, p*, A wh, n]f and 77]2C at the known configuration
QO the procedure to solve the time advancing scheme from k to k + 1 level is described in
Algorithm 3.
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Algorithm 3: Semi-implicit algorithm

For k> 1:

1 : Solve the linear system that yields after applying the Newton algorithm in system (4.3.3)
and get aFt!, n’f“, 77’5“

2 : Compute the mesh velocity wkt! : QF — R? satisfying the elliptic equation

AWFTL =0 in OQF,
whtl = @k+l on Tk, (4.3.4)
whtl =0 on '\ T'*.

3 : Define A¥(X) := % + AtwFH1(X) and QFFL .= AF(QF).
4 : Define uFt! : QFt1 5 R2 p: QFFL 5 R NFHL . QFFL 5 R2 and whtl . QFH1 5 R2 by

ubt () = @5L(R), pFl(e) = PHR), AMTl(z) = AT (®)

and whtl(z) = wM(R), Vo= A*®®), x e Qb

Remark 12. In Algorithm 3 we use the notation ~ to represent the state variables of Eulerian
nature that are subsequently updated later in the algorithm. In this regard, we remark that,
since the state variables 1 and 7o are of Lagangian nature, we do not use the notation ™.

4.3.2 Full discretization of the nonlinear system

Let & € N. We introduce the finite-dimensional spaces V;, C H'(Q¥) for the velocity,
P, C L?*(QF) for the pressure, D), C L2(T'y) for the multiplier and S;, C H{QO}(O,ES) for the
structure’s displacement and its velocity. We denote by (¢;)1<i<n, a basis of Vi, (¢;)1<i<n, 2
basis of Py, (pi')1<i<n,. a basis of Dj, and ({;)1<i<n, a basis of Sy. We set

Nu Nu NLU Ns ki Ns ki
k 0 0 k k ; .
=Y ufg;, u'=>"ule;, p" =D pla, m=> _0"G n=> 1"G,
i=1 i=1 i=1 i=1 i=1
N, Ny NY i NY .
i 0 k
m=> moC = an,oéi, Ap =D Aprwl, A=) ATul
i=1 ‘ i=1 i=1
Ny,
k
W —Zw ;. g —ngz-
We also introduce the corresponding coordinate vectors,
k k E \T 0 0 0 \T k k \T k k,1 k,Ns\T
U :(U’l? 7uNu) ) U :(u17"' uN) ) P (p17 '7pr) ) N :(771 s ) )
k k,1 k,Ns\T 0 1 s\ T 0 1 Ns\T
N :(772 R ) ) ’ N :(771,07"'7771,0) ’ N :(77207"'777270) )
ko k oNT K koNT T
A? (A?la )‘?N") > Au,k:()‘gla"' aAZNj\J) ) Wk (wlfv 7w§€\fu) )

Au (Auk Auk,‘) 7 @k (Pk‘ AUk)T, Gi’k:<gf7"'7gN>\)T'
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Forall 1 <i,j <N,,1<i< Ny, 1<4,m< Ny, 1<7rt< N, we introduce the matrices

(Auu)zj = af(¢i7¢j)a (Aup)zk = b(¢iapk)a (Auk}‘)zl = \/l"k\F Fl'% ’ ¢ia (Auk”;)il = / ll/% ’ ¢i7

ij :/Qk ;- bi, (gm)\g)rz: _/F's“wpUFkbot py - €2Gr, (Axugy, / wy - €26,
(Moot = [ 1 e (A = (M) = = [ 66 (= —a [5G ac,
(A )rt = / AC - NG, Agy = (MO )
AN
We also set

N, = N, +2N;, Ng=Np,+ Ny and N = N, + Ny.

Let us now introduce the following matrices:

o MZZO o Azz Az9
M_<O 0) andA—(Aez 0),

where
My, O 0 Auy 0 0
M,, = 0 My,; 0|, A.=| 0 0 Apn |
0 0 My, 0 Apm Angny
Aup AuA“ Av)\’; Aq—[p 0 0
Ag=|0 0 0 |, Adp=|An 0O 0O
0 0 Ay A’I}\“ 0 Axen,

and
(/Qk Z Z /UZ’U] ¢Z ’ ¢] (p@) )
=14=1 1<I<N,
Ny
where Vv = Z vi¢;. Thus, the matrix formulation of the full discretization is given by
i=1
ﬁ k+1 ﬁ k+1 ka (ﬁ) k+1 U k 0 k Nf(ﬁ) k+1
N, N, 0 1 N, 0 0
Ath IS I AN T o [ o
S} S} 0 © —ApyG* 0
4.3.5

4.4 Numerical simulations

Let us first introduce the data used in the numerical experiments. The initial domain config-
uration 2 considered corresponds to the non-symmetric setting introduced in [THO06]; see Table
4.1.
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Geometric parameters Value [m]
Channel length (L) 2.5
Channel width (H) 0.41
Cylinder center position (C) (0.2, 0.2)
Cylinder radius (R) 0.05
Elastic structure length (¢5) 0.35
Elastic structure thickness (h) 0.02

Table 4.1 — Parameters of the domain €. Table extracted from [THO06].

At the inlet T'; = {0} x [0, 0.41] of the channel, we prescribe the Dirichlet boundary data

gl(t,x1,12) = gl(x1,20) + 5 - g;(t,xl, x2), (4.4.1)
where
. . T 6 T
gl(o1,02) = (9h1:92) " = ( Gy #2041~ 2).0)
and -
] i . ,—1000(x2—0.25)2 :
g,(t, 1, 22) = (gp(t) ‘ ’0> ift €[0,2], (4.4.2)
0,0)7 ift > 2,

with g/ (t) = 0.5(1 — cos(nt)) and 3 > 0 being a parameter that measures the amplitude of
the perturbation gj,. We highlight that the inclusion of the term g, in the expression (4.4.1)
is motivated by the study of the numerical stabilization problem treated in Chapter 6. In
Figures 4.2a and 4.2b, we show the profiles of the inflow condition gé’l and the perturbation g]i,
respectively. Figure 4.3 shows the first component of the inflow condition g* at different time
instants when the perturbation parameter 5 = 1.5. The perturbation has its greatest effect at
t = 1[s] (see Figure 4.3c).

3.0 3.0
25 2.5
2.0 2.0
15 15
1.0 1.0
0.5 0.5
0'8.00 0.05 0.10 0.15 0.2)? 025 030 035 0.40 06}.00 0.05 0.10 0.15 0.)2(0 0.25 0.30 0.35 0.40
2 2
(a) Profile of the inflow condition g7 (b) Profile perturbation g, at t = 0.

Figure 4.2 — Profile of the inflow condition gf;,,l and perturbation g;.
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3.0 3.0
25 25
2.0 2.0
15 15
1.0 1.0
05 05
%000 005 010 015 020 025 030 035 040 0000 005 010 015 020 025 030 035 040
X2 X2
(a) t = 0[s] (b) ¢ = 0.5[s]
3.0 3.0
25 25
2.0 2.0
15 15
1.0 1.0
05 05
9900 005 010 015 020 025 030 035 040 0800 005 010 015 020 025 030 035 040
X2 X2
(c) t =1.0[s] (d) t = 1.5[s]

Figure 4.3 — Profile of the first component of the inflow data g at different time instants for the
perturbation parameter 5 = 1.5.

2RU,, .
The Reynolds number is defined by Re = ﬂ, where Uy, is the mean value of gf, ;. Thus,
V b

Re = 10% depends only on v.
In the various numerical tests carried out in this chapter, we use a triangular mesh with 30168
cells locally refined around the structure, see Figure 4.4. For the space discretization of system
(4.3.3), we choose the generalized Taylor-Hood finite elements Py — Py — Py for the velocity, the
pressure and the Lagrange multiplier, respectively. The displacement and the velocity of the
structure are discretized by using Hermite finite elements. The nonlinearity is treated with a
Newton algorithm. The total number of degrees of freedom is equal to 394803. The numerical
implementations were carried out with the open source library GetFEM++4-, written in C++
[RP].

Figure 4.4 — Geometrical configuration and triangular mesh used in the numerical simulation.

4.4.1 Computation of the spectrum

An important step in the stabilization analysis to be carried out in Chapter 6 involves the
spectral study of the fluid-structure operator associated with the system obtained by lineariz-
ing system (4.2.1) around a given stationary solution. This linearization processs consists of
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two stages: rewriting system (4.2.1) in the reference domain 2, and subsequently linearizing it
around the stationary solution. The first stage requires selecting a suitable mapping from 2 into
Q1) A natural idea would be to use the same mapping introduced in Chapter 3 to study the
existence of strong solutions, as done in [FNR]. However, we follow a different approach and
consider a mapping like the one defined in (4.3.1).

We begin by introducing some notation before presenting the eigenvalue problem:

)\g is the multiplier associated to the boundary data 72€2 on Iy,

)\jlc is the multiplier associated to the null boundary data prescribed on I"\ T, (4.4.3)

AY is the multiplier associated to the boundary data 1263 on Ty,

AY is the multiplier associated to the null boundary data prescribed on I'\ T's.

We thus define A = (XY, Ajlc)—l— and Ay = (AY, Xf)—r. Then, the eigenvalue problem reads as:

Find p € C, (u,p, \,m1,m2) € HY(Q) x L2(Q) x H™ 2(Fd) X H{O}(O,E ) X H{O}(O,Es) and

(d, A4 w, A") € HY(Q) x H 2(Ty) x H(Q) x H™2(T'y) such that

o[ weo=ar(u,)+bo,p) +/ Aot [ R0eot [ A bt [ Ao
+ [ A ¢+/A1w ¢+/A2d $, Vi € H'(),

(u,w:/QAgdw, v € LA(Q),

/ u-7=0, VTEHié(FiUFO)y

S

I';ulg

/ u- T:/ 7262 - T, VTEH_%(FJr),
+ +

] u-T= 7269 - T, VTGH_%(F_),

Fl ?’]262'7' V1 € H*%(Fe)
u/ me = / e, VCEH{O}«) 0),
u/o 12¢ = ag(m, ¢) + a3(n2, ¢ / As top - €2€
/ Aot egC—l—/ Asd, V¢ € Hy(0,0,),
/Vd Vi — / A — . )\f @ =0, forall p € H'(Q),

d'Ts—/ més 75 =0, forall g€ H™ 2(1“8),
s

I's
1

d-7y=0, forall 7y e H 2(I'\ Ty),
I\T,
vw:vcp—/ Ao — 7 =0, forall peH(Q)
Q s F\FS

W-Ts*/ M98 - T = 0, fOI'aHTSEH_%(FS)v

T's s

wa:07 fOrall TfeH_%(F\FS)’
I\l',

(4.4.4)

where

a(v.9) = 2 [ c(v):2(@) = [ (0 Vv +(v-Vu) o,
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while the bilinear forms b, a! and a? are defined in (4.2.4). Here, A1, Ay, A3 and Ay are linear
operators, which are determined (in their discretized form) using a GetFEM++ library [RP] rou-
tine, after linearizing system (4.2.3) around the stationary solution (u, p, X, 11, 72, d, A%, w, A¥) =
(us,ps, A%,0,0,0,0,0,0), where the triple (us, ps, A%) is a stationary solution of system

(us - V)ug —divo(us,ps) =0, divas =0 in Q,
us=g:, onTy, us=0 on T\ Ty, (4.4.5)

o(us,ps)n =0 on I'y,

with A% representing the Lagrange multiplier associated with the Dirichlet boundary condition.
We highlight that this contrast with the approach used in [FNR], where the authors carried
out the linearization manually. In Appendix A, we present all the terms implemented in Get-
FEM++ library, which allow us to obtain all the linear operators A1, As, A3, A41, Ao, Ag3 and
As in their discretized form. For the discretization of system (4.4.4), we choose the generalized
Taylor-Hood finite elements Po — Py — IP; for the velocity, the pressure and the Lagrange multi-
plier, respectively. The displacement and the velocity of the structure are discretized by using
Hermite finite elements. The displacement d (resp. the velocity w) and the Lagrange multiplier
p (resp. the multiplier A") are discretized by using Py — IPq, respectively. The total of degree
of freedom is equal to 387655. We remark that the nonlinear problem (4.4.5) is solved by using
a Newton’s algorithm. The magnitude of the fluid velocity Uy is displayed in Figure 4.5.

e Spectral analysis with different physical parameters. This preliminary spectral anal-
ysis of the fluid-structure operator will later allow us, in Chapter 6, to establish a comparison
with the spectrum of the fluid-structure operator modified by the action of the control operator.

00e400 04 06 08 1 12 14 16 18 2 23e+00
— -

Figure 4.5 — Fluid velocity magnitude Uy corresponding to Reynolds number Re = 200.

a = 1. The fluid-structure spectrum displayed in Figure 4.6 shows four unstable eigenvalues,
namely, f112 and p34 (see Table 4.2). The corresponding real parts of the eingenfunctions
associated to the unstable eigenvalues are shown in Figures 4.7 (horizontal component of the
fluid velocity) and 4.8 (structure’s displacement).

H1,2 3,4 M5 He M7 H8,9 H10
1.21 £25.72¢ | 0.85 +14.037 | —0.23 | —0.69 | —0.85 | —1.43 +£2.64: | —2.14

Table 4.2 — First eigenvalues of the fluid-structure system (ordered according to the real part)
corresponding to Reynolds number Re = 200, rigidity coefficient o = 1, and damping coefficient
v =109,
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Figure 4.6 — Portion of the fluid-structure spectrum corresponding to Reynolds number Re =
200, rigidity coefficient o = 1, and damping coefficient v = 1076, The unstable eigenvalues are
colored in red (the conjugate pair f112) and green (the conjugate pair j34).
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Figure 4.7 — Real part of the horizontal component of the fluid velocity associated with the
unstable eigenvalues ;2 and p3 4, corresponding to the rigidity coefficient o = 1, and damping

coefficient v = 1076, (a)-(c): Eigenfunctions associated to p; and pug, respectively. (b)-(d):
Figenfunctions associated to ps and pg, respectively.

(a) Eigenfunctions associated with the un- (b) Eigenfunctions associated with the un-
stable eigenvalues 117 2. The eigenfunction stable eigenvalues pi34. The eigenfunc-
corresponding to 1 is shown in solid red, tion corresponding to ps is shown in solid
and that of s in dashed red. green, and that of u4 in dashed green.

Figure 4.8 — Structure’s displacement of the real part of the unstable eigenmodes associated to
the unstable eigenvalues j112 and p3 4, for the rigidity coefficient o = 1.

a =10"1. In Figure 4.9 we show the fluid-structure spectrum. For this new parameter
value of o and with v = 107% remaining constant, we observe the presence of four unstable
eigenvalues, specifically 12 and p3 4 (see Table 4.3).
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H1,2 H3,4 M5 Heé H7 H8.9 H10
3.05 £21.617 | 0.504+11.96¢ | —0.16 | —0.69 | —0.79 | —1.86 £27.917 | —1.94

Table 4.3 — First eigenvalues of the fluid-structure system (ordered according to the real part)
corresponding to Reynolds number Re = 200, rigidity coefficient o = 1071, and damping coef-
ficient v = 1076,

.
o
L4
-
-
%
[}

3(w)

-15.0 -12.5 -10.0 -7.5 =5.0 =25 0.0 25

R(p)

Figure 4.9 — Portion of the fluid-structure spectrum corresponding to Reynolds number Re =
200, rigidity coefficient a = 10~1, and damping coefficient v = 1076, The unstable eigenvalues
are colored in red (the conjugate pair p;2) and green (the conjugate pair s 4).

In Figures 4.10 and 4.11 we show the real part of the eigenfunctions of the structure’s
displacement and the horizontal component of the fluid velocity associated with the unstable
eigenvalues 112 and p3 4.

g e . B M g S A
_ _
(a) (b)
_ _
(c) (d)

Figure 4.10 — Real part of the horizontal component of the fluid velocity associated with the
unstable eigenvalues 12 and p34, corresponding to the rigidity coefficient o = 1071, | and

damping coefficient v = 1075, (a)-(c): Eigenfunctions associated to u1 and pug, respectively.
(b)-(d): Eigenfunctions associated to us and py4, respectively.
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(a) Eigenfunctions associated with the un- (b) Eigenfunctions associated with the un-
stable eigenvalues 17 2. The eigenfunction stable eigenvalues pi34. The eigenfunc-
corresponding to pq is shown in solid red, tion corresponding to ug is shown in solid
and that of s in dashed red. green, and that of u4 in dashed green.

Figure 4.11 — Structure’s displacement of the real part of the unstable eigenmodes associated to
the unstable eigenvalues j1,2 and 3 4, for the rigidity coefficient o = 1071,

o = 10—2. In constrast to the two cases presented above, when a = 1072, we observe from
Figure 4.12 the presence of five unstable eigenvalues, namely f1 2, 3 and g5 (see Table 4.4),
with us being a real eigenvalue.

H1,2 M3 Ha5 Heé Hr H8.9 H10
2.0£19.217 | 0.38 | 0.021 £8.272 | —0.48 | —0.68 | —0.75 +£43.33¢ | —1.04

Table 4.4 — First eigenvalues of the fluid-structure system (ordered according to the real part)
corresponding to Reynolds number Re = 200, rigidity coefficient o = 102, and damping coef-
ficient v = 1076,

40

20 cede.. . " .

3(w)

—-40

-15.0 -12.5 -10.0 =75 =5.0 =25 0.0 25

R(u)

Figure 4.12 — Portion of the fluid-structure spectrum corresponding to Reynolds number Re =
200, rigidity coefficient @ = 1072, and damping coefficient v = 107%. The unstable eigenvalues
are colored in red (the conjugate pair p;2) and green (the real eigenvalue pz) and blue (the
conjugate pair fiqs).

In Figures 4.13 and 4.14 we show the real part of the eigenfunctions of the structure’s
displacement and the horizontal component of the fluid velocity associated with the unstable
eigenvalues (11,2, p3.4 and ps.



4.4. Numerical simulations

133

30402-100 60 40 40

02-100 80 40 40 20

a 2 0 @ @ osenl 136402100 40 20 0 M M @ 98ew)
—e—— ———— -

(a)
_
()

G —

(b)
_
(d)

(e)

Figure 4.13 — Real part of the horizontal component of the fluid velocity associated with the
unstable eigenvalues ji12, 13 and g4 5, corresponding to the rigidity coeflicient v = 1072, and
damping coefficient v = 1075. (a)-(c): Eigenfunctions associated to y; and us, respectively. (b):
Eigenfunction associated to us. (e)-(f): Eigenfunctions associated to p4 and us, respectively.
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(a) Eigenfunctions associated with the un-
stable eigenvalues 11 2. The eigenfunction
corresponding to p; is shown in solid red,
and that of s in dashed red.

% o0m 03 o oW 0% 0% 04 0@ om o 0@ 05

(b) Eigenfunctions associated with the un-
stable eigenvalues f14 5. The eigenfunction
corresponding to py4 is shown in solid blue,
and that of us in dashed blue.
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(c) Eigenfunctions associated with the un-
stable eigenvalues ps.

Figure 4.14 — Structure’s displacement of the real part of the unstable eigenmodes associated to
the unstable eigenvalues (112, p3 and pg 5, for the rigidity coefficient av = 1072, and damping

coefficient v = 1076,

a = 1073, Similarly to what was observed in the previous case when o = 1072, we see that
the fluid-structure spectrum exhibits five unstable eigenvules when o = 1073, namely, 1,2, 134

and 5 (see Table 4.5).
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H1,2 M3 Ha5 Heé ©r H8,9 H10
2.85+18.647 | 0.23 | 0.17 £25.347 | —0.43 | —0.65 | —1.00 | —1.49 4+ 5.457¢

Table 4.5 — First eigenvalues of the fluid-structure system (ordered according to the real part)
corresponding to Reynolds number Re = 200, rigidity coefficient o« = 1073, and damping coef-
ficient v = 1076,
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Figure 4.15 — Portion of the fluid-structure spectrum corresponding to Reynolds number Re =
200, rigidity coefficient o = 10~3, and damping coefficient v = 1076, The unstable eigenvalues
are colored in red (the conjugate pair pi2) and green (the real eigenvalue p3) and blue (the
conjugate pair fi45).
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Figure 4.16 — Real part of the horizontal component of the fluid velocity associated with the
unstable eigenvalues 12 and ps4, corresponding to the rigidity coefficient a = 1073, and
damping coefficient v = 1075. (a)-(c): Eigenfunctions associated to p; and pa, respectively. (b):
Eigenfunction associated to us. (d)-(e): Eigenfunctions associated to p4 and us, respectively. .
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(a) Eigenfunctions associated with the un-
stable eigenvalues fi; 2. The eigenfunction
corresponding to pq is shown in solid red,
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(b) Eigenfunctions associated with the un-
stable eigenvalues f4 5. The eigenfunction
corresponding to py4 is shown in solid blue,

and that of uo in dashed red. and that of us in dashed blue.
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(¢) Eigenfunctions associated with the un-
stable eigenvalues ps.

Figure 4.17 — Structure’s displacement of the real part of the unstable eigenmodes associated to
the unstable eigenvalues pi1 2, 3 and py 5, for the rigidity coefficient « = 1073.

4.4.2 Solving the direct problem

In this subsection, we present some numerical simulations of the direct problem (4.3.3) by using
the time-marching Algorithm 3. In all the numerical simulations carried out in this subsection
we use the following scheme for the space discretization of system (4.4.4). We choose the gener-
alized Taylor-Hood finite elements P — Py — IP; for the velocity, the pressure and the Lagrange
multiplier, respectively. The displacement and the velocity of the structure are discretized by
using Hermite finite elements. The velocity w and the Lagrange multiplier are discretized by
using P — Py, respectively. The total of degree of freedom is equal to 263759.

e Test temporal convergence of the Algorithm 3. To carry out this simulation, we con-
sider the following physical parameters:

Re=200, a=10"" ~y=10"°
We also fix the perturbation paramter 5 = 0.1. We denote by (Us, Ps) the pair that represents
the numerical approximation of the solution of system (4.4.5).

In Figure 4.18, we show the evolution of L?—norm of the difference U — U, for different time
steps: At =1073,5-10"%,2.5-10% 10~

Although for a given fixed mesh, as the one shown in Figure 4.4, we do not prove the conver-
gence of Algorithm 3 as At — 0, we can infer from Figure 4.18 that, as the time step becomes
smaller, we can at least qualitatively observe such convergence. This is also observed in Figure
4.19, which show the evolution of the L —norm of the structure’s displacement for different

time steps.
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Figure 4.18 — Evolution of L?—norm of U — U, for different time steps.
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Figure 4.19 — Evolution of L*°—norm of 7 for different time steps.

e Numerical simulations of the direct problem. In this subsection, we present several
numerical simulations in which we analyze the behaviour dynamics of the solution to the fluid-
structure interaction problem by considering different values of the rigidity coefficient ov. We
also consider different levels of the perturbation 8 at the inflow of the channel. We emphasize
that this analysis will later allow us, in Chapter 6, to evaluate the performance of the control
used to stabilize the fluid-structure interaction system.

In order to facilitate the comparison, the same scale has been used in the plots showing the
structure’s displacement 7 (see Figures 4.22, 4.24, 4.26, 4.28, 4.30, 4.32).
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e [————
(a) t = 0.5s] (b) t = 0.5[3]
_———i—
(c) t=1]s] () t = 1[s]
-
(e) t = 1.5[s] (f) t = 1.5[s]

Figure 4.20 — Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient @« = 1. In the left column (a)-(c)-(e), the velocity magnitudes are
shown for perturbation parameter 8 = 0.5, while in the right column (b)-(d)-(f), we display the
velocity magnitude corresponding to 8 = 1.5.

a = 1. We fix the rigidity coefficient a = 1. Figures 4.21 and 4.22 show snapshots of the fluid
velocity magnitude and the deflection of the structure at different time instants, respectively,
for 8 = 0.5.

e
(a) t = 4[s] (b) t =6[s]
e
(c) t =8[s] (d) t = 10]s]
e
(e) t = 12[3] (f) t = 14[s]

Figure 4.21 — Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient o = 1 and perturbation parameter 8 = 0.5.

In Figures 4.23 and 4.24, we show snapshots of the fluid velocity magnitude and the deflection
of the structure at different time instants, respectively, for g = 1.5.
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Figure 4.22 — Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient a = 1 and perturbation parameter 8 = 0.5.
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Figure 4.23 — Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient o = 1 and perturbation parameter 8 = 1.5.
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Figure 4.24 — Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient a = 1 and perturbation parameter 8 = 1.5.

As observed in Figures 4.21 and 4.23, the dynamic of the fluid appears to be similar in both
cases starting from time t = 6[s], for 5 = 0.5 and 8 = 1.5. However, from Figures 4.21a and
4.25a we see that the dynamics of the fluid at ¢t = 4[s]| are not the same. This is explained by the
size of the perturbutation considered, as shown in Figure 4.20, which present some snapshots of
the fluid velocity magnitude at ¢ = 0.5[s], ¢t = 1[s] and ¢ = 1.5[s]. In this figure, we can observe
how the perturbation propagates towards the region where the structure is located.

In both cases, for 5 = 0.5 and 8§ = 1.5, we observe that the deflection of the structure
remains relatively small, as shown in Figures 4.22 and 4.24. This can be attributed to the fact
that the rigidity coefficient « is relatively "large" compared to the one used in the experiments
shown below, where smaller values of this coefficient are considered.

o = 107!, In this experiment, we fix the rigidity coefficient o = 10~!. Figures 4.25 (resp.
Figure 4.27) and 4.26 (resp. Figure 4.28) show snapshots of the fluid velocity magnitude and
the deflection of the structure at different time instants, respectively, for = 0.5 (resp. 5 = 1.5).

000400 04 06 08 1 12 14 16 18 2220400 006400 04 06 08 1 12 14 16 18 2220400
| L il

S AT — A
(a) t = 4[s] (b) t =6[s|
AT A
(c) t = 8[s] (d) t =10[s]

FESS A S A~
(e) t = 12[s] (f) t = 14][s]

Figure 4.25 — Snapshots of the fluid velocity magnitude at different time instants corresponding

to the rigidity coefficient o = 10! and perturbation parameter 8 = 0.5.
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Figure 4.26 — Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient v = 10! and perturbation parameter 8 = 0.5.

As we can observe from Figures 4.25 and 4.27, we notice that the fluid dynamics are similar,
for 5 = 0.5 and 8 = 1.5. On the other hand, from Figures 4.26 and 4.28, we see that the
structure’s displacement at the plotted time instants is larger than that observed when o = 1
(see Figures 4.22 and 4.24).
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Figure 4.27 — Snapshots of the fluid velocity magnitude at different time instants corresponding

to the rigidity coefficient o = 10~! and perturbation parameter 8 = 1.5.
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Figure 4.28 — Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient v = 10! and perturbation parameter 8 = 1.5.

a = 10~2. In this experiment, we consider the rigidity coefficient o = 1072. Figures 4.29
(resp. Figure 4.31) and 4.30 (resp. Figure 4.32) show snapshots of the fluid velocity magnitude
and the deflection of the structure at different time instants, respectively, for 8 = 0.5 (resp.

B=15).

Figure 4.29 — Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient a = 0.01 and perturbation parameter 8 = 0.5.
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Figure 4.30 — Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient v = 1072 and perturbation parameter 8 = 0.5.
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Figure 4.31 — Snapshots of the fluid velocity magnitude at different time instants corresponding
to the rigidity coefficient o = 1072 and perturbation parameter 8 = 1.5.
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Figure 4.32 — Snapshots of the deflection of the structure (dashed red line) at different time
instants corresponding to the rigidity coefficient v = 1072 and perturbation parameter 8 = 1.5.

a = 10~3. In this experiment, we fix the rigidity coefficient & = 1073. Figure 4.33 shows
the snapshot of the magnitude of the fluid velocity at the time instant ¢ = 6[s]. In Figure
4.34, we show the meshing around the reentrant corners. In those figures we can observe the
mesh deterioration around the lower reentrant corner. As pointed out at the beginning of this
chapter, it is known that the classical harmonic extension used to define the ALE mapping
performs well when the displacement of the structure is small (see, for instance, [Wicl1]). This
suggests investigating alternative approaches that allow us to carry out numerical simulations
where the displacement of the structure is not small. In this regard, some techniques to be
explored include those proposed in [Wicll] and [HC23], for instance.
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Figure 4.33 — Snapshots of the fluid velocity magnitude at the time instant ¢ = 6[s| corresponding
to the rigidity coefficient o = 10~ and perturbation parameter 8 = 0.5.
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(a)

(b)

Figure 4.34 — Snapshots of the mesh around the reentrant corners at t = 6]s|, corresponding to
the rigidity coefficient o = 10™3 and perturbation parameter 8 = 0.5.
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Appendix A: Terms to be linearized

In this appendix, we present all the terms to be linearized around the stationary solution
(us, ps, 0,0). First, we introduce the mapping that allows us to rewrite the system (4.2.3) in the
fixed reference domain Q. Let X(t,-) : @ — Q, ;) defined by

X(t,-)=T1+d(t,-),
where d is the solution of the elliptic equation
Ad=0inQ, d=mé onTs, d=0 onI'\T;. (4.4.6)
We denote by J the jacobian matrix of the transformation X.

e Momentum equation. After using [HP00, Proposition 5.4.3 p. 190] to rewrite the boundary
terms, we obtain

/atﬁ.wyz_/ (J—1<a_w)-v)a-ou\+/ﬁﬂm:(WJ‘l)!J!
Q Q Q
_/ (v (vaJ—1+J-T(va)T)):(vvJ-l)\JH/ Aiop - V]|~ T&]|||
Q TCiop

+/ Xbot-9||J—T62|||J|+/ Xlat-v||J—Tél|||J|+/ Afiz -V, for all v.
I_‘bot 1—‘lat Ffzz
(4.4.7)

e Conservation equation.
/ Va:J T0J] =0, forall O. (4.4.8)
Q

¢ Kinematic equation.

Ly
a7 T8 J—/ & -7 /1+12, =0, forall 7,
Jo w ATl [ e 71
Ls
i 77 T8 J—/ & 7\ /1+n7, =0, forall 7, (4.4.9)
[ rl el - [ w1,

[oa A TE - [ e = 0, forall 7.
Ciat

lat

Let us notice that in the third identity in (4.4.9) can be rewritten as
/ ﬁ-?——/ 128 - 7 = 0. (4.4.10)

Indeed, since

(4.4.11)

1+di, di»
X(t,Zl,ZQ) = (Zl +d1(t,21,22),22+d2(t, 21,22)), J = ( T Lz 1,z >

d2,zl 1+ d2,22

and dy =0,

1 0 -T 1 1+ d2 z _d2 z
= d = — =2 S 4.4.12
J (dQ,Zl 1+ d27zQ> an J 1+ d2722 ( 0 1 ) ( )
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_ 1 1+d —d 1 1
T 2,29 2,21

Then, using (4.4.13) and the fact that da ., = 0 on I'}4;, we deduce that

Next,

—/ 28y - 7T TE|T| = —/ 128 - ZELIIL + dazy| = —/ s 7. (4.4.14)
Flat lat Flat

Moreover,this last expression can be further simplified as follows. We denote by (;, 5]-)1§j§ N,
the Hermite basis and by (7;)1<j<n,,, the P! basis used. Then, for all i = 1,... Ny,

- M€ - T; = — n2(ls)€2 - T4
I_‘cht Flat

NS . . ~
= - Z/F (¢ + .G & - 7
j:1 lat

(4.4.15)
=-> / (H%Cj + n%,méj) € - T; —/ (ﬁéVSCNS + ﬁéY;CNS) € Ti.
j=1 Tiat lat
=0
e Structure equations.
ls ls
| me¢ = [ foratic,
0 0
s s s
[ iic = —a [T amac—y [ ana (4.4.16)
ls . ls
[ R Bty 1 = [ Rl 1 R, forall ¢
e Equations for w and d.
/VW:ch—/ Asw =P — Arw @ =0, forall ¢,
Q Fs F\FS
/ W Tg— / M€y - 75 =0, forall Ty, (4.4.17)
I s
w-Tr=0, forall 7y,
T f f
and
/Vd:ch—/ )\Svd-go—/ Ara @ =0, forall ¢,
Q Fs F\FS
d 75— / més - 75 =0, forall 7y, (4.4.18)
T, s

d-7/=0, forall 7.
I\, f f



Chapter

Stabilization of the Fluid-Structure
Interaction system

Abstract of the current chapter

In this chapter, we study the stabilization of a fluid-structure interaction system about an
unstable stationary solution. We consider a fluid-structure interaction model coupling the in-
compressible Navier-Stokes equations in a 2D rectangular-type domain, and an elastic structure
governed by a damped Euler-Bernoulli beam equation. The structure, which is assumed to be
clamped at one end and free at the other, is immersed in the domain occupied by the fluid. We
prove that the system is exponentially stable, locally around an unstable stationary solution, for
any given decay rate, by using a feedback control corresponing to a force term in the structure
equation.

We emphasize that the computation of adjoint fluid-structure operator was obtained by for-
mal computations. In particular, the well-posedness of such a system has not been established
and the corresponding analysis will be the subject of a future work. However, this analysis is
not needed to prove the main result of the chapter.
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5.1 Introduction

In this chapter, we are interested in determining a feedback control law of finite dimension
able to stabilize a fluid-structure interaction system in a neighborhood of an unstable stationary
solution. Before introducing the governing equations, let us introduce some notation.

The reference configuration €2 of the fluid domain is given by
Q= [_L/27L] X [_eae] \87
where § = S, US,. The boundary I' of €2 is divided into

r=r,ur,ur,ur,, uly,,

where
r,={- L/Q}x[ 0,0],
Iy = {(r(cos(f) — cos(bp)), rsin(f)) | 6 € [0y, 27 — 6o}, > 0,00 € (0,7/2),
I, =T;UTfury,
Ty = [=L/2, L] x {—f} U[=L/2, L] x {£},
In ={L} x[=¢,4],

with Ty = [0,45] x {—e}, T'T = [0,£4,] x {e} and T = {£;} x [~e,e]. We also set [y = '\ T',,.
See Figure 5.1.

For a given function n defined from (0,00) x (0,¢s) to R that describes the centerline dis-
placement of the elastic part of the structure, we denote by €, ;) the fluid domain at time ¢ and
by L'y = F;(t) U F;]F(t) ul ( ) the fluid-structure interface, where I'_ () and F;r(t) represent the
bottom and top of the elastic part of the structure, respectively and Fn( n the lateral part (see
Figure 5.2). Here, F;(t), F;(t) and I‘f](t) are given by

F;(t) = {(37777(757 CIZ) - e)’ T e [0768]}7 F;;_(t) = {(x777(t7x) + 6)‘ T e [0765]}

and
Try = {Ws,v) [y = (1= N (—e+n(t, £s)) + Ae +n(t, £))), A€ [0,1]}

ZL)2 0 I, £ L

Figure 5.1 — Reference configuration.
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Qn(t)

Figure 5.2 — Physical domain. The dashed lines denotes the reference centerline.

We set

er= U (x2%0). == U ({8 xTy),

t€(0,00) t€(0,00)
Q> = (0,00) x Q, X° = (0,00) x T,
Y =(0,00) x Ty, X3 =(0,00) x Ty,
XX =(0,00) x Ty, 32° =(0,00) x Ty,

The governing equations for the fluid-structure interaction system are given by

du+ (u-V)u—divo(u,p) =0 in Q;°, (5.1.1a)
divu =0 in Q;°, (5.1.1b)
u=g;+g, on¥;°, u=0 on X UX, (5.1.1c)
u =& on X°, o(u,p)n=0 on X7, (5.1.1d)
u(0) =u’ in Q, (5.1.1¢)
Ofn + aln+ B = H(u,p,n) + fs + f in (0,00) x (0,4s), (5.1.1f)
n=0 and 9,,7 =0 on (0,00) x {0}, (5.1.1g)
92m=0 and 92 n=0 on (0,00) x {£s}, (5.1.1h)
n(0) =0 and 9n(0) = ny in (0,4,), (5.1.1i)

where u and p respresent the fluid velocity and pressure. Here, o(u,p) is the Cauchy stress
tensor given by

1
o(u,p) =2ve(u) —pl, e(u) = (Vu+(Vu)"),
with v > 0 denoting the fluid viscosity. The inflow boundary condition g is time-independent,
while g, is a time-dependent perturbation of gs. The elastic part of the structure is governed

by the reference centerline curve 7. The parameters a > 0 and v > 0 are constants relative to
the structure. The damping operator B is given by

B =(A%)"2, D(B) = {ne HX(0,4,) | 1(0) = duyn(0) =0},

where A2 = 2

1)

with D(A2) = Hf{lo ES}(O, ls). The expression of the force exerted by the fluid
on F:(t) U I‘;(t) is given by

H(u,p,n) = = (o (w,p)nj) + 0™ (w,p)ny, ) /14 (0un)? - &, (5.1.2)
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where
Ui(u7p) = U(U(t’ x’n(tvx) + 6)’p(t7x’n(tvx) + 6)),

and n;'(t) (resp. n;(t)) is the unit normal vector to I‘:;( 0 (resp. T ,;(t)) exterior to €, ).

We assume that the control function f has the form

Nc
i=1

where the functions (w;)1<i<n, are chosen appropriately. We will discuss their choice later.
Let (us,ps) be a solution of the stationary Navier-Stokes equations

(us - V)uy —divo(us,ps) =0, divas =0 in Q,
Us = g5, On Fia us; = 0 onT \ Fi, (514)

o(us,ps)n =0 on I'y,.

The regularity required of ug and ps is specified in A1l. Let us consider the time-independent
function fs chosen in such a way that the triplet (u,n,n;) = (us,0,0) constitutes a stationary
solution of system (5.1.1). We assume that it is an unstable stationary solution. The aim of this
chapter is to find a control f = ( fj)é-vzcl given in a feedback form, able to stabilize the system
(5.1.1) with a prescribed exponential decay rate w > 0, locally about (u,n,7;) = (us,0,0).

We briefly describe below the approach adopted, along with the main difficulties encountered.
The strategy consists first in stabilizing the linerized system. Then, using the feedback law
obtained in this step, we show that it also stabilizes the nonlinear system, provided that appro-
priate assumptions on the initial and boundary data are satisfied.

Before linealizing the system, and similarly to the analysis carried out in Chapter 3 concerning
the existence of strong solutions, it is necessary to rewrite the system (5.1.1) on a fixed reference
domain by introducing an appropriate change of variables. As a consequence, the difficulties
discussed in Chapter 3 persist at this stage of the analysis. We briefly discuss these aspects below.

e Analysis of the stationary Oseen system. We have to study the regularity of w and pressure
7 of the stationary Oseen system

—dive(w,m) + (us- V)w+ (w-V)us =F in Q,
divw =h in Q, (5.1.5)
w=gonl;, o(w,m)n=0 onTI,,

where F, h and g are stationary data. In this regard, under appropriate conditions on (us, ps),
we adapted the regularity result presented in Theorem 3.3.1 of Chapter 3.

e Analysis of the instationary Oseen system. An important step in the analysis consists in
studying the system

%‘;V —dive(w,m) + (us - V)w+ (w-V)us =F in (0,7) x Q,
divw = h in (0,T) x Q, (5.1.6)

w=g on (0,7) xI'y, o(w,m1)n =0 on (0,7) x I'y,
w(0) = wq in Q,
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and establishing the analyticity of the semigroup associated with the Oseen operator in the
context of heterogeneous Sobolev spaces. The ideas presented in Subsection 3.3.4 of Chapter 3,
can be suitably adapted to address the case of the Oseen operator.

On the other hand, additional issues arise, which are intrisic to the stabilization of the lin-
earized system. Although the difficulties outlined below have been already treated in [FNR19],
it is important to highlight them, since they are also encountered in our analysis.

e Analysis of eigenvalue problems. Since the system (5.1.1) is linearized around a nontrivial
stationary solution, the analysis of both the direct and the adjoint eigenvalues problems in-
volves non-standard conditions. Specifically, the direct eigenvalue problem requires handling an
algebraic constraint of the form

divv = A3m in Q, v =198y on I, (5.1.7)
while the adjoint eigenvalue problem features a condition of the type
div® =0in 2, v = (86 0n Y, (5.1.8)
where Ag is linear bounded operator.

e Fquivalence between PDE and operator formulations. Closely related to the difficulty men-
tioned above is the necessity, in the spectral study of the linearized system, to establish the
equivalence between the partial differential equation formulations and the operator formulation
of both the direct and adjoint eigevanlue problems.

5.2 Notation and statement of the main results

5.2.1 Notation
Usual and weighted Sobolev spaces

We recall some of the notation introduced in Chapter 3. We set L?(Q2) = L%(Q;R?) and
H?*(Q) = H*(;R?) for s > 0. We also introduce the following functional spaces:

0, () ={ueH(Q)[u=00nTy} for s >1/2,
VoL (Q)={uecL?Q)| divu=0inQ, u-n=0on Ty},

Tl,Fd
VT, (Q) =Hf () NV (9),
H{lo}(O»ES) ={ne Hl(o’&’) | 1(0) = 0},
Hioy(0,65) = {u € H*(0,£5) | 1(0) = 8y, u(0) = 0},
Hy3(0,65) = {p € H*(0,£5) N Hiy (0,45) | 93 u(ls) = 0},

H?o,é_g}(oa&) ={ne H4(0768) N H?o}(oa&) | 6§1N<68) = 621,“(65) = 0},

H{Qéﬁ((O,T) x (0,45)) = L*(0,T; Hf, (0, £5)) N H' (0, T; L*(0, £)),
H?, 1((0,T) x (0,£5)) = L0, T3 H{y 40, 65)) N H?(0,T; L*(0,£5)).

All of the previous spaces are endowed with the natural norms.

We introduce the space for the inflow conditions

H(T;) = {g — (g1,92) | g2 =0 and g1 € H2(T;) N H&(Fi)} , (5.2.1)
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equipped with the norm (g1, g2) — ||g1]|
spaces

ai ) For 0 < s < 1/2, we introduce the intermediate

1,(Q) = [L*(Q), Hy, ().
The dual of Hf. () is denoted by Hp.7(€2).

Let us denote by J the set of vertices of I'. For 5 > 0, we introduce the norms

1/2
Hw||H2 = (Z Z/ IT 5 \akw| daz) . weC®(Q;R?),

k|=0i=1 JeJg
H=0T= © (5.2.2)

1/2
Ipllzry = (Z / 11 ?“26 0% p|? dfﬂ) , pECT(R),

|k|=0 JeJg

where r; stands for the distance to a junction point J € J, k = (ki,k2) € N? denotes a
two-index with length |k| = k1 + ko, O denotes the corresponding partial differential operator
and w = (w1, wz). We denote by H3(Q;R?) (respectively, Hj()) the closure of C*°(Q;R?)
(respectively, C*°(2)) in the norm H||H%(Q) (respectively, H||H[13(Q))

Throughout this chapter, we will use the following regularity exponents

€(0,1/2) and 6" €(0,1/2). (5.2.3)
Heterogeneous Sobolev spaces
Let € > 0. We introduce the cut-off function ¥ € C*°(R?) satisfying 0 < ¥ < 1,

U =1on (—L/2,0s+¢/2) x (—£,0) and ¥ =0 on (s +&,L) x (—, ). (5.2.4)

—¢ ! 1
—L/2 T Lts bte L

Figure 5.3 — Decomposition of the domain €.

We also define Qo = ({s+¢/2,L) x (—£,¢). We now recall the heterogeneous Sobolev spaces
introduced in Chapter 3:

H2+0Q) = {F e

H%“"l(Q):{

1N Q) = {p e (@) o2
{ve

H§+Q7Q(Q) _



5.2. Notation and statement of the main results 154

which are respectively endowed with the natural norms.

5.2.2 System in the reference configuration and statement of the main results

This subsection is devoted to rewrite the system (5.1.1) in the reference configuration. We
begin by recalling some results stated in Chapter 3.

The spatial variable in the physical domain is denoted by x = (x1,x2), while the spatial vari-
able in the reference configuration will be denoted by z = (21, 22). Let us now introduce an
appropriate extension of any function defined on [0, ¢s] to [-L/2, L]. We set n — En, where

0 if 2, € [~L/2,0],
En(r1) = { n(x1) if 1 € [0, 4], (5.2.6)
(3n(205 — 1) — 2n(30s — 221)) O(x1) if 21 € [€s, L],

where 0 € C*°([¢s, L]) is a nonnegative function with values in [0, 1], which is equal to 1 in
[ls,0s+¢/4] and to 0 in [¢s + /2, L], for some 0 < € < (L — {5)/2. The following Proposition is
a consequence of the definition (5.2.6).

Proposition 5.2.1. For alln € H?&S}((O, o0) % (0,45)), the following assertions are satisfied.
(1) Forall0 < ap<1/2,

En € L*(0,00; H**(~L/2, L)) N H*(0,00; L>(—L/2,L)).

and -

2a0—2T
Ene H e (0,00, H2TT(~L/2,L)), for all T € (0,3a0/4).
In particular, (En)(t,-) is a map of class CL.

(i7) For all 0 < g9 < L,
(577)|(50,L) € L2(0700;H4(607L))‘

(112) (En)lestes2,0) = 0-

For a given n € Hf‘(’f&}((o, 00) x (0,45)), we set

nt(t,- e) = (En)(t,-) on [-L/2,L] and n (t,-,—e):= (En)(t,-) on [-L/2,L)].

We now introduce two C* functions x* and x~, with values in [0, 1], such that x*(22) = 1 in
[%7& and X+(22) =0in [_£7 %]7 X_(ZQ) =1in [_67 _%] and X_(ZQ) =0in [_§7£]
We introduce the set

E(0,00) = {n EH?E)?ES}((()? 00) % (0,45)) such that (527)
min{l — e + (1, 2) | (1,2) € [0,00) x 2} > (¢~ e)/2}. B

where B
nf(t,z) = (FxT + (L F 22)0,xT) 15 (¢, 21), with (¢, 2) € [0,00) x Q.

For 1 belonging to F(0,00), we consider the map X (¢,-) : @ — €, defined by X(t,2) =z =
(21, x2), where

xr1 = z1,

i( 2’2(5—64:77:&(;,_216))4-&7:‘:(@ 21) +(1—Xi(2:2>)2’2, (5.2.8)

T2 = x*(22)
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for all z = (21,22) € Q. The following proposition is a consequence of the definition of the
mapping X given in (5.2.8) and Proposition 5.2.1.

Proposition 5.2.2. Foralln € E(0,00), the mapping X defined in (5.2.8) satisfies the following
properties:
(1) X(0,Q)=9.
(13) For allt € [0,00), we have that X (¢t,T;) =Ty, X(t,T'y) =Ty, X(¢,T;) =T, X(t,Is) =
Lpy and X(t,Ty) =Ty,
(iii) X € L%(0,00; H2t%(OL)) for all 0 < ap < 1/2, and X € L?(0, 00; H*(OR)).
(iv) X € H?(0,00; L2(f2)).
(v) X(t,-) is a C'—diffeomorphism from Q onto Q-
We will denote by Y the inverse of X. We also set J(t,2) = (J4)1<; j<2 = (VX)7!(¢, 2) for
all (¢,z) € (0,T) x €. Let us notice that for X defined in (5.2.8)
l—e

det(J) = .
et(J) E—e—i—nf(t,z)

(5.2.9)

In order to transform the system (5.1.1) in the reference configuration, we introduce the change
of unknowns

U(t, z) = ¢ (u(t, X(t,2)) — us(2)), p(t,2) = ¢ (p(t, X (t,2)) — ps(2)),
ﬁl(t> Zl) = eUJtn(t> Zl)v ﬁQ(t7 Zl) = eWtatn(tv 21)7 f(t) = (ﬁ(t))lﬁiSNc = €Wtf(t)7
ﬁli(tv 21) = Sthi(t7 Zl)a ﬁQi(ta zl) = ewtatni(tv Zl),

gp(t,z) = e‘*’tgp(t, z), i’ = u’ — u,,

(5.2.10)

for all (¢,z) € (0,00) x Q. Here, w > 0. Thus, after doing the change of variable (5.2.10) we get
that (u,p,n1,72) satisfies the system

osu — diVO’(ﬁ,ﬁ) + (us : V)ﬁ + (ﬁ : V)us — A1 — Aglp —wa = f‘f(ﬁ,ﬁ, 771,7/7\2) in Q°°,
diva = div Gdiv(ﬁ, 7/’]\1) + Agﬁl in Q°°,

O — N2 —wijp =0 in (0,00) x (0,4s),
Oyl + A2y + (A2)27 — Aafhy — wila = 7P — V5 B+ Fs(@,71)
+F in (0,00) x (0,4),
m =0 and 0,,7m1 =0 on (0,00) x {0},
927 =0 and 9271 =0 on (0,00) x {s},
71(0) = 0 and (0) = 1§ in (0,2,)

(5.2.11)
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The linear operators A; = (A1,1, A12), A2, A3 and Ay are defined by

Ty (€ F 22)XT M, (0 F 22)X™ M,
Al,i771 = mus,zus,i,zz Tus,lus,l,zg - QVTUs,i,zlzg
~1 4~ ~1
IR (EF 22)X i 2 Ty
- QVEUS,@ZQ@ - /— e Usizo — Vm“w’m
ot ot
M2 0 [LF 2 . CF 2z .
+ Us1z2 TV X Us,z12; — V Xi nliz‘“s,lm -V Xi 1iz z; s, 1,20
l—e l—e 0., L l—e i l—e s
++ ~t
, KJFZQXi 7 +(€¢Z2)x Moy 50 s i1
V|5 Us1,z12; T~ Ps,2001,i T 5 Ps,2002,i =
{—e 1,z; %8, L,z12 /—e S,22 2 /—e S,22 I3 ) 4y
~t ot +~+
_ (tF )N R q (€ F 22) XM,
Aoy = ~— L 72/A T2 A =X ’
212 = /— e Us 29,5 3 = 7— eus,l,zl 7/ — e Us, 1,215
~ ~t —
Ay = =V, Y Us 1z

(5.2.12)
where 0; ; denotes the Kronecker delta. The expressions of F;, Ggiy and Fs can be found in
Appendix A.

The corresponding linearized system associated to (5.2.11) is given by

v —dive(v,q) + (us - V)v + (v-V)us — Aim — Aamp —wv = Fy in Q%

divv = Asn + div Ggiy in Q°°,

v=g, on XX, v=1€ onXyr, v=0onXP*UXY, o(v,¢)n=0 on X°,

Oym —m2 —wn1 =0 in (0,00) x (0,45),

Qe + ANy +y(A2) 3y — Ay —wimp = —7F g+ 75 q+ Fy+ f in (0,00) x (0,4,),
m =0,0z,m =0 on (0,00) x {0} and 92 n1 = 0,02 m =0 on (0,00) x {£},

n1(0) =0 and n5(0) = n in (0,4,).

(5.2.13)
For simplicity of notation, we omit the symbol ~ in the preceding system. Before stating the
main results of this chapter, we will introduce notation and the assumptions used throughout.
Let oo € (0,a*) and 6 € (6*,1). Let us first consider the class

340
u € L2(0, 00, HZ *%(Q,))) N H'(0, 00, H 240, ),
lia
p e L2(0,00; HE " (0, (), (5-2.14)

n € L*(0, 00; H‘?O’gs}((),fs)) N H(0,00; L*(0, £5)).

We now introduce the space

3
z. - <L2(0, sos H2 T%(02)) Hl(O,oo;H_éJra’O(Q)))

. (5.2.15)

5+a,l 42

X LQ(O,oo;lT{(S2 (Q)) x H{OJS}((O,OO) x (0,4s)),
equipped with the norm
ﬁ? A? n = ﬁ 5 tao

Bz =180 e b o

+ HPHLQ(OM;H(S%MJ) + HnHH?(’fZS}((O,co)X(O,Zs)u
where

HﬁHH?(’)?ZS}((O,OO)X(O,fs) - HﬁHH4,2((o,oo)x(0,£S)) + HﬁtHHzl((Om)X(o%)).
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For a given R > 0, we also introduce the set

Boo(Ra u0777(2)) ::{(I/Lﬁa 7/7\) € Zoo ‘ H(ﬁvﬁa 7/7\)”200 < Ra ﬁ € E(()?OO) (5 9 17)
and @(0) = ug, 71(0) = 0, 7(0) = n3}.

Assumptions.

Assumption 1. Let a € (0,a") and § € (6*,1). We assume that g, € H(I';) and that the

system (5.1.4) admits a solution (us, ps) € H§+Q’Q(Q) X H(;%—HX’I(Q).
(A1)
The assumptions A2 and A3 are stated in Section 5.7. In Assumption A2, we state a condition
concerning the spectrum of the adjoint of the Oseen operator and the adjoint of the structure
operator. More precisely, we assume that the parts of the spectrum, contained in the half plane
{A € C | R\ > w}, of the adjoint of the Oseen operator and the adjoint of the structure operator,
are disjoints. On the other hand, Assumption A3 states a unique continuation property.

We are now in position to state the main results of this chapter.

Theorem 5.2.1. Let a € (0,a*). Let us suppose that Assumptions A1, A2 and A3 are satisfied.
For all w > 0, there exists a family (w;)Ne, C Hfo} (0,45) and an operator

K € LIL2() x H{py (0,45) x L*(0,£5), RNe),

for which there exist R > 0 and r > 0, such that for all (W% n9) € H(Q) x H?O}(O,ES) and all
gp € H{lo}(O, oo; H(T;)) satisfying

% = ¢ (0,-) on Ty, " =0 onT,UTy,

P
5.2.18
4’ =19(0,)8 on Ty, divi’=0 in Q, ( )

and

18”1 () + H773||H§0}(o,zs) + [18pll 1 (0,001 (1)) < 75 (5.2.19)

system (5.2.11) with a feedback control
~ NC
f=> K@, 0, fowi, with K= (Ki,...,Kx,),
i=1

admits a solution (U, D, 7) € Beo(R,g,19) satisfying

”(ﬁ(t: )77/7\(t7 ')77/7\t(t7 ))H S CR fOT’ all t > 0,

H 359 (Q) x H3(0,65) x H1(0,£5)
where C' > 0 depends on o and r.
The following result follows from the preceding theorem:

Theorem 5.2.2. Let a € (0,a*). Let us suppose that Assumptions A1, A2 and A3 are satisfied.
For all w > 0, there exists a family (w;)Ne, C H?O}(O,fs) and an operator

(K1, ... Kn,) € LILA(Q) x Hipy (0,45) x L*(0,£5),RY),

for which there exists v > 0 such that for all (u°79) € HY(Q) x H{zo}((),fs) and all e¥'g, €
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H{lo} (0,00; H(T';)) satisfying

u’ —us =g,(0,) onT;, u’=0 onT,UT,,

0

v . (5.2.20)
u’ —u; =15(0,)8 on Ty, diva’ =0 in Q,

and
[0® = wsllm @) + 1731 g2(0.0) + 1€ 8pll 1 0,008y < 74 (5.2.21)
system (5.1.1) with a feedback control
Ne

f=> Kiuo X' —ug,n,m)w;, with K= (Ki,...,Kn,),
i=1

admits a solution (u,p,n) belonging to the class (5.2.14) satisfying

[ (ut, X719 = wen(t, ), met, D) s < Ce ™ for all t > 0,

(Q)xH3(0,65)x H1(0,65) —

where C' > 0 depends on o and r.

5.3 Analysis of the fluid-structure operator
In this section we study the linearized stationary fluid-structure system

Av —dive(v,q) + (us - V)v+ (v-V)ug — Ay — A = Fy in Q,
divv = Asgm in Q,

v=mn8 only, v=0onTy\Tls, o(v,gn=0 on T,

A — 2 = F} in (0,4),

Mgy + alny + 4 (A2) 2y — Ay = —vF g+ 5 q + F2 in (0,4,),

m =0,0;,m =0 on {0} and 92 m =0,82 m =0 on {{}.

(5.3.1)

Here, either A € C or A € R. The context will indicate in which case we shall be.

We choose Ay > 0 large enough to guarantee the following coercivity condition:

2 2 . : . Yivi2
Af/Q\vy +2V/Q\g(v)\ —i—/Q((us VIV (v D) v 2 DviEy (o) (5.3.2)

for all v € V%d ().

This section is organized as follows. First, in Subsection 5.3.1, we study the fluid system.
In Subsection 5.3.2, we introduce the structure operator. Finally, the fluid-structure operator is
introduced in Subsection 5.3.3.

5.3.1 Fluid operator
We consider the following fluid system:
Aw —dive(w,m) + (us - V)w+ (w-V)us, = F in Q,
divw = h in Q, (5.3.3)

w=g only o(w,m)n =0 on [},

Let us assume that F € HI?;(Q), h € L*(Q) and g € H%(I‘d). We will say that the pair
(w,m) € HY(Q) x L?() is a variational solution of the system (5.3.3), if and only if it satisfies
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the following mixed variational formulation:

a(w, ) — b(¢p, ) = (F, ¢>H;1,H% for all ¢ € H%d(Q),
b(w, 1) :/ hy for all i € L*(Q), (5.3.4)
Q

w=g on [y,

where

a(w, ) = [ - g+ 2ve(w) (@) + [ (- V)w o+ (w- Tpu) -
b(w, ) = /Q (divw) .

e Regularity result of the Oseen system (5.3.3). The following result is a consequence
of the coercivity condition (5.3.2) and Theorems 2.3.1 and 2.3.2 of Chapter 2.

Theorem 5.3.1. Let a € (0,a*), 0 € (0%,1) and A > Ay. Under the Assumption (5.3.2), the
following assertions hold:

(i) Forall (F,h,g) € Hfj(Q) x L2(Q) x H%(I’d), system (5.3.3) admits a unique variational

solution (w,m) € HY(Q) x L*(Q).

(ii) For all (F,h,g) € H_%+°"O(Q) X H%JFQ’I(Q) X H%(I‘d), the variational solution (w,)
3 « 1 o
of system (5.3.3) belongs to H§+ 2(9) X H52+ !
Cq > 0, such that

(). Moreover, there exists a constant

< CO&(HFHHf%+a,0(Q) + HhHH%+a’1(Q) T HgHH%(Fd))
(5.3.5)

I g3z )+ I s

e Oseen operator. Let o € (0,a*). Let us first recall that the Leray projector P €
L(L2(R)) can be continuously extended from H~27%(Q) into H~27*(Q), and from H~21*0(Q)

into Hféﬂ"’o(Q) (see Subsection 2.4.1 of Chapter 2). For the precise definition of the operator
P, see Proposition 2.4.1 in Chapter 2.

The Oseen operator (A, D(A)) in Vg,rd(Q) that we will consider is defined by

D(A; Vi1, () = {w € H2*(Q) N HY,(Q) | Ir € H2*(Q) such that divo(w,7) € LA (Q)

n,[y
and o(w,7)n = 0 on Fn},

Aw = Pdivo(w,7) — P ((us - V)w + (w - V)uy).
(5.3.6)
The analyticity of the semigroup generated by the Oseen operator (A,D(A;V%Fd(ﬂ))) on
VY . () is proved in [NR15, Theorem 2.8].

n,I'y

Using Lemma 3.3.1 presented in Chapter 3 and the fact A is an isomorphism from D(A; V%Fd (Q))

into VO 1. (Q) and from V} () into V() (this follows from the Lax-Milgram theorem), we
Ld d d
deduce that A is also an isomorphism from

1
n,l'q

1
n,l'q

D(A;V (€2).

(5.3.7)
In the following theorem, we establish the analyticity of the semigroup generated by the Oseen

_1., —1ta
operator (A, D(A4; anﬂj (€2))) on an: ().

n,l'y

(Q) = [D(4; V,, 1, (), Vi, ()1, into [V] 1, (2), Vi ()], =V
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Theorem 5.3.2. Let o € (0,a*). There exists 0y € (w/2,7) and C > 0 such that

|(AI — A) for all X € Xy, \ {0}. (5.3.8)

Hav;%j“m» =

_1
In particular, the unbounded operator (A, D(A;V,, %:Q(Q))) is the infinitesimal generator of an
_1
analytic semigroup on Vn,%:a((l).

The proof of Theorem 5.3.2 is presented in Appendix B at the end of this chapter.

e Expression of the pressure and operator equation. Let us consider the system

Aw —dive(w,7) 4+ (us - V)w + (w- V)us =F in Q,
divw = h in Q,

) (5.3.9)
w=g, onlj, w=mé onl'y, w=0 onIy\ (T;UT),
o(w,T)n =0 on I'),.

The objective is to rewrite system (5.3.9) as an operator equation (see Theorem 5.3.3). To that
end, we begin by introducing a family of suitable operators that we will allow us to rewrite the
pressure 7 in system (5.3.9).

Let us first notice that, at least formally, the pressure 7 in system (5.3.9) is the solution of

the system
Am = —Ah + 2vdiv(dive(w)) — div((us - V)w + (w - V)ug) + divF in Q,
gz =(—Aw+2vdive(w) — (us- V)W + (w-V)us + F) -non Iy, (5.3.10)

m=2ve(w)n-nonl,.

We write m = q1 + g2 + ¢3 + q4, where ¢;, with ¢ = 1,2, 3,4, satisfies
oq

Ag; = divF in Q, o F-nonly g =0onl,, (5.3.11)
B . 02 B
Agy = —Ah in Q, B 0onTy, ¢g=0onTl,, (5.3.12)
Agz =2vdiv (dive(w)) — div ((us - V)w + (w - V)ug) in €,
((;(ﬁ’ =2vdive(w) -n— ((us - V)w+ (w- V)us) -n on I'y, (5.3.13)
g3 =2ve(w)n-n on Iy,
and
o dqs B
Agqs =0 in Q, on —Aw-nonly ¢g=0onl,. (5.3.14)

Operator N,
We introduce the operator N, € E(H*%JFC“’O(Q), H%Jra’l(Q)), defined by
N,F = q1, (5.3.15)

where ¢; solves system (5.3.11) in the sense of (2.4.21) introduced in Chapter 2. Let us notice
that the operator N, is well-defined thanks to Lemma 2.4.4.
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Operator Ngiv

Given h € L?(f2), let us consider the elliptic equation

9
Y ) onTy, g=0 onT,.

Ag=h in Q, o

We introduce the operator Ngiy, defined by
Naiv € L(L*(Q), H (), Nawh = q,

where ¢ is the variational solution of system (5.3.16).
Operator N,
We first define the variational problem satisfied by g¢s:

Find g3 € L*(Q) such that

/ﬂqgc dx = 2v{e(w), VQ)C)H%_Q’H_%M —2v /Fd e(w)n-Vy

+ [ (- D)w - (w- Tpu) - T

for all ¢ € L?(f2), where Y is solution to

Ax = in Q, %:0 onIy, x=0 on[,.
on

Lemma 5.3.1. The variational problem (5.3.18) admits a unique solution qz € L*(Q).

Proof. Let us introduce the linear funcional L : L?(Q2) — R given by

L(C) = 2v(e(w), V) o /Fd e(w)n - Vy

1, 1.,
H C(@)H 2
+ /Q ((us - V)W + (w - V)ug) - Vx

where x is solution to (5.3.19) with source term ¢ € L?(Q). Let us notice that

2w(=(w), V7)) < Clle(w)] 1926 g oo

< CHWHH%+a(Q)HCHL2(Q)7

H?~2(Q),H 3+%(Q H3~%(Q) )

20 [ e(wpn- V6 < Clletw) ey | V4 leaqr.)
d

< Clwll g 4a g 1€l 220

and
[ (e Fyw e (w V)u) - V< Clwlg g [Tz

< C||WHH%+Q(Q)H§HL2(Q)-

Since L € L(L*(Q),R), the conclusion follows from the Riesz Representation Theorem.

(5.3.16)

(5.3.17)

(5.3.18)

(5.3.19)
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We now introduce the operator N,:
N, € L(H31(Q), LX(Q)), Nyw = g3, (5.3.20)
where g3 is the solution to system (5.3.18).

Operator Ny

For a given 1y € L%(0, /), we consider the elliptic equation

0q Jq _
8—n:ngonf‘j, a—n:—ngonFS,

)
a—QZOOan\(Fgurj), g=0onT,.
n

Ag=0 in Q,
(5.3.21)

Notice that the system (5.3.21) admits a unique variational solution g3 € H'(€2). Let us now
introduce the operator Ng:

Ny € L(L*(0,4,), H (), Ny = q, (5.3.22)
where ¢ is the variational solution to system (5.3.21).

Before stating the main result of this subsection, we introduce the lifting operators

3iq
L € L(H}y (0,6) x H3 TN (Q), H ™%(Q), Lin.h) =w (5.3.23)

and
1 (0%
Ly € L(H2,(0,6,) x HtN(Q), HE "™ (Q)), Ly(nz,h) =, (5.3.24)

where (w, ) is the solution to system (5.3.9) when F =0, g, = 0 and A = Ay.

Theorem 5.3.3. Leta € (0,a*) and 0 € (6*,1). Assume that F € H7%+°"O(Q), h e H%Jro"l((l),
3 (0% 1 «
N2 € H{QO}(O,ES) and gp = 0. A pair (w,m) € H§+ 2((2) X H(s2+ 1(Q) is a variational solution

of (5.3.9) if and only if Pw, (I — P)w, and 7 are solutions to the system

{w — A)Pw o+ (A= \DPLGR K = PR, (1= Pw = (I=P)Llm ), oo

7T = ANgn2 — ANgivh + Nyw + NpF.

344 1iq
Proof. Let (w,7) € H§+ 2(Q) X H(S“’Jr 1(9) be the solution of (5.3.9). We set w = w+ L(n2, h)

and m =7 + Ly(n2, h), where the couple (W, ) satisfies

AW — div o (W, 7) + (s - V)W + (% - V)ug = F — (A — Ap)L(n2, ) in ©,
divw =0 in Q, (5.3.26)

w=0onTly oW, m/n=0 onT,,.

We notice that the pair (W, 7) satisfies the system (5.3.9) for (n2,h) = (0,0) and right-hand
side equals to F — (A — Af)L(n2, h), and therefore w € D(A). Thus, \PW — APW = PF — (\ —
Af)PL(n2,h). Then, since w = w — L(n2, h), we get (A — A)Pw + (A — AfI)PL(n2, h) = PF.
Furthermore, the algebraic constraint (I — P)w = (I — P)L(n2, h) holds.
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We now proceed to derive the expression of the pressure w. We first show the identity

Iy

)\/Qw-Vx—(diva(w,w),Vx)H_%m

g

= —/\/QNdivthr/\/QNsnzC—/QWQJr/QNvWC-

%Q —I—/ us - V)w + (w-V)uy) - Vyx
F

(5.3.27)

I;: After integrating by parts, we get

I :)\/ w-Vx = —)\/(divw)x+)\/ W ny = —)\/ Ndith—i—)\/ NgnaC. (5.3.28)
Q Q o9 Q Q

I5: We will prove that
I = —/ ¢ ~|—/ Nyw(. (5.3.29)
Q Q

Let (W) be a sequence in H?(2) converging to w in H%“‘(Q) and let (m)r be a sequence in
H'(Q) converging to 7 in H %JFO‘(Q). Let us first observe that

— (divo(wg, k), VX) —|—/ ((us - V)wy, + (wy - V)ug) - Vy

1
—5+a a
2 2
H, 27 (Q)HP

o e T, g (e )W (v D)V

k—+oo r, 2

where x is the solution of (5.3.19). On the other hand, since N, € E(H%JFC“(Q),LQ(Q)) and
o(w,m)n =0 on I',,, we have

1., 1, +/ us - V)wy + (wy - V)u,) - Vx
eyt gy + (0 T (e )

—/ divo(wg, m) - Vx +/ ((us - V)wg + (wg - V)ug) - Vy
Q Q

_lia 1_, - o(Wg, mp)n - Vi
H, 2 @)1 @) /r (5 )

o [ Dwict (i P Ty

—(div o (wy, k), VX)
= (V?x, 0(Wi, ™))

— | mAX+20(VPxe(Wh) 1. 1,
/Q H. 2@ HE (@)

—1—/ ((us - V)wy + (Wi - V)ug) - Vx — 2v /Fd e(wg)n-Vyx — /Fn o(wg, m)n - Vx

/WkC+/NWkC / (Wg, m)n - Vix

k~>+oo /WC"‘/N’UWC / (w, T)n X:_/QWC‘F/QNUWC-

(5.3.30)
Thus, using (5.3.30) and the uniqueness of the limit, we deduce the identity (5.3.29).
On the other hand, from the definition of the operator IV, (see (5.3.15)), we have that
LX) g ah _ /Q N, FC. (5.3.31)
d
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Finally, since

)\/Qw -Vx — (div a(w,ﬂ),V)OH,%M

Ta

1, +/ us - V)w+ (w-V)ug) - Vy
(Hr, @ ! AR (5.3.32)

= <F7VX> -1 o lfa ?
HF;* (@.H2 (@)

the identities (5.3.27) and (5.3.31) allow us to obtain

[mc==n [ Nawh¢+x [ Nam¢+ [ Nowc+ [ NEC

from where we deduce that m = —ANgivh + ANsn2 + Nyw + N,F. This concludes the proof of
the first implication.

§+a,2 l—i—oz.,l
Let us now prove the converse. Assume that the couple (w,m) € H; (Q) x Hy (Q)
satisfies (5.3.25). We claim that (5.3.25) admits a unique solution. Indeed, let us notice that
(M — A)w, W)2(q) = 0 implies that w = 0. Next, (Al — A)Pw =0 and (I — P)w = 0, leads
to w = 0, thereby ensuring the uniqueness. This completes the proof. ]

Remark 13. Since m = —ANgivh + ANgn2 + Nyw + NpF and 7 € H%+°"1(Q), Naivh € HY(Q),
Ny € HY(R2), N,F € H%Jro"l(Q), we deduce that, indeed, N,w € H%+a’1(Q).

5.3.2 Structure operator

In this subsection, we revisit some results established in Chapter 3 concerning the structure
operator (see Subsection 3.3.2).

We introduce the state space
Hy = H{y,(0,45) x L*(0,£5), (5.3.33)

which is endowed with the inner product

ls
((m,m2), (C1,¢2)) H, :/0 (a1 ,22C1 2z + 12C2) da.

We consider the unbounded operator (A2, D(A2)) in L?(0, /), where
D(AZ) = H{y1(0,5).

We now define the unbounded operator (As, D(As)) in Hy by

0 1
D(As) = D(Ag) X H{QO}(Oafs)v As = (—QAQ —7(A2)5> . (5334)

Theorem 5.3.4. The unbounded operator (As, D(As)) is the infinitesimal generator of an an-
alytic semigroup on Hy.

We consider the structure equation

Mt =mn2 in (0,00) x (0, 4s),

Mo+ a2 +v(A2) 21, = 0 in (0,00) x (0, 4),

m =0 and 71, =0 on (0,00) x {0}, (5.3.35)
Mz =0 and M zee =0 on (0,00) x {£s},

7(0) =0 and 72(0) =79 in (0,£s).
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=

Proposition 5.3.1. Let us assume that 13 € H%O}(O, ls). Then, system (5.3.35) admits a unique
solution (n1,1m2) € Hf(’fgs}((O,oo) x (0,£4)) x H>1((0,00) x (0,£5)).

5.3.3 Fluid-Structure operator

_1
Let a € (0,a*). We introduce the spaces H = H_%+°‘(Q) x Hg and Z = an:a(ﬂ) x Hg.
Both spaces are equipped with the inner product

Ls
<(U,771,772)a (V7C1a<2)>z = <u’v>H7%+a(Q) + /0 (O[nl,mcgl,a:x +772C2) dx. (5336)
Lq

We also introduce the spaces
Zo = Vi1, (Q) x Hy,, Hy=L*(Q) x H,,
o = H2T(Q) x BN (Q) x B (0,60) x Hy (0,44),
which are equipped with the natural norms.

We begin by introducing some properties of the operators involved in the definition of the
fluid-structure operator. We start with the following proposition concerning the operators Ay,

AQ, A3 and A4.

Proposition 5.3.2. Let o € (0,a"). Let ag € (0,1/2) be the parameter introduced in Proposi-
tion 5.2.1. The following assertions hold.

(i) A € E(H{zo}(O,ﬁs),H_%MvO(Q)), (iti) Az € L(H, (0,05), L*(2))
(ii) Ag € L(L*(0,4,), L2(Q)), (iv) A € L(HF,(0,45), L*(0,£5)).

Proof. The first assertion follows from [GS91, Proposition B1] and Lemma 3.5.3 of Chapter 3.
The assertions (i), (i7i) and (iv) follow from [GS91, Proposition B1]. O

Let us now introduce the so-called added mass operator M € L(Z), which is defined by

I 0 0
M=|0 I 0 , (5.3.37)
0 —v& NawAs I+~ N

where v;7~ =4 — 4. Thanks to Lemma 3.3.2, we have that M~ € £(Z). Moreover,
1 0 0
Mt=1|o0 I 0 . (5.3.38)
0 (T4 No) " Nawds (I+957Ns)™!

We now introduce the fluid-structure operator (A, D(A)):

A PA, PAy + (Al — A)PL(-,0)
A=M"1 0 0 I + M4,
—HTN, —aA?+ Ay —yB — 5" N4y (5.3.39)

D(A) = {(Pv, m,n2) € Vé}j(ﬁ) X D(As) | Pv — PL(n2, A3m) € D(A)} ;

where
Pv ()\f[ — A)PL(O, A3771)
Ap |l m | = =75 NpAim
2 _’7;_7_NUVNdivA3n1 + 'Y;—’_NUVNSUZ
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In the next result, we provide an operator-based formulation of system (5.3.1), which follows as
a consequence of Theorem 5.3.3 and the fact that

VN, =1-P, (I-P)L(0,A3m) = VNavAsn, (I —P)L(n2,0) = —VNsna.

Theorem 5.3.5. Let us assume that (F¢, F1, F?) € H 2+O[O(Q) x Hg and A € C. Then, the

quadruplet (v,q,m1,m2) is solution to system (5.3.1) if and only if,

APv,m,m) " = APv,m,m2) " + M~YPFy, F}, F? — v~ NyFy),

(I = P)v = VNg4iyAzn — VNgnp,

q = —ANgivAsn + ANgn2 + NpAini + NpAans + Ny(Pv — VNgn2 + V NgivAsni).
(5.3.40)

5.4 Characterization of the adjoint operator (A* D(A*))

We remark that in this section the adjoint fluid-structure operator is obtained only through
formal computations. The justification of the well-posedness of the adjoint system involved in
these computations remains to be completed.

Let a € (0,a*). Given Gy € L?(Q2) and (» € H{O}(O,ES), let us first consider the system

AP — divo(®,1)) — (us - V)® 4 (Vu,) '@ = Gy in Q,
div® =0 in £, (5.4.1)
D =06 onTy, =0 onT'y\Ts, o(®,Y)n+us;-n® =0 on I,

The result below follows from [NR15, Theorem 2.11].

Theorem 5.4.1. The adjoint operator of (A,D(A;V%Fd(Q))) is defined by

D(A") = {® e HT*(Q) N V1, (Q) | 3w € H2*(Q) such that

divo(®,1) € L2(Q) and o(®,¢)n+u, -n® =0 on Fn}, (42
A*® = Pdivo(®,y) - P ((Vu,) @ - (u,-V)®).
Let us now introduce the lifting operators D € L {0}(0 ls),H +a’2(Q)) and
D, e L(H {0} (0,45), H, 2+a’1(Q)) for the adjoint system, defined by
D¢ =@ and D, =1, (5.4.3)

where the couple (®,1)) is the solution of the system (5.4.1) with A = Ay and Gy = 0.

In order to characterize the pressure v in (5.4.1), we also introduce the operator
Ng € £(H2+a 2(Q), L?(9)), which is defined by Ng® = ¢, where ¢ is such that

qC =2v(e(®),Vix) 1_. 1. = 21// e(®)n - Vy
/Q < >H2 (Q)uHFd2+ (Q) Fd (544)

_|_/ . W—i—(VuS)T(I)) Vx—i—/ u; - n)(® - Vy),
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for all ¢ € L?(f2), where x is the solution of the system

Ax = in Q, g—x =0onTly, x=0 onT,. (5.4.5)
n

The following result is a consequence of Theorem 5.3.3.

Theorem 5.4.2. Let a € (0,a*) and § € (6*,1). Assume that Gy € L2(Q) and (2 € H{QO}(O,ES).

3
Then, the pair (®,1) € H§+a’2

triple (P®,(1,(2) satisfies

1 «
(Q) x H52+ ’I(Q) is the solution of (5.4.1), if and only if, the

(A — A*) P® + (A* — \;I)PD(, = PGy,
(I — P)® = —VN,(s, (5.4.6)
b = ANyCa + N (P® — VN.(o) + NGy

Let us now consider the adjoint fluid-structure equation

AP — dive(®,1) — (us - V)® + (Vu,) '@ = Gy in Q,

div® =0 in ,

D=6 onTy, =0 onTy\Is o(®,¢¥)n+u, - n® =0 onTl,,

A+ G = 5 (As)THAL = 20(7 A3) )G — 5 (Ag) M AT + 3 (A) T AR = Gy in (0,£y),

Ao + aA2() + 7 (A2)3¢ — A5® =~ +v; 0 + G2 in (0, 4y),

¢1(0) = 0:¢1(0) = 0 and 951 (¢s) = %CQ(&), 93¢ (4s) = %Cz,x(ﬁs).

(6 «

(5.4.7)
Remark 14. We warn the reader that the well-posedness of system (5.4.7) has not yet been
established. Thus, all the computations presented below are purely formal.

Proposition 5.4.1. The adjoint of the added mass operator M € L(Z) introduced in (5.3.37)
s given by

10 0
M*= [0 I i(A,)7143N,
0 0 I+~7"N
Furthermore,
10 0
(M*)_lz 0 1 _é(AS)ilAgNS(I‘i‘%ﬁNS)il
00 (I +~vH~ Nyt

Proof. Let us first observe that the operator I + v~ Ny € L£L(L?(0,4s)) is symmetric. On the
other hand,

ON,
- /r Vs (Naiv[Agm])Ge = — /S(NdiV[Agm]) 8n€2

=— /Q(ANSCQ)(Ndiv[A?,m]) - /Q(VNSCQ) - (VNaw[Asm1))
= | (NG (ANa [ Asn)) ~ | (Nscz)angm

Q oN n
— [ (V.Go)(Aam)

= <7717 (1/@)(As)71A§N5@) 12(0,6.)
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Thus, for all (v,n1,72) and (®, (1, (2) in Z, we obtain
<M(V;"71,772)T7 (@7 Cb <2)T>Z',Z = <(V7 7717772)T7 M*(@7 <17 (2)T>Z/ 7

This conclude the proof of the first part. The second part follows from Lemma 3.3.2 stated in
Chapter 3. O

We introduce the space F4(0,¢s) defined by

2ve

Es(oags) = {(ClaCQ) € (H4(Oa€s) N H{%}(O,gs)) X H%o}(o,gs) | <1”(€s) 7(2( )

and 1" (£) = %@( 0}

Before presenting the characterization of the adjoint of the fluid-structure operator (A, D(A))
on Z, we introduce the unbounded operator (A%, D(A%)) on Z defined by

D) = {(P®,¢1,0) € € V21%(Q) x By(0,6) | P(® — DG) € D(4")},

A 0 ()\fI A*)PD
A =| LAY 0 + (A0 AT - ATVN,) |+ At
A5 —~F " Ng aA? fé( )%f VNerWj’_N(DVNs
where
Pd 0
AF | G| = | —2(A) 7T A3Ng (PR — VN (o)
C2 0

Theorem 5.4.3. Let a € (0,a*) and § € (6*,1). Let us assume that A € C and (G, GL,G?) €

-1 (0% (0 a,
HF;Jr ’O(Q) x Hs. A quadruplet (®,1,(1,(2) € HQJr 2(Q) H2+ 1(Q) x E(0,45) is a solution
of system (5.4.7) if and only if,

P® P® PGy
AM* | G | =A% G |+ | GL=L1(A)TAN,Gy |
) Co G2 — 4~ N,Gy (5.4.8)

(I — P)® = —V Ny(o,
1 = ANg(2 + No (P® — VN (2) + N,Gy.

Proof. From Theorem 5.4.2 it follows that the system (5.4.1) is equivalent to the system

AP® = A*P® + (\fI — A*) PD(y + PGy
(I — P)® = —VNy(, (5.4.9)
¥ = ANyCa + Ng (P® — VN, Do) + NGy

Now, we will use the expression for the pressure ¢ given in (5.4.9) to rewrite the fourth and fifth
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equations in system (5.4.7). The fourth equation in system (5.4.7) can be rewritten as

1 1 1
At = = Gt (AT ARG + —(A)THATPE - —(A,) T ATVNG

1 1 1
- ,\a(As)_lA;;NSCQ — a(As)‘lAqu)(P@ — VNy(o) — a(As)_lA;;Npr +G!

1 1
— ()RR [T (A7 (A5 - ATTN)| o

A 1 ax 1 1 s 1 1 s
- E<AS> 1A3N8<2 - E(AS) 1A3N‘I’ [P® — VN;(o] — a(AS) 1A3Npr + Gi:

or equivalently,

1 1 1
A1+ A= (Ag) TTASN G = —(Ay) AT PR + [—I + = (As) 7N (A — ATV, | G
@ ‘13‘ @ ) (5.4.10)
— a(AS)—lA;;Nq, [P® — VN,(o] — a(As)—lAngGf + GL.
On the other hand, the fifth equation in system (5.4.7) can be rewritten as
Ao = aA?( — 5(A8)%§2 + ASP® — A3V Ny(o — Ay Ny(o — v Ne PP
— 7" (NoP® + AN.G2 — No VNG + Ny Gy)
= A3P® — 4P N P® + aA2C, — 6(A,)2¢ — AJVNLG
— AT NG + 7T Ne VNG — 4" NGy + G2
or equivalently,
A+ ’7Ns} (o = A3P® — 47 " NoP® + a2l — 6(A2)3¢ — ASVNG (5.411)
44PN VNG — v NGy + G2 h
Then, the result follows from the identities (5.4.9), (5.4.10) and (5.4.11). O

Theorem 5.4.4. Let o € (0,a*). Then, the adjoint of (A, D(A)) on Z is defined by

D(A") = {M*(P‘I'aﬁa@) | (P®,(1,(2) € D(A#)} and A* = A# M.

Proof. Let Fy € L?(Q), F} € H{QO}(O,ES) and F2 € L%(0,4s). Let us consider the system

Av —divo(v,q) + (us - V)v+ (v- V)ug — Ay — Agnp = Fy in Q,

divv = Asm in Q,

v=m8 onls, v=0onTy\Is, o(v,gn=0 on T}, (5.4.12)
AN —n2 = F} on (0,4),

My + @Ay +y(A2)2ny — Agm = —7S g+ 75 g+ F2 on (0,4,),

m(0) = 8;1(0) = 0 and 9Zm (¢s) = dmi(Ls) = 0.
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For a given G € L(Q2), Gl € H{20}(0,€5) and G2 € L?(0,4s), let us consider the system

AP — dive(®,1) — (us - V)® + (Vu,) '@ = Gy in Q,

div® =0 in ,

D=6 onTy, =0 onTy\Is, o(P,¥)n+u, - n® =0 onT,,

MG+ G - (AT AT - 20(E A )G — H(A) T AT + LA A = G in (0,0),

Ao + aA2() + 7(A2)3¢ — A5® = —F g+ v; 0 + G2 in (0, £y),
2ue 2uve

Cl(o) = aﬂvgl(o) =0 and 8§C1(€8) = 7{2(63% 8341(55) = FC27I(£S)'

(5.4.13)
After integrating by parts, we obtain the identity (see Appendix C at the end of this chapter)

ls ls
F, & AFL.A / P2
< b >H%+a(9),H%a(Q)+a/o s AG 0 5 G2

O ls
e AG!- A / G2n,.
< f’v>H7%+a(Q)7H%7O‘(Q) + a/(] s m + 0 sT2

where (v,n1,12) and (®, (1, (2) represent the solutions to systems (5.4.12) and (5.4.13), respec-
tively. Then, the identity (5.4.14) can be rewritten as follows:

(5.4.14)

1 23T T _ 1 ~2\T T
<(Ff’ Fs ) Fs ) ) ((I)v Clv CQ) >Z',Z = <(Gf7 Gs’ Gs) ) (V7 i, 772) >Z',Z (5'4'15)
Let us notice that from Theorem 5.3.5 we have that the triple (Pv,n;,n2) satisfies
MM = A)(Pv,m,m)" = (PP, FLF2)T = (F;, FLF2), (5.4.16)

while on the other hand, according Theorem 5.4.3, we have that the triple (P®, (1, (2) satisfies
AM* — A%)(P®,G1,G)" = (PG, Gy, GY)T = (Gy, Gy, G2) T (5.4.17)

Then, using (5.4.16) and (5.4.17) in the identity (5.4.15), we get

(MO = A)(Pv,m,m) T (P2.CLG)T)
. ’ (5.4.18)
= (M = A%)(P2,¢1, ) (Pv.mme) )

z' 7’

)

from where we deduce that A* = A% M —*. O

The following result is a consequence of Theorem 5.4.2.

Theorem 5.4.5. Let o € (0,a*) and § € (6%,1). Let us assume that A € C and (G5, GL,G?) €
_lig 310 1ig
Hp > ""(Q) x H,. Then, a quadruple (®,v,¢1,¢) € HE (@) x HZ Q) x HYy , 1 (0,£,) x

H{Qo}(O,KS) is a solution of system (5.4.7), if and only if,

Po Po PGy
A ¢ | =AM G|+ |Gl = 1A A3N,Gy |
G2 G2 G =7 NGy (5.4.19)

(I — P)® = —VN,(s,
¥ = ANyCo + No (P® — VN,G) + N,G.
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5.5 Resolvent of (A, D(A)) and analyticity of the underlying semi-
group

We first decompose the unbounded operator (A, D(A)) as A = Ay + By + B2 + B3 + By,
where

A (A I —A)PL(0,As) (Afl —A)PL(-,0)
A= 1|0 0 I , D(A1) = D(A),
0 —al\? —~vB
Pv 0
Bilm|= 0 , D(B1) =D(A),
72 —(K;t = DalAlm
Pv 0
Byl m | = 0 , D(B2) =D(A),
2 —(K;t = I)yBng
Pv PAn + PAan
B3 m = 0 ) D(B3) = D(A)v
72 K1 (Agm — v~ NpAim — v~ NyAana + v~ NaivAsng)
Pv 0
Byl m | = 0 ; D(Bs) =D(A).
2 Ksilﬁ)/j’i[\pNv (PV + VNST& - VNdivAfﬂnl)]
We now state some useful properties of the operators A; and B; (j =1,...,4).

For a € R and 6 € (0,7), we define the sector 3, by
Yoo ={AeC||arg(A —a)| < 6}.

The proof of the following result can be adapted from the proof of Theorem 3.3.8 presented in
Chapter 3.
Theorem 5.5.1. The following assertions hold:

(1) There exists a € R and 0 € (7/2,7) such that the sector ¥, is contained in the resol-
vent set p(A1) of the unbounded operator (A1, D(A1)). Moreover, there exists a positive
constant C such that

C
A —al’

(AT = A1) Y@y < for all A\ € 3,4\ {0}. (5.5.1)
(1) The domain D(A) of the fluid-structure operator defined in (5.3.39) is dense in Z.

(791) The unbounded operator (A1, D(A1)) is the infinitesimal generator of an analytic semi-
group on 7.

Adapting the proof from [Ray10, Lemma 3.9] and subsequently applying [Paz83, Chapter 2,
Corollary 6.11], we obtain the following result:

Proposition 5.5.1. The operator (B, D(A)) and (B2, D(A)) are A;—bounded with A;—bound
equal to zero.

Proposition 5.5.2. The operator (Bs,D(A)) is A;—bounded with Aj—bound equal to zero.

Proof. Let us assume that the assertion is false. Then, there exist ¢ > 0 and a sequence
(PVik, ks M2.%)k in D(A) such that

HB3(PVI<:7771,ka 772,k)THZ > e HAl(PVkﬂh,k,"?z,k)THZ +k H(ka, 771,k>7727k)THZ : (5.5.2)
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Let us assume without loss of generality that HBg(ka, M ks nQ’k)THZ = 1. From (5.5.2) it follows
that

H(kaanl,kﬂlz,k)THZ m 0 in Z. (5.5.3)

_1
Then, thanks to the continuity of the Leray projector P from H_%JFO"O(Q) into Vn’fﬂ:a’o(Q),
along with Proposition 5.3.2, Lemma 3.3.2 and the fact that Ngi, € L(L*(Q), HY(Q)), N, €
L(H2+0(Q), H2T*1(Q)), we have

HB:;(PVth,k,T]z,k)THZ < [|[PAm + PA2772||H7%+Q,0(Q)
+ HKZl (A4771,k - 7;_7_NpA1771,k) H

+ HKS_1 (—Vj’_NpAznz + 7:7_NdiVA37]2) H

H>(0,¢)

H~(0,45)

<C ”(771,](:7n?,k)HH{QO}(O7KS)XL2(07€S) .
Finally, we notice that the last estimate yields a contradiction with the fact that

HB3(PV’<?7771J€7772,1<:)THZ =1.

This completes the proof. O

The proof of the next proposition can be adapted from the proof of Theorem 3.3.9 of Chapter
3.

Proposition 5.5.3. The operator (By, D(A)) is compact on Z. Furthermore, the operator By
18 A1—bounded with A1—bound equal to zero.

We now state the main theorem of this section.

Theorem 5.5.2. The following assertions hold:

(1) There exist a € R and 0 € (7/2,m) such that sector ¥, ¢ is contained in the resolvent set
p(A) of the fluid-structure operator (5.3.39) and the following estimate holds:

AL = A) gz < for all X € £, \ {0}, (5.5.4)

<
Al
for a certain positive constant C. Moreover, the fluid-structure operator (A, D(A)) is the
infinitesimal generator of an analytic semigroup on 7.

(11) The resolvent of the fluid-structure operator (A, D(A)) is compact on Z.

Proof.

(¢) The first part of the assertion is a direct application of [EN06, Lemma 2.6, p.127] in
combination with Propositions 5.5.1, 5.5.2 and 5.5.3.

The fact that the fluid-structure operator (A, D(A)) is the infinitesimal generator of
an analytic semigroup follows from the assertion (iii) of Theorem 5.5.1, Propositions
5.5.1, 5.5.2 and 5.5.3 and [Paz83, Chapter 3, Theorem 2.1] (see also [EN06, Chapter III,

Theorem 2]).
(7i) The compactness of the resolvent is a consequence of the compact embedding
1
V21Y(Q) x D(A,) — Z.

n,l'y

0



5.6. Eigenvalue problems 173

5.6 Eigenvalue problems

5.6.1 Direct eigenvalue problem

Let us consider the direct eigenvalue problem

AeC, (v,q,m,n) € HY,

Av —dive(v,q) + (us - V)v+ (v-V)us — A1y — Aamp =0 in Q,

divv = Asn in Q,

v=m€ onls, v=0 onTy\Ts, o(v,g)n=0 onT,, (5.6.1)
A —mn2 = F{ in (0,4),

Mz + alA?ny +4(A2)2ny — Agiy + 75 q — 75 ¢ =0 in (0,4,),

m =0,0;,m =0 on {0} and 92 m =0,92 m =0 on {{},

and the eigenvalue problem associated to the fluid-structure operator A, namely,
A€C, (Pv,m,m2) € D(A), NPv,ni,m)" = APv,n,m)". (5.6.2)

The following result is a consequence of Theorem 5.3.5.

Theorem 5.6.1. A couple (A, (v,q,m1,m2)) € C x HY is a solution of the eigenvalue problem
(5.6.1) if and only if, (A, (Pv,n1,1m2)) € C x D(A) is a solution of (5.6.2) and

(I — P)V = VNdivA?/’?l — VNSHQ,
q = —ANgivAsn + ANgn2 + NpyAim + NpAans + Ny(Pv — VNgn2 + V NgivAsni).

Definition 5.6.1. A triplet (Pvy,n1 5, m2%) € D(A) is a generalized eigenfunction for problem
(5.6.2) of order k > 1 associated to a solution (X, (Pvo,11,0,72,0)) of (5.6.2) if (A, (PVk, Mk, M2.k))
is obtained by solving the chain of equations

(A — A)(Pvj,mm2) " = —(Pvi—1,m-1,m2-1) for1<j <k.

Definition 5.6.2. A quadruplet (Vi, qx, m k, M2,k) € HY is a generalized eigenfunction for prob-
lem (5.6.1) of order k > 1 associated to a solution (X, (vo, g0, 01,0,72,0)) of (5.6.1) if (Vi, Qs M1 k> M2,k
s obtained by solving, for 1 < j < k, the chain of systems

Avj —divo(vj, gj) + (us - Vv + (v - V)ug — Aimyj — Aomej = —vj—1 in €,
divv; = Azm; in Q,

vj=132,6 onTs, v;=0 onTy\Ts, o(vj,q;)n=0 onT,,

A — 2, = —mj—1 in (0, L),

Nijoj + a2+ (A2 2105 — Agij + g — 5 45 = —1j—1 in (0,4s),
M, =0,0,m; =0 on {0} and 02 mi; =0,02 m ;=0 on {(}.

(5.6.3)

Theorem 5.6.2. A quadruplet (Vi, qx,m k,M2,k) € HY is a generalized eigenfunction associated
with a solution (X, (Vo,qo,M1,0,7m2,0)) of (5.6.1) if and only if the triplet (Pvy,m k,n2%) € D(A)
is a generalized eigenfuncion for (5.6.2), which is associated with a solution (X, (Pvo,n1,0,72,0)
e (I — P)vy = VNaivAsn . — VN2 1,
gk = —ANdaivAsn i + ANsn2, + NpAim , + NpAana i
+ Ny(Pvi, — VN2 + VNaivA3ni k) + Nena k-1 — NaivAzn1 g—1-

Proof. According to Theorem 5.3.5, we first observe that (v, qx, m1 x, 72,%x) € Hf is a generalized
eigenfunction of order k£ > 1 associated with a solution (X, (vo, go,n1,0,72,0)) of (5.6.1) if and
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only if
Pvy, Pvy_4q
AL =A) | my | =-M""1 M k-1 ,
72,k —7a T NpVi—1

(I — P)vy = VNaivAsm i — VN2 i,
qk = —ANaivAsni g + ANsn2k + NpAiny g + NpAano i
+ Ny(Pvi — VN2 + VNaivAsm ) — Npvi—1,
where (Vi—1,qx—1,7,k—1,M2,k—1) is a generalized eigenfunction of order k£ — 1. Then, using the

identity Npvi—1 = NaivAsni k-1 — Nsn2 k-1 and the explicit expression of M ~1 given in (5.3.38),
we get,

PVk PVk_l
M—-—A) | mr|=—|mr
N2,k N2,k—1,

(I — P)vi, = VNgivAsni . — VN2 i,
qk = —ANgivAzni k + ANsno 1 + NpAim g + NpAana i
+ Ny(Pvi, — VN2 1, + V NaivAsni i)
+ Ngna k-1 — NaivAzn k-1
This completes the proof. O

5.6.2 Adjoint eigenvalue problem

We consider the adjoint eigenvalue problem

AeC, (®,¥,01,() € HY,

A — divo(®,9) — (us - V)@ + (Vu,) @ = 0 in ©,

div® =0 in €,

D=6 onTy, =0 onTy\Is, o(®,¢¥)n+us; - n® =0 onTl,,

MG+ G — LA (4] — 201 A43)")Go — 2(A) T AT® + L(A) A = G in (0,4,),
Ao + aA2G +9(A2)2G — A5® =~y + 959 + G2 in (0,4),

2ve 2ue

¢1(0) = 8,¢1(0) =0 and 921 (L) = 7(2(55), D3C1(ls) = 7(2,3:(55)7

(5.6.4)
and the adjoint eigenvalue problem associated to the adjoint of the fluid-strucure operator

ANeC, (P®,(1,() € DAY, NP®,(1,6)" = A(P®,(,6)". (5.6.5)

The following result is a consequence of Theorem 5.4.5.

Theorem 5.6.3. A couple (A, (®,%,(1,(2)) € Cx Hf is a solution of the eigenvalue problem
(5.6.4) if and only if (N, M*(P®,,(1,(2)) € C x D(A*) is a solution of (5.6.5) and
(I — P)® = —VN,(s,
1/1 = )\NSCQ + Ng (P@ — VNSCQ) .
Definition 5.6.3. A triplet (P®y, 1k, C2,x) € D(A) is a generalized eigenfunction for problem

(5.6.5) of order k > 1 associated to a solution (X, (P®o, (1,0, (2,0)) of (5.6.5) if (A, (P®g, C1.x,C2.k))
s obtained by solving the chain of equations

(A = A)(P®;, (14, Coj) | = —(P®j_1,C1j-1,Coj-1) " for1<j <k
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Definition 5.6.4. A quadruplet (®;,;,(15,C25) € Hf is a generalized eigenfunction for
problem (5.6.4) of order k > 1 associated to a solution (X, (®o,v0,1,0,C20)) of (5.6.4) if
(®k, Yk, Cik, Cok) is obtained by solving, for 1 < j <k, the chain of systems

AP, — divo(®j,1;) — (us- V)@ + (Vus) ' ®; = —®,_1 in

div®; =0 in €,

®;=(;6 only, ;=0 onIy\TIs, o(®j,¢Y;)n+u, - n®; =0 onT,,

Mg+ G — 5 (Ag) T AL = 20(75 A3) )Gy — 5 (D) TTAT® + 3 (Ag) M ARy = —(j—1 in (0, £5),

[0}

ACaj — aA2Cj +y(A2)2Co g — A3®; + b — vty = —Cojr i (0,6y),
2uve 2uve
C1,5(0) = 9:C1,5(4s) =0, 02C1;(Ls) = 7@,;’(&) and 93¢ (L) = jﬁsz,j(fs)-

(5.6.6)

Theorem 5.6.4. A quadruplet (®y,Vr, (1, Cok) € HY is a generalized eigenfunction of order
k > 1 associated with a solution (X, (®o, Yo, C1,0,C2,0)) of (5.6.4), if and only if, M*(P®y, Y, (1 k, C2.k) €
D(A*) is a generalized eigenfunction of order k > 1 associated with a solution (A, (P®0,(1,0,¢2,0))
of (5.6.5) and
(I - P)q)k = _VNSC2J€7

Y = ANgCok + No (P®r — VNsCo ) + NsCo -1

Proof. According to Theorem 5.4.5, we have that (®y, ¥y, (i k, Cok) € HY is a generalized
eigenfunction of order k£ > 1 with a solution (A, (®o, %0, 1,0, ¢2,0)) of (5.6.4), if and only if,

P®, _P®,_,
M — A M| G | = | —Cr—1 — 2(A)TTAIN, (—®41) |,
(o P17 Np(—Bp-1) (5.6.7)

(I = P)®r = —VNsC,
Yr = ANsCox + No (P®y, — VN (o) — NpPy,
where (®y_1,¢¥r—1,C1 k—1,C2k—1) € HY is a generalized eigenfunction of order k—1. Then, using

the identity N,(—®x) = N and the explicit expression of M* (see Proposition 5.4.1), the
right-hand side of the first equation in (5.6.7) can be rewritten as

—P®;_ —P®,_4
_Cl,k—l + é(As)ilAi‘ﬁ,Np@k—l =MM™* _Cl,k—l + é(As)ilAz;Np(I)k—l
—®p_ 1+ NP —Cop—1+ 7 T Np®r1
P®y_
=M Cr-1
C2k—1

Finally, using the last equality together with the fact that N,(—®;) = Ns(o in (5.6.7), we
conclude the result. O

5.7 Stabilization of the linearized system

Thanks to assertion (i7) of Theorem 5.5.2 we know that the spectrum of A is only pointwise
spectrum. Let (\;)jen< be the eigenvalues of A. For a given eigenvalue A; of A,

GRr(Aj) = span{RGc();) USGc(Aj)} and GR(Aj) = span{RGx(A;) USGE(Aj)}
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denote the real generalized eigenspaces of A and A*, respectively. Here, Gc(\;) and GE()\)
denote the complex generalized eigenspaces of A and A*, respectively. Let w be a real number
such that —w ¢ {R\; | j € N*}. We define the unstable spaces

Z,= @ Gr(;) and Z; = P Gr(\)),

jEJu jEJu

where J,, is a finite subset of N* given by J, := {j € N* | R\; > —w}. Let us notice that
Z. C D(A). There exist two subspaces Zs and Z*, invariant under (e*);>¢ and (e™4")
respectively, such that

t>0,

Z=7,07, and Z* = 7 @ Z*.

We denote by II,, the projection from Z onto Z,, along Z¢ and by II; the projection from Z onto
Zg along Z,. We also denote by N, the dimension of the subspace Z,,.

We recall that Zg = Vg’rd(ﬂ) x Hy and Hy = L?(Q) x H,, which are endowed with the inner
product

ls
<(u77717772)T, (v, C17C2)T>HO = (u, v)12() +/0 (am1,22C1 20 + N2C2) d. (5.7.1)

The following proposition plays an important role in our analysis, as it allows us to establish
the link between the operator equation and the PDE formulation (see Proposition 5.7.4). The
proof is presented in the Appendix D at the end of this chapter.

Proposition 5.7.1. For all v. = Pv + VNgvAsn — VN2 and ® = Pd— V Ng(2, with
(Pv,m,n2) € Zo and (P®,(1,(2) € Z, we have

(@) (8,6,0)T) = (Pvomm) ' M (PR,GLG)T), (5.7.2)

0

The following result establishes the existence of biorthogonal bases of Z, and Z;, which
allow us to obtain an expression for the projection IL,,.

Proposition 5.7.2. There exists two families {(Vi,m,l-,ng,i)}KKNu and {(¢i’<1:i’g2>i)}l<i<]vu
§ <i< <i<
belonging to Hj +a’2(Q) X Hf{lo 45}(0768) X H{QO}(O,ES) satisfying the following assertions:
(a) The families {(Pvi’nl,“n?vi)hgigm and {M*(P‘I’i,fl,i,Cz,i)T} are basis of Z,

1<i<Ny
and Z*

5 respectively. Moreover,

<(Vi7 Mism2i) s (8,1 s Cz,j)T>ZO = 0 j»

<(PviaUl,iyﬁZ,i)TaM*(P(I)jaCl,jaC2,j)T>ZO = 0jj-
(b) For all (v,n1,m2)" € Zg, we have that

Ny,

I (v,n,m2) " = <(V, n,m2) ", M*(P®;, (1, Cz,i)T>ZO (Pvi,miim2i) -
i=1

Furthermore, if (v,n1,1m2)" € Z,

Ny,

O (v,n,m) = <(V7 m,n2) " M*(P®;, (14, CQ,@')T>Z g (PVis i, M) -
i=1 ’

1
(¢) For all1l <i < N,, there exists ¢; € H§+a’1(Q) such that (vi,qi,m,i,m2,:) € HY is a real
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or ima,ginary part of a generalized eigenfunction of (5.6.1). Similarly, there exists v; €

H2+a 1(9) such that (®;,;, (1, () € HY s a real or imaginary part of a generalized
ezgenfunctz’on of (5.6.4).

Proof. Let us first notice that, since A is the infinitesimal generator of an analytic semigroup
(see assertion (i) of Theorem 5.5.2) with compact resolvent (see assertion (i7) of Theorem 5.5.2),
the following assertions hold (see [Fur0l, Lemma 6.2]):

o There exists a basis {(Vi, 71,i,72,i) }1<;< ~, € Zo of Z,, consisting of the real or imaginary
parts of eigenfunctions or generalized eigenfunctions of A.
e There exists a basis {M*(‘Pi’Cl’i’cz’i)T}lgigNu

imaginary parts of eigenfunctions or generalized eigenfunctions of A*.

e The families {(vi, m1,i, 72 z)}1<Z<N and {M*( iy ClisCai) ' } e satisfy:

C Z; of Z;, consisting of the real or

<(‘7¢, M, 772,1')T7 M*(‘i’j, Cl,ja C2,j)T>ZO = 52‘,;‘,

IL,(v,m1,m2) Z< v,m,m2) ", *(‘i’z’,Cl,i7C2,i)>zo(\Nfi77717i,772,i)T-
i=1

Then, by setting v; = v; + VNaiwAom i — VNgn2; and ®; = ‘/13, — VIN,(2,i, we obtain that
Pv;, = v; and P®; = <i>z This fact, together with Proposition 5.7.1, allows us to deduce
assertion (a) and the first part of assertion (b). The second part of assertion (b) follows from
the density of Zg in Z. The assertion (c) is a consequence of Theorems 5.6.2 and 5.6.4. U

For a given j € J,, we set

E(\) == {(®,v,¢1, () € HY | (A}, (®,v,(1,(2)) is solution to the problem (5.6.4)} .

We denote by {(@§’¢§?’C{C’j7Cg’j)}1<k<N- a basis of E();). Here, N; = dim E();). We assume
SRSV

that (w;)1<i<n. C H{QO}(O,KS) is such that
span {w; | 1 <i < N.} = span {éﬁgfj,sgjj |j€ Ju,1 <k< Nj} : (5.7.3)
Let us now consider the system

Ov —divo(v,q) + (us - V)v+ (v-V)ug — Ay — Agmy —wv =0 in Q%
divv = Asm in Q%°,
v=m€ on X, v=0 on X\ X, o(v,¢gn=0 on X°,
Om —m2 —wn1 =0 in (0,00) x (0, ¥y), (5.7.4)
O + APy + Y(A2)Eny — Ay — wip = —7 4+ 75 g
+ N fiw; in (0,00) x (0, £),
m =0,9z,m =0 on (0,00) x {0} and 92 m =0,02 7 =0 on (0,00) x {{}.

From Theorem 5.3.5 we deduce that system (5.7.4) can be rewritten as follows:

4 Pv Pv Pv Pvo

— =(A+wl + Bf, 0) = 0 ,

al™m ( wl) | m m | (0) ; (5.7.5)
2 12 2 12

(I — P)v = VNgivAsm — V.Ngnp,
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Ne
where Bf = Zfi(O, 0, (I +~57Ny)"tw;)". We now introduce the matrix By:
i=1
o o Ly
By = [Bﬂj}lgigm,, B’ :/ w;iG2,5, (5.7.6)
1<j<N. 0

where (3 ; is such that (®;,(15,(25)1<j<n, is the family defined in Proposition 5.7.2. Let us
notice that for A, = II;(A + wl), we have

”etAS’uHﬁ(Z) < Ce ' Wt >0, 0< ey < dist(Rspec(Asy,),0).

The following proposition, whose proof is presented in Appendix E, allows us to reduce the
analysis of the stabilization of the linearized system (5.2.13) to the study of the stabilization of
the projected system onto Z,,.

Proposition 5.7.3. The triplet (Pv,m1,12)" € D(A) is the solution of the first equation of
(5.7.5), if and only if,

Pv P®;
Cu = < m ,M* Cl,j and (VSanl,s’n2,3> = HS(PV77717772)T’
G © )" 2/ 1<jen,
satisfy

L= (At wlgn )G + Bt Gu0) =

AL Vs vs v (5.7.7)
@ Ms | = As,w M,s + Bsf, M,s (0) =1 | 0|,
12,s 12,s N2,s 778

where the matriz A, is given by

Au = Nighsigens, Aig = (AP 120) T M (PR, gy Cog) )

PvO P®;
(o= < 0 | ,M*| ¢ > and B, =I1,B.

2 25 ) g,

ZZ/’

1<j<Nuy

5.7.1 Stabilizability of (A, + wlgn., B,)

In order to prove that the pair (Ay +wlgn., By,) is stabilizable, we must make two additional
assumptions. Let us first consider the system

A — divo(®,1) — (us- V)® + (Vu,) '@ =0 in

div® =0 in Q,

D =06 onTy, =0 only\Ts, o(®,¢¥Y)n+us-n® =0 onT,,

MG+ G — 5(A9) (A = 2v(h~ A3)) G — 5 (A) MA@ + L(A) 1A% = 0 in (0, 4),
MG + @A+ 4(A2)2G — A5® =~y + 5 in (0,4),

2ue 2ve

€1(0) = 02¢1(0) = 0 and 89%1(55) = 7@(55)7 82(1(55) = 742,96(68)

(5.7.8)



5.7. Stabilization of the linearized system 179

Notice that the last three equations in (5.7.8) can be rewritten as
¢ ! A)7HAT® — AL
A=A = o (Bs) T (ATD — A3 (5.7.9)
CQ Aa@ - ’Y;’—’_‘II)

where (A%, D(AY)) is an unbounded operator in H{QO}(O,ES) x L2(0,4s) defined by

1 -1
DAY = B,(0,6,), A= O TIFGBIT)
al? —6(A2)2

Here,

ES(O,KS) = {(ClaCQ) € (H4(0748) N H{Qo}(OaES)) X H{Qo}(o’fs) | Clﬂ(&‘) = %@(58)

and G () = 260 ).

We now proceed to state the two remaining assumptions.

Assumption 2 : We assume that —w ¢ spec(A), 0 ¢ spec(A) and
{\ € spec(A") | RA > —w} N{X € spec(Al) | RN > —w} = 0.

(A2)

For a given A\ € C satisfying R\ > —w, let us consider the following system:

AP — divo(®,1) — (us- V)® + (Vu,) '@ =0 in O,
div® =0 in Q, (5.7.10)
®=0only o(@¢Y)n+us-n®=0 onl,.

Assumption 3 : We assume that if (A, ®,) is solution to (5.7.10) and
ANAS® — ) = Azyp — A7 ® holds, then (®,¢) = (0,0).

(A3)

Theorem 5.7.1. Let us suppose that Assumptions A1, A2 and A3 are satisfied and that (w;)1<i<n.
is given by (5.7.3). Then, the pair (A, + wlgn,,By) is stabilizable.

Proof. From [BDDMO07, Proposition 3.3, p.492], we know that the pair (A, + wlgn,,By) is
stabilizable, if and only if,

ker(A — A*) Nker(B*) = {0} for all A € Csuch that A > —w.

Let us assume that M*(P®,(;, ()" € ker(A — A*) Nker(B*). By setting (I — P)® = —V N,(a,

1
from Theorem 5.4.5 we deduce that there exists ¥ € H 52+a’1(9) such that the quadruplet

(®,1,(1,C2) is solution to (5.7.8). On the other hand, since

Po
B*M* Cl = 07
G2
then ,
(/ ) wi@) = 0. (5.7.11)
0 1<i<N.

In what follows, we will demonstrate that (®,1,(1,(2) = (0,0,0,0). Let us first notice that
thanks to the fact that the family (w;)1<;<n, satisfies the condition (5.7.3), the equality (5.7.11)
implies that (o = 0. Now, we will distinguish two cases:
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e Case 1: \ ¢ spec(A*). Under this assumption, we have that (®,¢) = (0,0). Next, us-
ing this fact in the fourth equation in (5.7.8), we obtain that ; = 0.

e Case 2: A\ € spec(A*). The Assumption A2 implies that A ¢ spec(A¥), and thus, the last
three equations in (5.7.8), together with identity (5.7.9), allow us to deduce that

MA@ — v 7y) = Ajp — AT®.

From Assumption A3, it follows that (®,v) = (0,0). Finally, using the fourth equation in
(5.7.8), we infer that (; = 0. This completes the proof. O

5.7.2 Feedback control law

We are now interested in finding a finite-dimensional feedback law that allows us to stabilize
the linearized fluid-structure system (5.2.11). Based on the results of the previous subsection,
it is sufficient to find a feedback law that stabilizes system (5.9.71). To achieve this, let us note
that, since the pair (A, + wlgn., By) is stabilizable and — (A, +wlgn., ) is stable, it follows from
[KR09, Theorem 3| that the algebraic Riccati equation

Qu € LRM), Q,=Q, >0,

: . (5.7.12)
(Ay + wlpne)Qu + Qu(Ay +wiry ) — QuBuB, Qu =0

admits a unique solution. Consequently, the operator K, = (K Ji<i<N.,1<j<N, defined by
K. = —B, Q., serves as a feedback law for the pair (A, +wlgn,,By). Let us now introduce the
operator K, € L£(Zo, R"¢) defined by

Pv N, [PV P,
Kp| m | = ZK;;J< m |, M*| Gy > (5.7.13)
2 = 2 CQ’j Zo/ 1<i<N,

As a consequence of the fact that the stability of A + wl + BK, is equivalent to the stability of
Ay + wign, + By K, we obtain the following result, whose proof can be adapted from [Ndil6,
Theorem 2.7.7, p. 89.

Theorem 5.7.2. Under Assumptions Al, A2 and A3, the operator IC, introduced in (5.7.13)
provides a feedback law for the pair (A + wl,B). Moreover, the operator A+ wl + BK,, with
domain D(A+wI+BIC,) = D(A), is the generator of an exponentially stable analytic semigroup
on 2.

Let us consider the feedback law K € £(Hg, RYe) defined by

v Pv
Klm|=|Ki|m : (5.7.14)
2 /) a<ish,
where
Pv Ny, v ‘i’j
Ki| m ZZKfﬂ< m || G > ; (5.7.15)
72 j=1 72 (2,5 1,

for each 1 <4 < N.. From Proposition 5.7.1, we deduce the following result that allows us to
establish the link between the feedback laws (5.7.13) and (5.7.14).
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Proposition 5.7.4. For all (Pv,n1,m2) € Zy, if we choose (I — P)v = V NgiyAa2nz — VNgn2 €
L2(2), we obtain

Pv \Y%
Kp|lm |[=K]|m]|. (5.7.16)
12 2

5.8 Stabilization of the nonhomogeneous linearized system

In this section, we will prove that the feedback law K defined in (5.7.14) stabilizes the
nonhomogeneous linear system

Ov —divo(v,q) + (us - V)v+ (v-V)uy, — Ay — Agnp —wv = Fy in Q%
divv = Asn; + div Ggjy in Q%°,
v=g, on X°, v=1p6 on X, v=0 on XX Uy, o(v,¢)n=0 on X°,
o —n2 —wn; =0 in (0,00) x (0,s),
ez + alny + (A2 2y — Ay — wip = —7F g+ 75 + Fe

+vacl[ (v, 71, m2) Jw; in (0, 00) x (0, £5),
m =0,0;,m =0 on (0,00) x {0} and 92 n1 =0,02 m =0 on (0,00) x {£s},
7(0) =0 and 72(0) =73 in (0, £s).

(5.8.1)
Before stating the main result of this section, we begin by recalling two useful results established
in Section 3.4 of Chapter 3 concerning the lifiting of the Dirichlet boundary data g, and the
divergence constraint data Ggiy-

We first state the result related to the lifting of the non-homogeneous Dirichlet data g, in
system (5.8.1). Let us consider the following system:

—dive(z(t),n(t)) =0 in Q,
divz(t) =0 in Q,

() p(t) on I';, Z():OOHFTUFSUFM,
o(z(t),7(t))n =0

Proposition 5.8.1. Let o € (0,0*), 6 € (6*,1). For allg, € H{lo}(O oo; H(T;)), system (5.8.2)

3 2 1
admits unique solution (z,m) € Hl(O,oo;H§+a’ (Q)) x H'(0,00; H? 5+ (Q)). Moreover, there
exists a positive constant Cy s, such that

(5.8.2)

on I',,.

|| grae 7l Lt

<, (D)) - 5.8.3
(0,002 T () (0,002 T () 5ngHH{O} (0,00;H(T;)) ( )

Before presenting the result concerning the lifting for the divergence constraint data Gg;y,
we introduce some preliminary notation. We consider the following decomposition of Ggjy:

Gaiv = 0Gaiv + (1 — 0)Gaiy, (5.8.4)
where 6 is the cut-off function introduced in (3.4.7).

Let (wr(t),pr(t)) be the solution of system

{—diva(wL(t),pL(t)) =0 in Q, divwy(t) = diV(ngiv) in €, (5.8.5)

wr(t) =0 on Ty, o(wr(t),pr(t))n=0 on Iy,
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with G gy satisfying
~ 1
div(0Gaiy) € L*(0, 00; H2T*1(Q)) (5.8.6)
and N )
0Gqiy € H' (0,00, H2T*9(Q)). (5.8.7)

Let wg := (1 — 0)Ggiy, with (1 — 0)Gg;y satisfying

~ 344
(1~ 0)Gaiv € L2(0,00;H ""*(92)) N HY(0, 00; H™370(0)),

(1-0)Ggiy =0 in Qy, (5.8.8)

(1-60)Gagiv =0 on £3°, £((1 —0)Ggiy)n =0 on X°°.

Let us now set
W= W[ + Wg. (5.8.9)

Proposition 5.8.2. Let a € (0,a*), § € (6*,1). Under the assumptions (5.8.6) and (5.8.7),
)

3
along with condition (5.8.8), the function w defined in (5.8.9) belongs to L?(0, oo;Hg—m’2 Q)N

H'(0, o0; H7%+°"O(Q)). Moreover, there exists a constant Cy 5 > 0, such that
[wll

< Cas ([[div (G

+ [l

3 _1
L2(0,00H2 "% () HY(0,00H™27%0())

L2(0,00:H3 1 (Q)) + HeGdiv“Hl(O,m;H7%+a’O(Q)) (5.8.10)

+ /(1 —0)Gaiyv

3. .
IZQ(O,OO;H(?Jr ’2(9))01{1(0700;H7%+°"0(Q)))
We are now in position to state the main result of this section.

Theorem 5.8.1. Let a € (0,a*), 0 € (6%,1). We suppose that Assumptions A1, A2 and A3 are
satisfied. Let us assume that vo € HY(Q), n) € H{lo}((),ﬁs), F; e LQ(O,oo;H_%“‘a’O(Q)), gp €
H{lo}(O, oo; H(T;)) and Fy € L?(0,00; L2(0,45)). Let us assume that Gaiy satisfies assumptions
(5.8.6) and (5.8.7), along with condition (5.8.8) and Ggiv|t=0 = 0, and let w denotes its lifting
defined as in (5.8.9). We assume in addition the following conditions:

vo=0 onTly, vo=0 onT, UL,

vo =1n2(0,-)€ on I's, divvg =0 in Q, (5.8.11)
(Pvo,0,13) € [D(A),Z]12, Pvo€ [D(A;V%,Fd(ﬂ))7vg,rd(ﬂ)]1/2-
2ta
Then, system (5.8.1) admits a unique solution (v,p,n1,n2) belonging to L*(0, oc; H§+ 2(Q)) N

HY(0, 00, H 3+9(0)) x L2(0, 00; HZ T (Q)) x HH2((0,00) x (0, £5)) x H21((0,00) x (0, L)),

satisfying the estimate
+ _1 + 1
L2(0,oo;H5%+a’2(Q)) HVHHl(O,oo;H %-m,om)) HpHLZ(O,oo;Hé +a,1(Q))
+ 1€t 742 ((0,00) % (0,6)) T 1C21 712.1 ((0,00) x (0,64))
< CL(HVOHHl(Q) + llgpll 20,0010y + 10680l 20,0051 Ty + 11511 1120,
5.8.12
el b ooy + IFs22(0 000000 (0:542)

+ HdiV (ngiv)

10

1
L2(0,00; HE 1 (Q) o H™ 2 H0(Q))

+ H(l — 0)Gaiv

3 1 )
L2(0,00H2 "™ (Q))NH1 (0,00 H 2 F*0())/
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where Cy, is a positive constant.
Proof. We split the proof in five steps.
e Step 1. Reformulation of the system (5.8.1).

Let (z(t),m(t)) be the solution to system (5.8.2). Let w be the vector field given in (5.8.9).
We set v=v —w—2zand p=p—pr —7w. The couple (v, p) satisfies

v —dive(v,p) + (us - V)V + (V- V)us — Ay — Agmp —wv = f‘f in Q°,

divv = Asgn; in Q°°,

v=0 onX®, v=mn€ onX¥®, v=0onXPUXY o(Vv,p)n=0 on X°,

Omi —n2 —wn1 =0 in (0,00) x (0,45), (5.8.13)
O + aAny + (A2 2y — Agmp — wip = =775+ 75 5+ Fe in (0,00) x (0,45),

m =0,0;,m =0 on (0,00) x {0} and 92 m = 0,02 m =0 on (0,00) x {£},

1m(0) =0 and 72(0) =73 in (0,£5),

where

F = Fy— 0w —0iz+ 2vdive(w) — (us - V)W — (W - V)u, + ww + A\rz + wz,

- Ne (5.8.14)
Fo=Fi—~fm+ym+ Y Kiw+z,m,m2) w.
i=1

Thus, following the same idea used to prove Theorem 5.3.5 we deduce that the solution (v, p, n1,72)
of (5.8.13) satisfies

(P Py PF P¥(0) Pvo

— =A +1 0 |, 0 = 0 ,

at | ™ m o m(0) . (5.8.15)
2 72 H 12(0) 2

(I — P)\Nf = VNdiVAgT]l - VNSUQ,
where H = (I +~yH~N,)™! (f’s — fyj”pr‘)
e Step 2. Regularity of (Pv,n1,m2).

Let us first observe that, thanks to Propositions 5.8.1 and 5.8.2, Assumption Al and [GS91,
Proposition B.1], we obtain

< ClIFsl,,

1
—5+a,0
0,00V, 27" (@)

< C(|Fy|

HPFfHLQ( 7OO;H_%+O"O(Q))
@) Hdiv (ngiV)

@) + H(l — 0)Gaiv

L2(0,oo;H—%+"’°

L2(0,00;H2 T} (02)) (5.8.16)
+ HeGdivH

_1 0 3 2 1
H(0,00;H" 2+ L2(0,00H2 "% ()N H1 (0,00,H~ 210 (2))

+ [lgpll 2 (0,00;E1(Ts)) + ||8tgp”L2(0,oo;H(Fi))>
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and
HFSHLQ(O’OO;LQ(O’KS)) < C(HFfHL2(O,oo;H7%+a’O) + HdiV (eGdiv) LQ(O,oo;H%Jra’l(Q))
G giy 1-60)Gaiy
100Gl sy ey + A= DG i sy (B81)

+ lgpll 22(0,005m1(rs)) + 19¢8p | £2(0,00:81(Ty)) + ”ﬁ5|’L2(0,m;L2(0,£s)))'

Since A + wl + BK is the infinitesimal generator of an exponentially stable analytic semi-
group on Z (see Theorem 5.7.2), (PF,0,F,)T € Z (see estimates (5.8.16) and (5.8.17)) and
(Pvo,0,19) € [D(A),Z]/2, the maximal regularity result [BDDMO7, Theorem 3.1, p. 143]
implies that (Pv,n1,n2) belongs to L?(0,00; D(A)) N H'(0, 00; Z) and satisfies

1PV]]

_1
H(0,00;V_ 27 (0

_ @ + 711 4.2((0,00) % (0,66)) T 1211 7721 ((0,00) % (0,64))
T n,ly

L2000V, 270 (@)

<C (HVOHHl(Q) + HngHHl(o,es) + pr‘H + ’ﬁsHLQ(o,oo;H(o,es))) :

Furthermore, using again estimates (5.8.16) and (5.8.17) to bound the right-hand side in the
previous estimate, we obtain

(Pia7l + 17l 542 (0,00) % (0,60)) F 1721 7721 ((0,00) % (0,4))

~lia
HL(0,00:V,, 2. (92)

< C([Ivollm (@ + Imllm 0.,y + IIFs

+ HGGdIVH

L2(0,00;H 2 +2:0) + Hdiv @Gdiv) L2(0,003H 2T (@)

+ H(l — 0)Gaiy

—5 0 2 1
H1 (0,00 H 3+ 120,007 T2 (@) (0,00 200 ()

+ l18pll 220,008 (Ty)) + Hatngm (000 () T | Fs ”L2 0,00:L2(0,4s )))
(5.8.18)
e Step 3. Estimate of Vv in the H'(0, oo;HféJra’O(Q))—norm.
Using the fact that VNgAsn — VNgna = (I — P)L(n2, Asm ), where L € L( {0}(0 ls) x
31
H%*O"l(ﬂ), Hg+ 2(Q)) is the lifting operator defined in (5.3.23), along with Theorem 5.3.1 (ii)
and the transposition method, we have that L € £(L?(0,£,) x H%“'Q’I(Q), L2(2)). Then, there
exists a positive constant C' such that
1= P9l ey = 1= DY sl o
< C|[(I = P)L(n2, Asm)|| z1.(0,00:L2(02)) (5.8.19)
< C(llnll 20,00 % (0,66)) + 1720l 7121 ((0,00) % 0,4)) ) -
Then, after combining the estimates (5.8.18) and (5.8.19), we get

=Py b

baoy T [div (ede)

HVHHl(o,oo;H—%+a(Q)) - HPVHHl(o, H-3 ()

< C([Ivollm (@) + Imllm 0.,y + I1F s

1
L2(o oosH ™ L2(0,00;H2 T ()

+ ||9Gdlv”

1 (0,00H- 20 () T H(l = 0)Gaiv

3 1
L2(0,00H2 T (Q))NH (0,00,H~ 2F20(0))

+ 1gpll £2(0,00:11(Ty)) T 108p I £2(0,00;1(T,)) T \\ﬁs”L2(o,oo;L2(0,és)))'
(5.8.20)
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3
e Step 4. FEstimates of V in the (LQ(O,oo;Hg—HL2

(Q)) N H(0, o0; Héﬂw(ﬂ))) —norm
i
and p in the L?(0, 00; H52+ ’1(9))—norm.
We will show that
S 2 3+a2 1 —1+0,0 ~ 2 3t
v e L*(0,00; H; ()N H (0,00, H 27%7(Q)) and p € L*(0, 00; H (Q)). (5.8.21)

Let us first consider the system

AV —dive(v,p) + (us - V)V+ (V- Vug, = Ay + Ao +wVv+F — 0 v+ v in Q,
divv = Asm; in Q,
v=meé only, v=0onI;Ul'y ULl,, o(Vv,p)n=0 on Iy,

where Ay is the parameter appearing in Theorem 5.3.1.
Since Ayn1, Aoma, F, ¥, 0,V € L?(0, oc; H_%“"’"O(Q)) we deduce that
Ay + Agny + w¥ + F — 9% + Apv € L2(0, 00; H2120(0)).

Then, since in addition Asn; € LQ(O,oo;H%JrO"l(Q)) and 1o € H*'((0,00) x (0,4s)), Theorem
5.3.1 (7) implies that

v € L*(0,00; H'(Q)) and p € L*(0, 00; L*(2)). (5.8.22)

Let us set (vi,p1) := (¥v,¥Dp) and (Va,p2) := ((1 — ¥)v,(1 — ¥)p). To show (5.8.21), it is
suffices to prove that

V1 € L0, 00, H2(Q)) N HY(0, 00, H™2T(Q)) and ) € L3(0,00; HzT*(Q))  (5.8.23)

and
Vo € L2(0,00; H(Q)) N H(0,00; L%(R2)) and pp € L*(0,00; HY (Q)). (5.8.24)

_1 _1
(i) Proof of (5.8.23). Firstly, since v € H'(0, oc; Hp’ +a(Q)), then v € H'(0, oc; Hp’ +a(Q)).
Let us show that

V1 € L(0,00; H21*(Q)) and p; € L2(0, 00; H2T(Q)). (5.8.25)
We first set B
F=Am+ A +wv+F + (us- V)v. (5.8.26)
Let us observe that the couple (v1,p;) solves
—diVO’(Vl,ﬁﬂ = Fl - 8971 - (us . V)ivfl - (:\71 . V)us in QOO,
divvy = hy in Q°°,
vi = Uneé€y on X°, vi =0 on P UXX UMY UXYP,

s

where
F, =YF 4 pVV¥ —v [VAY 4+ 2(VU - V)V — (divv)V¥ + V(v - V)] + [(V\I’)?T]us

and
hi =Y (Asm)+ VU -v.

We claim that (us - V)¥; and (V1 - V)us belongs to L?(0,00;L2(€)). Indeed, using
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Assumption Al, the continuous embedding H%+°‘(Q) — L*°(Q) and the fact that v; €
L%(0,00; HY(9)), we obtain

o0 o0
|10 99l < Cllegey [ 199120 < o0, (5.8.27)

from where we deduce that (us - V)vy € L?(0,00;L2(2)). On the other hand, us-
ing agair{ the Assumption A1, the Cauchy-Schwarz inequality, the continuous embed-
dings H2T(Q) — L*(Q) and HY(Q) — L*), together with the fact that v; €
L?(0,00; HY(Q)), we obtain

LI Ol < [ 19 ) 19w
2 RTESRD) 5.8.28
SN Y A AV (58.28)
< 00,

and thus, (V1 - V)us € L?(0,00; L?()).

_1
Then, using (5.8.22), the fact that v; € Hl(O,oo;HFdQ—m(Q)) along with estimates
(5.8.27) and (5.8.28), we obtain that

Fi— 0% — (us - V)¥1 — (1 - V)u, € L(0, 00, H™2T2(Q)).

On the other hand, since W(Azn;) € L2(0,oo;H%+a(Q)) and v; € L%(0,00; HY(Q)), we
get
1
hy € L*(0,00; H21¥(Q)).
Finally, after applying [Dau89, Theorem 5.5(a)] and [BR, Theorem 3.2 and Corollary 3.3],
we obtain (5.8.25).

Proof of (5.8.24). Let us first observe that the couple (Vo, p2) solves

—diVU(Vg,ﬁg) = FQ — 85/2 - (us . V)Vg - (\72 : V)us in QOO,
div \72 = h2 in QOO,
\72 = (1 - \I’)ﬁgég on »° \71 =0 on Ecolo \ E?o, U(vl,ﬁg)n =0 on E?LO,

s

where
Fy = (1-— U)F — pVV¥ +v [VAU +2(V¥ - V)V — (divv)V¥ + V(v - VU)] + [(V\I/)'\“/T]us

and
he = (1= WU)Asn; — VU -v.

We will now construct two lifting functions: one corresponding to the boundary data
(1 — W)€, and another corresponding to the divergence data hs.

e Lifting for the boundary data. Let us consider the system

{_ divo(wy,71) =0, divwy =0 in €, (5.8.29)

wi=(1=U)né onTy, wi =0 onTy\Ts o(wy,71)n=0 on I',.

Since 12 € H*1((0,00) x (0,£5)), thanks to [MR10, Theorem 9.4.5] and the transposition
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method, we deduce that
w1 € L*(0,00; H3(Q)) N H'(0,00; L%(R2)) and 7 € L*(0, 00; H (Q)). (5.8.30)

e Lifting for the divergence data. Let us consider the system

{— div o (Wa, 72) = 0, divwy = hy in Q, (5.8.31)

ﬁ’z =0 on Fd, O’(ﬁfg,%g)n =0 on Fn.

1
Since hy € L?(0,00; HY(Q)) N Hl(O,oo;HFd2+a(Q)), from [MR10, Theorem 9.4.5] and
Lemma 3.6.1 we deduce that

Wa € L2(0,00; H3(Q)) N H'(0,00; L%(R2)) and 72 € L*(0, 00; H(Q)). (5.8.32)
Setting W := W + wg and 7 := T + 72, we deduce from (5.8.29) and (5.8.31) that

W € L2(0,00; H3(Q)) N HY(0,00; L%()) and 7 € L*(0, 00; H} (Q)). (5.8.33)
After setting vo = W + z and py = T + ¢, we observe that (z, ¢) solves

oz —divo(z,q) = Fa — ;v — (us - V)V — (Vo - V)u, — Ow, divz =0 in Q*°,
z=0 on X, 0(z,q)n=0 on X°.

After using (5.8.22) and applying a similar argument to that used in (5.8.27) and (5.8.28)
to estimate the convective terms, we deduce that

Fy — 03 — (us - V)V — (Vo - Vug — 9w € L2(0, 00; L2(Q)).

Since the semigroup generated by the Stokes operator (Ap; V%Fd(ﬂ)) on V%Fd(Q) is an-
alytic and exponentially stable, the maximal regularity result [BDDMO07, Theorem 3.1(i),
p. 143], together with the constraint (I — P)z = 0, implies in particular that

zZ € H'(0,00; L%(Q)). (5.8.34)
Then, from [MR10, Theorem 9.4.5] we deduce that the system

—diva(i,@ = FQ — 8t\~12 — (us . V)\NIQ — (\72 . V)us — aﬁv — 8{2, divz =0 in QOO,
z=0 on X, 0(z,¢n=0 on X°,

admits a unique solution
Z € L*(0,00; H3(Q)) and § € L?(0,00; H{(Q)). (5.8.35)

Thus, since v = W + 2z and py = 7 + ¢, from (5.8.33), (5.8.34) and (5.8.35) we deduce
that
Vo € L*(0,00; H3(Q)) N H'(0,00; L3(Q)) and pp € L*(0, 00; H} (2)).

This concludes the proof of (5.8.24).
As a consequence of (5.8.23) and (5.8.24), we obtain (5.8.21).

e Step 5. Conclusion.

Finally, using the fact that v = v+w+z and p = p+ 7, together with (5.8.21) and Propositions
5.8.1 and 5.8.2, we obtain (5.8.12). This completes the proof. O
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5.9 Stabilization of the nonlinear system

This section is divided into two parts. We first derive the estimates for the nonlinear terms
F;, Ggiv and F in Subsection 5.9.1. Then, in Subsection 5.9.2, we prove Theorem 5.2.1.

Let us first establish an auxiliary result that will be used throughout Subsection 5.9.1. This
result is a direct consequence of Definition 5.2.6.

Lemma 5.9.1. There exists a positive constant C' such that for allm € E(0,00), the extensions
n* defined in (5.2.6) satisfy

Doy 1 || Lo ((0.00) x (— + 11067 || 100 (0 o0 240
10210 | oo ((0,00) x (= L/2,2)) T+ 1007 | Loo (0,00, 2 +a0 (— 1./2,1)) (5.9.1)

102, 0™ | Lo ((0,00)x (—L/2,2)) < ClInll Ha.2((0,00)x0,L.))-

5.9.1 Estimate of nonlinear terms

In this subsection, we derive the estimates for the nonlinear terms F s édiv and F s
We first recall that the space Z, is defined
2 %-‘roc,? 1 ~1lia0
Zoo = (L7(0,00; HF 7 (€2)) N H (0,00, H™27%7(Q))
1
x L2(0,00; HZ " (Q)) x H, 1((0,00) x (0, £5)),
endowed with its natural norm.

Let R > 0, to be determined later (see (5.9.26)). Let us recall the definition of the set
Boo(R7 110,778)1
Boo(Ruo.n8) :={(8,5,7) € Zex | (@, 5,)l|z.. < R, 7 € B(0,00)

(5.9.2)
and @(0) = uo, 7(0) = 0, 7(0) = 7§ }.

Estimate of f‘f

Lemma 5.9.2. There exists C]T“f > 0 such that for all (4,P,7) € Beo(R,ug,13), we have

I 4 (&, 5, 7)ll < Cp (1+ R)R. (5.9.3)

L2(0,00H™ 20 ()
Furthermore, for all (Q',p',7), (42, p2,7?) € Boo(R,ug,19), we have

S onl ol o1y T a2 o2 2
||Ff(11 P .1 ) Ff(u yP 51 )HLQ(O,oo;H_%"'D"O(Q))

ctey (5.9.4)
< Cg (L4 BB 54,7Y) — (@ 7%, 7)) 2.

Proof. Due to the similarity between some of the terms present in F f, we will only show the
estimates (5.9.3) and (5.9.4) for some of them. In particular, we selected the following terms:

i e 0T
. F}f = det(J)(azlni)(n%)(?a i
N ou;
-— it nE -
o F? 1= det(J) (7 )(nx)azf
2 0%

3= 29,7t
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ou;
622 ’

o F}:=det(J)(0:,75) (02 i)

where
nt(t, e) = (En)(t,-) on [=L/2,L], n~(t,-,—e):= (En)(t,-) on [~L/2, L],

and det(J) = Hﬁ%, Wlth 77;:(1:,2) = (:FX:E + (6 F Z2)8z2x:t) ,”/]\:t(t’ Zl), (t, Z) € [O, OO) X ﬁ

Secondly, let us observe that in order to show the estimate (5.9.3), it is sufficient to prove

¥ 4(5, 5,9)| < Cg, (1+ R)*R! (5.9.5)

1
L2(0,00H ™22 (Q)) =

and
¥ (8, 5,0l | 22(0,00m2(00)) < Cg, (L+ R)*RY. (5.9.6)

The Lipschitz estimate (5.9.4) can be obtained in a similar way to how we will proceed to prove
(5.9.3).

o f‘} Using Hoélder’s inequality, Lemma 5.9.1, the continuous embedding H %JFO‘(Q) — LYQ)
and [MRR20, Lemma A.4], we obtain

‘ det(J)(azlﬁi)g:i o
T NL2(L2()
< C (| det(I)|| oo (0.00) ) 1027 [ Loe ((0,00) x (=L y2,L) 1T Nl oo (0.1 x (~ L/2,1))
<Nl oy * 5
Le(H27%(Q)) 821 LQ(H%"'D‘(Q))

<C (1 + Hﬁi”LN(HQ(—L/Q,L))) 177 W oo 12— 12,00 10207 || oo ((0,00) x (- 1/2,1)
ou;
0z

I 220 I e | L2k o))

<C(1+R)R°.

o f‘? After using Lemma 5.9.1 and [MRR20, Lemma A.4], we obtain

ot
det(J) () (75) —
DT 5 ] e
o
< C|det( )| 1l oo ((0,00)x (- 7l - ‘
[det(J)|[, ((0,00)x Q) 11l ((0,00)x( L/2,L))”77 Iz (0.T)x(=L/2,L)) 0221212 ()
<C (1 + ”ﬁi||L°°(H2(—L/2,L))> 17| oo (b2 1/2,1))
ot
+ AT .
X 0o 00 _ [e%) _
17971 22 ((0,00) % (~ 22, ) 17 T 2o (0,7 ”2’”)’822 L2(L2(9)
<C(1+R)R
° f‘:} From Lemma 5.9.1 and [MRR20, Lemma A.4], we get
e
Z1
6Z28Z1 LQ(H_%-HI(Q))
024
< C1|det (1) 2o 000y [0 T I 2oe (0,00 oy
B0 IO T SO0 LI 52002 | -

<C(1+R)?*R.
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. f‘;%: After using Holder’s inequality together with the continuous injections H %“'O‘(Q) — L)
and H%(—L/2,L) < L*—L/2,L) (with ag € (1/4,1/2) being the parameter that appears in
Proposition 5.2.2), and Lemma 5.9.1 and [MRR20, Lemma A.4], we obtain

det(N @G|
(L2(9))
[ P LN RIS Y ey s
<C(1+R)R

This completes the proof. O

Estimate of édiv

Lemma 5.9.3. There exists C’A > 0 such that for all (1,D,7) € Boo(R,ug,n3), we have

s (DA PPN ifa PPN 2
Hle (HGdiv) (4, ?7)‘ L2(0.00 () + |]9Gdiv(u7W)"Hl(o’oo;Hf%Jra,o(Q)) < Cadiv(l +R)R
(5.9.7)
and
1—0)Gay (4,7 , <C~ (1+R)R? 5.9.8
H( )Gan(® 77)’ L2(o,oo;H§“‘ (Q)NHL(0,00H 2720(0)) — Gdiv( TR) ( )

where 0 is introduced in (3.4.7). Furthermore, for all (W', p',7') and (62, p2,7?) € Boo(R,19,19),
we have

|(div (6Ga ) @, 7") - div (0Gaiv ) (82,77))|

+ H(nglv(ii aﬁ ) HGdW( ’77 )H

L2(0,00;H2 T ()

H1(0,00,H™ 3+:0(Q2))

. o (5.9.9)
]- - G iv u aA G iv aA St
+H ( a(0,7") — Gai (8%, 7 ))‘LQ(OMH;: ()N (0,00 340
< Cg, L+ R)R||@,p",7") — (020", %) z...
Proof. Let us recall that édiv is given by
+ +
~ 14 A S
G (8,7) = — 2y, 4 LT 8”7 165 (5.9.10)
{—e f—
and L o
div G (8.7) = Our | (EF X707~ Oy, (5.9.11)

{—edxn {—e 029
We will only present the proof of the estimates (5.9.7) and (5.9.8). The proof of the Lipschitz
estimate (5.9.9) can be proved in a similar way. The proof of estimates (5.9.7) and (5.9.8) is
divided into three steps.

e Step 1: Proof of estimate Hdiv (gédiv) (T, ﬁ)‘ < CR?.

L2(H%+“’1)

We will only consider the term (9,,7+ )8“1 To estimate the remaining terms we can proceed in

a similar way. Let us notice that it sufﬁces to show that

L2(L?) HV( =l )5’22

029

H(@lﬁi) < CR. (5.9.12)

LQ(H_%"'""O)
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The proof of (5.9.12) is similar to the one presented in the proof of Lemma 5.9.2.

e Step 2: Proof of estimate ||0Gas, (T, 7)|| < CR2

HI(H™3+0)
It suffices to show that

@77 l| o gy +ay < CR (5.9.13)

and

.. <CR% (5.9.14)

0Ty oo

The arguments used to prove estimates (5.9.13) and (5.9.14) are similar to those presented in
the proof of Lemma 5.9.3.

Thus, from steps 1 and 2, we deduce estimate (5.9.7).

e Step 3: Proof of estimate (5.9.8).
From Lemma 5.9.1, we obtain

11 = 0)(0:, 7 )| < ClNO 7| oo ((0,00) x o, L [T
) L2(

< CR?.

L2H 3t HIT) (5.9.15)

The estimate of (1—0)(d,, 7)1, in the Hl(H_%"'a)—norm can be done using the same argument
used in step 2. This completes the proof estimate (5.9.8). O

Estimate of }AWS.

Lemma 5.9.4. There exist C > 0 such that for all (4,p,7) € Bo(R, ug, ), we have
HFS(ﬁa ﬁ)HLQ(Opo;HO‘(O,ﬂs)) < Cfs(l + R)R4 (5916)
Furthermore, for all (G',p',7'), (42, p2,7?) € Boo(R,ug,19), we have

IFs(@h ') — Fo(@,7%) [l 12(0 0052 (0,22))

o (5.9.17)
< Cx (L+ R)RY(@',5",7") — (8,5 1) ...

Proof. We will only consider the term

oy L D,
vt (det(J)(azmi)Z(mf) 8222).

The Lipschitz estimate (5.9.17) can be proved in a similar way as estimate (5.9.16). Let us start
by proving the following estimate:

Ol o

det(J)(0., 1) (05 <C(1+R)R" 5.9.18
Jdet(r) (0,7 2(75) 5 porhiny SCOTE) (5.9.18)
To prove the estimate (5.9.18), we will show that
2oty Ols 2 4
det(J)(0x77)° (7)) <C(1+R)R (5.9.19)
822 L2(L2)
and 95
Hv (det(J)(azlﬁi)%ﬁ;E)m) . <CU+RR (5.9.20)
822 LQ(H*§+‘1)
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Estimates (5.9.19) and (5.9.20) follow by arguments similar to those used in the proof of Lemma
5.9.2. This completes the proof. O

5.9.2 Proof of Theorem 5.2.1

Let us first recall the definition of the space Z..:
2 3+a2 1 —lia0
2 = (L2(0, 00 HZ (@) N H' (0,00, H™5+90(Q2))
1 (63
X L2(0,<>0;H§2+ 71((2)) X H?&S}((O,oo) x (0,45)),
We now introduce the mapping N from Z., into itself, defined by
N(®, ¢, k) = (4,p,7) for all (®,90,k) € (5.9.21)
where (4, p,7) is the solution of the system

ot —divo(a,p) — A1) — Aol = e~ Wth(qJ ¥, k) in Q%

divi = Asny + e “tdiv de(i’, k‘) in Q°°,

u=g, onX, u=0 on Xy UXX>®, u=1n€ onXy
o(d,p)n=0 on ¥, (0) =4 in Q,

02 + a2 + y(A2)27; = —yF P+ e Ey(D,E) + N Ki(8,7, i)w; in (0,00) x (0,£y),

n=0 and 9,7 =0 on (0,00) x {0},

921m=0 and 027 =0 on (0,00) x {{},

7(0) = 0 and 7(0) = ng in (0,£,).

(5.9.22)

Proposition 5.9.1. There exists a constant C > 0 such that for allu® € H (), 7§ € H{O}(O l)
and g, € H{O}(O co; H(L,)), the mapping N is well-defined. Moreover, for all (®,¢,k) €
Boo(R,ug,13) and all (B, k1), (82,92, k2) € Boo(R,ug, 1), we have

IN @, Bllz < C (18%m @) + 18l 0. + (Bl ooy + P(R))  (5:9.29
and
V(@' 0N kY = N(®, 407, 8)| 2. < Cp(R)[[(®, 0", F) = (@%,0%F) |20, (5.9.24)
where p = p(R) is a polynomial of degree greater than 1 such that p(0) = 0.

Proof. From Theorem 5.8.1 and Proposition 5.8.2, we obtain

.57 < OISl + 9802y + 180l 0oerice)
+ HFf(<D7 wv k)”LQ(O,oo

+ Hdiv (5(:‘:(11\/(@,%))

e T IE5(@, %)]| 22((0,00) % (0.02))
+ HeGdlv(@ k)H

1
L2(0,00;HE T () H'(0,00H270(Q2))

+ (1= 0)Gan (@, 5)|

L2(o,oo;H§+°‘ 2 (Q)NH(0,00H™ 3te, O(Q)))’

—
_Cﬂ
©
\)
ot

~—

where C7, > 0 is the constant appearing in estimate (5.8.12). After using Lemmas 5.9.2, 5.9.3
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and 5.9.4, we obtain
18, 5|20 < Co (180 e ) + 131 0.00) + 1Bl 211 (0.00:38m)) + P(R))
The proof of the Lipschitz estimate (5.9.24) can be established by a similar argument. 4

We are now in position to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. We first choose R > 0 small enough such that

{—e
2 M

Cp(R) < min {};, 1} and CR < (5.9.26)
where p = p(R) is the polynomial of degree greater than 1 appearing in Proposition 5.9.1
satisfying p(0) = 0. Then, by choosing r > 0 such that Crr < %, Proposition 5.9.1 allows
us to deduce that the operator N, defined in (5.9.21), maps Boo(R,up,7nJ) into itself and is a
strict contraction. Finally, thanks to the Banach fixed point Theorem, system (5.9.22) admits
a unique solution (U,p,7) € Boo(R,ug,79). This completes the proof of Theorem 5.2.1.
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Appendix A: Nonlinear terms coming from the geometric trans-
formation (5.2.8)

In this section, we present the explicit formulas of the terms F r @div and ﬁs that we obtain
for the geometric transformation given in (5.2.8).

—2wtt —wtt
-~ P - —wt [~ ~ ~ o~ € UXAA € nx/\
Fi(A,p,m,02) = —e " (U1l 2, + Ulizy) + 7 el + T U2lsiz
—wtt —wt (HE)2
e ") e ()
X = X 2wt~ ~ —wt~ —wt =~
+ /_e Uj 2o Us 2 + /_e (6 UU;j 2, + € UUs j 2o T € Us 2Uj 2o + Us,2us,i,22)

e MU F 20)x Ty
Usj, 2o
{—e

e F )X EN, BE

e MU F z)xEN,, (
(L—e)l—e+ e_‘“tﬁ%)

XN F R

—wt~ —wt~
€ up + us,l) (6 Ui 2o + us,i,ZQ) +

e EF )T

_ 2 67Wt7/7\% Ui zo — 2v yp Ui 2y 25 T 2v e 67“”51/’}% 16,2122
~ e~ F 20) Ty T g e (0 F 2) XN, T .
{—e+ ef”tﬁ% Ussiyzo g {—e+ E*Wt,”,]\% Us,i,21 22
2
—wt ++ bt
n 1/6 ((Eq: 22)X 771,z1) (ef‘”tﬁ‘ o ) 2Ve Yy .
(ﬁ —e+ e—wt,ﬁ%)Q 1,122 5,1,2122 /— e ©,2222
e M) e 20— e) + e ) () [ o
_ yﬁ (e wtui’ZQZQ + us’2222> + 2v (@ — e>3 X /NIx (e wtui,zgzz + us,i,2222>
W G B 91073 My | G
v (g _ 6)3(5 e+ e—wtﬁ%) (e Ui zpzy + u8,2,2222) -V /—e Wi, zo
- —wtat (5 - ~t
e~ e) + e R [ | e MUTF )X s,
B (6 —€)2(f — e+ ewtiE)2 (e Wizpzo + “s,z,zzm) -V y—p Us, i,z
- ot
n Ve wt(e:F ZQ)Xinl,zlnl,zlzl (670'”&@' T )
= —eteigg) \© Mot
- ~+
_ 1/6 Wt(g + ZQ)X:tnl,zlﬁ):Ezl (eiUJta‘ T )
(0 —e)(l — e+ e“tiy)
- o e
Ve Wt(€ + ZQ)X M,z1 21 (€_Wta' . )
E — et e_wtﬁ):(t 1,22 $,1,22
OO Ty (g
Y (0 — e+ e wif)3 € Uiz T Usyizo
(IR 2 G e )
(L —e)? (6—6)2“—64—@_‘“17%) (ﬁ—e)(ﬁ—e—i—e—“’tﬁ%)z 122 11,22
At —wtst —wt ()2
+u UM e v My _ 2% (77X) (6_(4;15&' 1o )
(l—e)(l—etewigd) \((—e)?  ({—e)?

+ v

ﬁ):i: 26—wt(ﬁ>j<:)3 6_3"Jt(?]§<t)3 (e—wt'\
(—e)l—etetit)\ (L —e)P(l —e+ewty) (L —e)2(f — e+ ety )2

e, e _ (T z2)x* ) - 0T 2)xE ~
v (g_?zzulm + fexul,zm —ve ' | 8, (E—.)e s — (é—i Moz, | Uz

- ~t
ot [T 2T v - e F 22)XF M,
—ve {—e 1,217“"172121' + /—e pzzfsl,i

— /\:l: ~ _ N
_° YT 2)X M Ty (e—th + ) 51+ %A b9
(l—e)l—e+ efwtﬁ%) Pzy T Ps,z9 ) 01, D202

{—e

c (ﬁ;t)2 —wt
- (z - 6)(5 — € —|— e_wtﬁ%) (e p22 +p3,22) 57472
(5.9.27)

Ui zp + Usi 2o

)
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and
_ e e U F ),
Gaiv(U,71) = — X116 + L1, €y,
l l—e
2wttt A
NN ot _ € UM 2y My Vs Ul 2o —wl .
+ + ) + +
Fy(u,m) = —ve “’tm,zﬂs Uz +V - 1 ex_wiﬁ% —ve wtnl,zﬂs U2,z
_ s _ s N
+ l/e 2Wt(€ :F 22)(771,21)2 :l:’ZI,\ .y € 2wt(£ :F Z2)<n1,z1)277;<t :tu (5 9 28)
/—e Vs U2,z (f . 6) (6 — e+ e,wtﬁ%)ﬂ)/s $,2,22 c
—wtat - ~t
e E L, CHOF 22) (0., )7 4
+ Vﬁ et ef“’tﬁ% Vs Us,1,z0 TV /—e Vs Us,2,20
— ~+
B 1/6 2“(54322)(7]1,21)277% Sy 4oy {—e ViR
(0 —e)(l —e+ewti) 5% (—e+e vt '* 2z

where ¢; ; denotes the Kronecker delta.
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Appendix B: Proof of Theorem 5.3.2

_1
Let us first notice notice that the domain D(A;V %:a(Q)) of the Oseen operator is dense

lig 1o, lig _lig
in V, £ (), since D(A;V, £ (2) = D(Ap; V,, 7, () and D(Ag; V,, £ (2)) is dense in

n,I'y n,I'y n,l'y

_1
AY 2Jra(Q) (see Proposition 2.4.8 of Chapter 2). Then, thanks to [EN06, Theorem 4.6, p. 95],

n,l'q

_1
it suffices to verify that (A, D(A; Vn%:a(Q))) is sectorial.
We split the proof into three steps.

Step 1: (Estimate in Vg,rd(ﬂ)—norm). Since (AO,D(A;Vg’Fd(Q))) is the infinitesimal gener-
ator of an analytic semigroup on V%Fd(Q) (see [NR15, Theorem 2.8]), there exist Cp > 0 and
Oy € (7/2,7) such that

Co

M — A)7'F|e <
H( ) HL2 = ‘)\’

1F[|.2, (5.9.29)

for all A € Xy, \ {0} and all F € VY . (Q).

n,['q
Step 2: (Estimate in Vf;(Q)—norm). We claim that there exists C; > 0 such that

G

M — AR, <
¢ ) IIVF; =N

v (5.9.30)
d
for all A € ¥y, \ {0} and all F € V) . (Q). Indeed, let u:= (Al — A)~'F. Then,

Au—divo(u,q) + (u-V)us + (us - V)u=F in Q,
divu=0 in Q, (5.9.31)

u=0onTly o(u,¢n=0 onT,.
Thus, u satisfies in particular
A= 2w [ cwie@) - [ (- Vut @ V) 7+ F )y iy o (5:932
Q Q Q Pg’ " Tg
for all p € V%d(Q).
After properly adapting the argument of the proof of Theorem 2.4.4 presented at the end of

Chapter 2 (possibly after modifiying the sector ¥y,), we can show that there exists a constant
C > 0, independent of A, such that

IIUIlv;d < CHFllv;;- (5.9.33)
We now introduce the set

D= {ee V@) | lelv;, <1}.



Appendix B: Proof of Theorem 5.3.2 198

Using the Cauchy-Schwarz inequality, estimate (5.9.33), Assumption Al and [BH21, Theo-
rem 7.4] in identity (5.9.32), we obtain

My = 1 s ]<u Pvitvi,

<2wsup [ sw)e@)]+ sup [ (- Dy (0 )| ]+ sup (P B vy
€D p€D Tg’"Tyg

< CHFHVE;,

(5.9.34)
from where we deduce the estimate (5.9.30) with a constant C' > 0 independent of \.

Step 3. (Conclusion). From Lemma 3.3.1 of Chapter 3 and the interpolation between (5.9.29)
and (5.9.30) we deduce that for any € € (0,1/2)

Ci\e 1
|07 = 4) Py < Co <01> 7l for all A€ 35, \ {0} (5.9.35)
0

Now, taking e = 1/2 — a € (0,1/2) in (5.9.35) and using the fact that Vg,rd(Q) is dense in
1
an:a(Q) we deduce that

1A = A)~"F]|

_lw < HF|| . for all A € 5, \ {0} (5.9.36)
d
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Appendix C: Justification of the identity (5.4.14) (formal compu-
tations)

The aim of this appendix is to present the formal computations that lead to identity (5.4.14).

Let Fr, Gy € L%(Q), F},Gl € H{QO}(O,ES) and F2,G? € L?(0,4s). Let us consider the following

two systems:

Av —dive(v,q) + (us - V)v+ (v- V)uy, — Ay — Agnp = Fy in Q,
divv = Asgn; in §,

v=196 only, v=0onTy\Ts, o(v,g)n=0 on Ty,

Anp —ne = F on (0,4),

M2 + a2 + V(Ag)%nz — Aym = —vFq+7q+ FZ on (0,4y),
m(0) = 8;n(0) = 0 and 97m (€s) = Bmi(Ls) = 0,

(5.9.37)

and

A® — divo(®,1) — (us - V)@ + (Vu,) '@ = Gy in O,
div® =0 in Q,
D =06 onTy, =0 onITy\Ty, o(®,Y)n+u; - n® =0 onTl,,
M+ G — LA (A — 20(vE A5)") G — L(A) T AT® + L(A) Ay = G in (0,4,),
Ao+ aA2( +(A2)3¢ — A3® = —y ) + ;0 + G2 in (0,L,),
2ve 2ve

¢1(0) = 9,¢1(0) =0 and 3%@(&») = TCZ(ES)a 5;’(1(55) = 7C2,x(58)-

(5.9.38)
Fluid equations
After integrating by parts, we get
F:; ®
(12 )by
:<)\v —divo(v,q) + (us - V)v+ (v-V)us — A1 — Ao, ¢>H‘%+a(ﬂ),H%‘“(Q) 500

:<Gf’V>H‘%+“(Q),H%—°‘(Q) — /S o(v,g)n - ® + s o(®,Y)n-v

_<A1771, (I)>H*%+“(Q),H%*a(ﬂ) — <A2172,<I>>H7%+Q(Q)7H%7Q(Q) —}-/Q@Z)dlvv.

The previous integration by parts identities hold for all v, ® € H?(Q) and ¢,v € H*(2). Never-
theless, by a density argument, it can be shown that they remain valid for all v, ® € H%JFO‘(Q)
and ¢,¢ € H%+“(Q).

Let us compute the terms — /

o(v,q)n- ® and/ o(®,Y)n-v.
Ts rs

11 [2
eii=— [ otvant @ [ slwam & [ otvon' @
Tt ry g
]1 I

Iy

2 3
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Ih;. Since nt = —& and ® = (0,(2)" on I'Y, we get
0 0
o(v,qn" - ® = o1 912 .
(v.q) 091 022/ \—1 (2
= —022(2
= qC2 — 2vv2 4 Ca.
Thus,
I = _/r: e +2V/r;r v2,4C2
L Ls
= —/0 (v qlée + 21//0 (Ve 2]
But, since (v1 4 + U2,y)|rj = v+ Agnm and v1 = 0 on '}, we obtain
ls ls
I = —/O [ qléa + 21//0 [vs AzmiCa.
112 Since n~ = 62 = —n+,
ls Ls
I :/0 [vs alC2 — 2V/0 [vs Asm]C.
I13. Since n‘ = —& and ®, = (s on I‘f;, we have
¢ o1 o2\ (1 0
o(v,gn" - ® = .
(v.q) <021 022) < 0 ) <C2>
= —021(2
= —v(v1,y + v2,2)Co.
Then, since v1|pe, = 0, we get
Iz = V/ v2,2(2-
e
Therefore,
ls Ls
L=—[Thda 2 [T AmlG 4y [ v (5.9.40)

o I :/F+ U(@,w)n-v—l-/r_ U(@aw)n'V+AZS o(®,¢)n-v

s

121 122 123

I5;. Since nT = —&,, we have
—al )

‘s ¢,
I :/0 vl — 21//0 [y @2,4]m2.

But, since (®1, 4+ P24)|+ =0 and ®; =0 on I'], we obtain

ls
Iy = —/0 AR

I59. Similarly,

@t v = [ bl
0

s
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t = _g and vy = 7o on I‘ﬁ, we have

‘ (o1 o012 -1 0
o= (00 22) () ()

= —02172

= _(VUQ»I + ’/Ul,y)ma

I53. Since n

Then, from the equality v;1 = 0 on FﬁS, we get
Iys = —V/ Do 212
I

Therefore,
Ls
Ig = /0 ['7;_’_1”7]2 — V/FZ @2@772, (5941)

and thus,

s Ls
hh=— [himda s [ b amle v [ e
. (5.9.42)

ls
+/ AR —V/ P2 212
0 It

Substituting (5.9.42) into (5.9.39), we get

<Ff’ @>H*%+“(Q),H%*“(m

ls Ls
= - - 2 A
(Cr) o pomamibooiy ~ BTG+ 20 [ A

2

Ls
+V/ v2,zC2+/ AR —V/ D 112
re¢ 0 Tt

—(A 0] — (A P Asny.
< 1715 >H‘%+‘*(Q),H%—"(Q) < 2725 >H_%+Q(Q)’H%_Q(Q)+/Ql/f 3N

(5.9.43)

Structure equations

In the computations developed in this subsection, we consider the space H{QO} (0,¢5) endowed
with the inner product

Ls
1) = a/ An - Ap, forall n,u e H?O}(O,ﬁs).
{0} 0

e Taking the inner product (-,-) H2, of both sides of the equality

G+ G = —(A9) 7N (A] = 20(15743) )G — —(A) T AT@ + —(A,) T Afy = G,

with 71, we get

L

ls ls ls s
o [T A Anva [T AG- A~ [TlAiG] w2 [ 68 A G m
0 0 0 0 (5.9.44)

ES ZS Zs
+ [ e m 1A =a [T ack an.
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e Applying the L? inner product with 1, to both sides of the equality
Ao + QA +7(A2)26 — A3® =~ 7% + G2 in (0,4),
we obtain
ls ‘s b o ts
N Cam—a [TAGAm 4 [T m - [T A
. 5 0 02 0 (5.9.45)
s ve ve
:/ GEUQ +a——Ca(ls)n2(ls) — a——C(ls)n2,0 (L)
0 « «
e By taking the inner product (-, -) H2, in both sides of the equality
/\771 — N2 = F51 on (0768)7
with (1, we get
ls ls Ls
a)\/ Amy - AG —a/ Any - AGy = a/ INSSUNSY (5.9.46)
0 0 0
e Applying the L? inner product with (3 to both sides of the equality
Mg+ alP + (A Py — Ao = =7 q+ v a+ F,
we obtain
ls ls ls 9\1/2 ls
)\/0 17262 -1-04/0 Anp - A -I-V/O [(A2) 2], —/0 [Aam]Co
. . i (5.9.47)
=- / [ dl¢ +/ [7s ql¢ +/ F5 G
0 0 0
By adding the identities (5.9.44), (5.9.45), (5.9.46) and (5.9.47), we obtain
Ls L ls Ls Ls 9
o [Tartaa- [Thide [Chrda+ [ FG
ls Ls Ls Ls
od [T aG-amta [ aG-an— [Tlic) w2 [0 4Gl
£ Ly Ls Ls
[ [T [ am o [T A An
b 212 b
+v/0 (A2)!2¢] ‘nz—/o A3®-m (5.9.48)

U ls
= | Am-Ag—a/O Amp - AG

s

ts 2ve 2ve
+ [ G 0T Gl — 0= Gl maalC),

ls ls Ls ls
A ; n2Ce + a ; Ani - A +’Y/0 [(A2)25)¢o —/0 [Agm ]G + a/o AG! - An
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or equivalently

0 0, 0 0,
o ["aRl a6 [Thde [Thrde+ [ G
0 0 0 0
. 0,
—/0 [ACa] - m + 2V/0 (v~ A3) ] - m
Zs es 85
+ [+ [ - [ asem
ls s Ls 2ve 2ve
= - /O [A4771]C2 + 04/0 AG; : A771 + /0 ngQ + a?(b,x(gs)n?([s) - a?(2(£5)772,x(£s)'

(5.9.49)
Finally, after adding up identities (5.9.43) and (5.9.49), we get

Ls Ls s Ls

F; & AF}. A —/ + / N /F2
< V) >H%+Q(Q),H%Q(Q)+a/0 s Cl 0 [’75 q]C2+ 0 [’75 Q]CQ_'— 0 SC2

ls Ls
= [l m o [ 46

ls ls ls
+ [ Az - [1439]

R b
=<Gf7V>H_;+a(Q)7H;_a(Q)—/0 s~ Q]C2+2V/O s~ AsmilC
Ls

+V/ 02,262 +/ AR —V/ Do 212

Tt 0 Tt
- <A1771, ¢’>H,%+Q(Q)7H%,Q(Q) - <A27727 ¢>H,%+Q(Q),H%,a(m + /Q¢A37ll

L ls 1 Ls 9 2ve 2ve
- /0 [A4771]<2 + O‘/O AGS : A771 +/0 Gsn2 + OZTCQ,I(KS)UQ(ES) - QTCQ(ES),”/Q,I(ES)u

(5.9.50)
or equivalently,

ls ls
<Ff,¢>> | | +a/ AFl-A§1+/ F2¢,
H™27%(Q) HI™*(Q) o’ o’
b b (5.9.51)
~{a,, AGL- A / G2n,.
< f V>H%+a(m,néﬂ(m+a/o s O 0 s'12
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Appendix D: Proof of Proposition 5.7.1

Let vV = Pv + VNgiyAsn — VN and @ = P® — VNG, with (Pv,n1,1m2) € Zo and
(P®, (1, (o) € Z§. Then,

<v,?{3>L2(Q) — (Pv, P<I>>L2(Q)— /Q Py VNG + /Q VNgw Ay - P®

h " (5.9.52)
= [ VNayAg - VNG~ [ VN PR+ [ TN TN.G.
Q Q Q
I3 Iy Is
We now compute each term of the preceding identity.
o
Let us first notice that ¢ = Ny(» satisfies
Ag =0 in Q, @:@onf‘j, @:—CQOHPS_,
94 On On (5.9.53)
n =0onTy\ (T;UTT), ¢g=00nT,.
Then,
I = —/ Pv VN = / div(Pv)q — / gPv-n=0. (5.9.54)
Q Q r
o Dy
Since ¢ = Ngjy Asny satisfies
: 9q
Aq = Asnp in Q, s OonTy, ¢=0only,, (5.9.55)
then,
I, = —/ Pv-VNs( = / div(Pv)q — / gPv-n=0. (5.9.56)
Q Q r
oIy
Let us first notice that ¢ = NgjvAsn and ¢ = N(o satisfy
: dq
Aq = Asnp in Q, = 0only, ¢g=0 onT,, (5.9.57)
and 96 9
Aq=0 in Q, —q:@onf‘j, —q:—CgonF;,
P on on (5.9.58)
n =0onTy\ (T;UTT), ¢g=0o0nT,,
respectively. Let us now observe that
- 0q -
Iy = — / Vai— [ o+
Q r on
= /Q(Asm)(Ns@) (5.9.59)

= (m, ~ (M) AING)

20y (0,82), (HE0, (0.62))"

{0}
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ol

The calculations are similar to those performed to compute I; in (5.9.54). Thus,
Iy =0. (5.9.60)

.I5

We first notice that ¢ = Ngn2 and ¢ = Ns(s are the solutions to

0 d
Ag =0 in Q, —q:ngonf‘j, —q:—ngonf‘;,

94 on on (5.9.61)
— =0onTy\ (T UTY), g=00nT,.
on
and 56 o
AG=0inQ, L —toonTt, SL= ¢ only,
96 on on (5.9.62)
n =0onTy\ (I UIl'Y), g=00nT,,
n

respectively. Then,

~ - dq _
I; = Vig=- [ A 5= TN, ) 5.9.63
5 /QVq \] /Q qq+/ranq <772,75 CQ>L2(%) ( )

Thus, using (5.9.54), (5.9.56), (5.9.59), (5.9.60) and (5.9.63) in the identity (5.9.52), we get

~ = 1 - *
<v,q>>L2(Q) :<PV,P¢>L2(Q)+<?71,E(AS) 1A3N5C2>H2 (0.0, (H2,, 0,))

©3 { (5.9.64)
TN,
+ <772,73 SC2>L2(0,£5)'
Hence, after adding
) ’ + )
<771 C1>H‘?O}(O7ZS)7(H?0}(07£3)) <772 C2>L2(07€S)
to both sides of identity (5.9.64), we obtain
~ 1
v, ® = (Pv,P® —(Ag) T AEN
<v, >L2(Q) < Vo >L2(Q) + <771’ Cla( ) 3 C2>Hfo}(0,zs),(H{20}(O,ES))/ (5.9.65)

T <772’ G2t 7;ﬁ_NS@>L2(01£ )

Finally, using the expression of M* (see Proposition 5.4.1) we conclude the proof of Proposition
5.7.1.
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Appendix E: Proof of Proposition 5.7.3

Let us notice that for all j =1,..., N,, we have

J1 J2
d Pv Pq)j Pv Pq)j
7 < m | M* | Gy > = <Hu-/4 m |, M| Gy >
2 CQJ 7.7 2 CQJ 7.7 (5 9 66)
Pv P, P, -
+w <Hu m ,M* CLj > + <HuBf, M* CLj >
2 <27j z.7' CQJ z.7'
J3 J4
Let us analyze each of the terms appearing in the previous identity.
A
4 (PY P®;
Ji = 2\ m S ME ) Gy
t
72 i) g
d Ny Pv Pq)i PVZ‘ P@j
= < < mo|, M| G > My | M| iy >
=1 A\ 172 i )1 g g \ M2 i ),
d Ny, Pv Pq)l PVZ' P‘I)]
= < < mo|, M| G M | M*| Gy > (5.9.67)
=1 \\ n Ci )" g \ M2 i),
d Ny Pv P‘i’l PVz‘ P@J
== < m oMo G < M | M*| Gy
=1\ \ 2 i )1 gy N\ M2 i)' g,
d Ny Pv qu’j
= < mo|, M| Gy 8ij-
=1 \\ 2 i) g,
A
Pv Pd,
JQ = <Hu¢4 m ,M* Cl,j >
2 <27j 7.7
Pv P®;
= <AHu m |, M| Gy >
" 4/ ze (5.9.68)
N. /[Pv P, Pv; P®; o
= <A Z< mo|, M| Gy mi || M| Gy >
=1 A\ 2 Qi )1 g \ M2 Cj )1,
Ny Pv P‘I)Z PVZ' P‘I)]
=Y < m | M| Gy <A M | M5 Gy
=1 A\ 12 Ci )7 4, 12, i) gz
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L] J3:
Pv P‘I’j
Jg = w <Hu m ,M* CL]'
2 Cj ) gz
Pv P&,
=w <Hu mo| LM Gy
72 i) g,
Ny Pv P(I)l PVi Pq)]
= w< < m |, M* | G M | M*| Cuy > (5.9.69)
=LA\ 2 Ci ) g \ M2 i)',
Ny Pv P@l PVl' P‘I’J
= < m |, M*| G > < ma | M* | i
=1 A\ 172 Qi ) g Y\ M2 i)' g,
N. /(P P®,
= < m |, M*| G i j-
=1 2 €2,j Zo
L J4Z
P®,
Jy = <H B, M* | (i
i)' gz
P®,
= <HuBf, M*| G
C2).] ZO
N, 0 P®,
= <Hu > 0 SME Gy
k=1 (I+ ’YS 7_Ns) 1wk CQ,] Z() (5'9'70)
Ne Ny 0 P, Pv; P®;
=Z<sz< 0 M G > My | M| Gy >
=1\ i=1 AN\ (1 + 307 Ng) "y, Ci )1 g \ M2 i),
Nc Nu PVZ P(ﬁj
ZkaZwkC2,z'< ma | M* | iy >
k=1 =1 12, G2, Z
Ne Ny,
Z ZwkCQZ i,5¢
Then, by setting
Pv P®,
Cu = < mo|, M| Gy )
2 25 /" 20/ 1<jen,

we observe from identities (5.9.67), (5.9.68), (5.9.69) and (5.9.70) that system (5.9.66) can be
rewritten as follows:

¢ = (Au+wD)C + Buf, (0) =2, (5.9.71)
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where

Py P®,
G = < 0 |, M| Gy >

2 i) 2/ 1<jen,

The second equation in (5.7.7) is obtained by applying the operator Il to both sides of the first
equation in (5.7.5). This completes the proof.



Chapter

Numerical simulations of the stabilization
problem of the fluid-structure interaction
system

Abstract of the current chapter

In this chapter, we study the numerical stabilization of the fluid-structure interaction system.
More precisely, we study the stabilization of the system corresponding to the semi-discretization
in space of the fluid-structure interaction system. Numerical simulations for different parameter
values are presented.
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6.1 Introduction

Thoughout this chapter, the notation used to describe the reference domain €2 and the phys-
ical domain (2, ;, as well as their boundaries, will be the same as that introduced in Subsection
3.1.1 of Chapter 3.

Let us first recall the stabilization problem. Let (us,ps) be a solution of the stationary Navier-
Stokes equations
(us - V)us — divo(us,ps) =0, in Q,
di =0 in Q
ivug . in Q, (6.1.1)
u; =g’ onIly, us=0 on '\ T},

o(us,ps)n =0 on I'y.

Let us consider the system

du+ (u-V)u—divo(u,p) =0 in Q7°,
divu=0 in Q°,

u=g" on X, u=0 on XY,

u=0 on X,

u =6 on X, o(u,p)n=0 on X7,

u(0) =u’ in Q, (6.1.2)
02n + aA2n+ By, = H(u,p,n) + fs + f in (0,00) x (0,£s),

n=0 and d;,n1 =0 on (0,00) x {0},

92n=0 and 92 n=0 on (0,00) x {(s},

77(0) =0 and 01577(0) = 773 in (07£S)7

where u and p respresent the fluid velocity and pressure. The Cauchy stress tensor o(u,p) is
given by

o(w,p) = 2ve(w) ~ pl, e(u) = 5(Vu+ (Vu)"),

with v > 0 denoting the fluid viscosity. Here, the inflow boundary condition g’ = g’ + Bg;,
where g is assumed to be time independent, g, is a time dependent perturbation, while
denotes the amplitude perturbation. The parameters o > 0 and v > 0 are constants relative to
the structure. The damping operator B is given by

B=A}=0,

1)

D(B) = Hiy,.4(0,£5).

The expression of the force exerted by the fluid on F&t) ul'’

() is given by

H(u7p7 77) - = <U+(u7p)n;—(t) + Ui(u7p)n7;(t)> 1+ (833177)2 : 627 (613)
where
O':t(u,p) = U(u(ta z, n(tv .TL‘) + 6),p(t, z, n(tv JJ) + 6)),

and n:(t) (resp. n;;( t)) is the unit normal to F;( n (resp. F;(t)) exterior to ;).

The function fs is time-independent and is chosen in such a way that the triplet (u,n,n;) =
(us,0,0) constitutes a stationary solution of system (6.1.2). Thus,

fS = 0(u57p8)n+ : 62 + 0(“87p8)n_ : 62, (614)
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where n (resp. n™) represents the outward unit normal to I’} (resp. Ty ).

The control f take the form

N
f= 22 Fityw; (=), (6.1.5)
j=1
where the family (w;)i1<j<n, is defined in (5.7.3).

The objective is to find a control f = (f1,..., fn.) given in a feedback form, able to stabi-
lize, with any decay rate w > 0, the system (6.1.2) around the stationary solution (us,0,0),
provided g, u’ — u, and 19 are small enough in appropriate funcional spaces.

The starting point of the analysis lies in the ideas presented in [FNR], where the authors study
the numerical stabilization problem of a fluid-structure interaction model. In that work, the
strategy used is similar to the one presented in Chapter 5: we first seek a feedback law that
stabilizes the semi-discretized system in space, and then prove that this feedback law also locally
stabilizes the nonlinear system, under certain smallness conditions on the initial and boundary
data. Two important elements underlie the analysis carried out in [FNR]:

(1) The first important aspect is that, to rewrite the fluid-structure system in the reference
domain, the authors employ an explicit geometric transformation, similar to the one de-
fined in [FNR19] or the one used Chapter 3. Then, the linearization of the resulting
system is performed "manually." Once this step is completed, the calculation of the feed-
back law aimed at stabilizing the linearized system is performed in the reference domain

Q.

(2) The second important point is that, once the feedback law for the linearized system is
computed in the fixed reference domain €2, it is injected into the nonlinear system, which
is then solved in the reference domain.

In summary, the numerical stabilization analysis carried out in the cited paper [FNR] was con-
ducted entirely within a fixed reference framework Q.

Let us now compare the strategy adopted in [FNR] with the one employed in this chapter.

(1b) To rewrite the fluid-structure interaction system in the reference domain, we do not
employ an explicit geometric transformation as in [FNR]. Instead, we consider a trans-
formation defined in terms of the harmonic extension over {2 of the trace of the structure’s
displacement. Then, once the nonlinear system has been reformulated in its weak form
on the fixed reference domain 2, the linearization is carried out using a routine provided
by GetFEM++ library. Next, and similarly to the approach in [FNR], the feedback law
that stabilizes the system is computed on the fixed reference domain §2.

(2b) Analogously to the approach adopted in [FNR], the feedback law computed on the fixed
reference domain € is applied to the nonlinear system, which, unlike in [FNR], is solved
on the moving physical domain {2, ;) by using the semi-implicit algorithm 3.

In summary, the two main differences between the strategies (1b) — (2b) used in this chapter
compared to those implemented in [FNR] (1) — (2) are the following. Firstly, the tranformations
employed to rewrite the system in the reference configuration are not the same. Secondly, the
approach used to solve the direct problem differs in both cases. Regarding the previous remark,
it is important to highlight that solving the direct problem in the actual fluid domain is an
approach that has also been employed, for instance, in [Dell8].

Let us now recall the variational formulation of system (6.1.2) introduced in Section 4.2 of
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Chapter 4. By setting n := n and 1y := 114, system (6.1.2) takes the form

ou+ (u-Vju—divo(u,p) =0 in Q,
divu =0 in Q,
u=g' on XX, u=0 on XX UXX2,

u =126 on X o(u,p)n=0 on X°,

o
u(0) =u’ in Q,
n2 =M in (0,00) x (0, y),

Oz + aldny +yBnz = H(a,p,m) + fs + f in (0,00) x (0,£),
m =0 and 9z,m =0 on (0,7) x {0},

92 m =0 and 92 m =0 on (0,00) x {£},

m(0) =0 and d9n(0) =719 in (0, L).

(6.1.6)

We set I'g = I'), UT'y,. In order to take into account the Dirichlet boundary conditions on I'y, we
introduce the Lagrange multiplier A = (X;, Ao, As top, As bots )\SJM)T, where:

X, is the multiplier associated to the boundary data g® prescribed on T,
Ao is the multiplier associated to the null boundary data prescribed on I', U T,

As top 18 the multiplier associated to the kinematic condition imposed on rr m) (6.1.7)

As ot 1s the multiplier associated to the kinematic condition imposed on Fn )’

As lat is the multiplier associated to the kinematic condition imposed on Fm(t).

Then, the variational formulation of system (6.1.6) reads as follows:

. _1l.,
Find m,n2 € L120c(07 03 H?D}(O ¢ )) uc Hlloc(07 oo; H 2t (Qm(t))) N Ll200(07 005 Hl(Qm(t)))y

pe L2 (0,00 LQ(Qm(t))) and A" € L2 (0,00; Hfé(]?d)) such that
+/ stop ¢+/ sbot ¢+/ slat P, V¢GH1(Q ())

/Q
71 (t) n1(t) 71 (t)

b(uaw = Oa V¢ € L ( 771(15))
/u T = /g 7, Vre H3(Iy), / u-r=0, ¥re H 2(Ty),
i o

/ m®) L@

_ 1
/ /Z n2€2 -1, VT € H 2(Ff71(t)),

o ¢ = as(u.9) +b(.p) + el 6) + [ Aot [ Ao

n1(t)

!

_1
796y - T, VT €H 2(1“74]'1(t)),

+ r+
n1 (%) n1(t)

—

. 1
me - T, VT € H 2(Fn1(t)),

,1

Y4
N1 (¢) 771(t)

=

ls
| @mc - / mC, VC € Hiy(0,4,),
Ls
| @m)¢ = adm, )+ a2 O = [ Avsar @6 [ Auper- &

n1(t) n1 ()

N¢ Ls . 2
+]§/0 wj(Zl)fj(t)C(21)+/0 fs¢, V¢ € Higy(0,4),
(6.1.8)
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where the bilinear forms ay, b, a! and a? are given by

£(v) (9), blha) = | G@ive)
it (6.1.9)

U Ls
ai(nla C) = _a/O A771 : ACa ag(nQa C) = _7/0 AT]Q . ACa

ap(v, @) = —ZV/Q

n1(t)

while the trilinear form c is defined by

c(u, v, d) = —/ (u-V)v- . (6.1.10)

Q1)

System (6.1.8) has to be completed with initial conditions.

The remainder of this chapter is organized as follows. In Section 6.2, we present the main
ideas of the stabilization of the semi-discrete system in space associated to (6.1.8). Next, in
Section 6.3, we recall the time-marching process described in Section 4.3 of Chapter 4. Then,
in Section 6.4, we present numerical experiments.

6.2 Stabilization of the semi-discrete system

The goal of this section is to present the main ideas about the stabilization of the semi-
discrete system obtained by approximating by a finite element the system (6.1.8) rewritten in
a reference configuration. In this section we consider the system without perturbation at the
inflow and fs; = 0.

We first introduce the mapping A(t,-) : @ — €, () defined by

A(t,) =T+d(¢,-), (6.2.1)
where the displacement d(t, -) is solution of the elliptic equation
Ad=0inQ, d=mé onTs, d=0 onI'\T,. (6.2.2)

Let us notice that, since 11, = 12 on I'y, the auxiliar variable w(t,-) := 0, A(t, -) satisfies the
elliptic equation
Aw =0 in Q, w=1m96 onI';, w=0 onI'\T,. (6.2.3)

In order to take into account the Dirichlet boundary conditions on I' in systems (6.2.2) and
(6.2.3), we introduce the Lagrange multipliers A% = (A4, A?)T and AV = (AY, XJ‘K)T, where:

)\g is the multiplier associated to the boundary data prescribed on I'y,

A?c is the multiplier associated to the null boundary data prescribed on I' \ T, (6.2.4)

Ay is the multiplier associated to the boundary data prescribed on I',

Xf is the multiplier associated to the null boundary data prescribed on I'\ T's.

Using the transformation A defined in (6.2.1), we obtain that the linearization of system (6.1.8)
around the stationary solution (u,p, X,n1,72,d, A%, w, A¥) = (us,ps, A*,0,0,0,0,0,0), where
the triple (us, ps, A%) is a stationary solution of system (6.1.1), with A® representing the Lagrange
multiplier associated with the Dirichlet boundary condition, reads as follows:
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Find v € H} (0, oc; H_%+O‘(Q)) N LE (0,00, HY()), p € L2 (0, 00; L2(£2)),
M, € L,0(0, 005 HE (0,64)), A" € L3,(0, 00, HT2(I'g)),
d,w e L2 _(0;00; H(Q)), A A¥ € L2 (0, 00; H™2(T")) such that

CZ/v ¢ =ags(v ¢)+b(¢’p)+/l—‘i)\i'¢+/F0)\0'¢+/F+)\s’top'¢+/r}\s’bOt'Q&

[ Ao+ [ Arw-g+ [ Ad- g, Vo e H(Q),
b(v, ):/QA;;dw, Vb € L(Q),
v.T =0, Vre H 2(I}),

[

v.-Tt=0, Vre H*%(FO),

5
| |

5 —

Lo
96y - T, VT € H™ 2(I‘+)

/]f‘ 7]282 T, Vre H™ Q(F ),

172e2 T, VT e H™ 2(F£)

<

T =

AT
<
\]

@ ZS
Ls

dt/ ¢ = 77170 772, / As,top - €2C — / As ot - €2C + ; AudC

+Z/ wi (20 f5(0C(1), V¢ € Hy(0,0,),

/Vd:ch—/ A — A} =0, forall p € H(Q),
Q I's My

d-Ts—/ Més - Ts =0, forallTSEH_%(FS),

Ty Ls

d-7;=0, forall TfEHi%(F\FS)v
\I's
/Vw:vcp—/ AZ"<P—/ A =0, forall p € H(Q),
Q Ts N\

W T, — N6 - T, =0, for all TSEH_%(F5)7

Ly Ls

w-7;=0, forall TfGH_%(F\FS)a
\['s

(6.2.5)

where

ar(v.9) = =20 [ &) :£(9) = [ (0 Vv (v-VIu)- o,

while the bilinear forms b, a! and a? are defined in (6.1.9). System (6.2.5) has to be com-
pleted with initial conditions. The linear operators A, As, A3 and A4 are determined (in their
discretized form) using a GetFEM++ library [RP] routine.

6.2.1 Semi-discrete approximation

We introduce the finite-dimensional spaces V;, C H!(Q) for the velocity, P, C L?() for
the pressure, D? C L2(Ty) and D$* C L%(T') for the multipliers associated to v and (d,w),
respectively, and S, C H {20}(0,63) for the structure’s displacement and its velocity. We denote
by (¢;)1<i<n, a basis of Vj,, (gi)1<i<n, a basis of Py, (17)1<i<ny a basis of Dj, (ugw)lgiSN;zw
a basis of Dzw and (¢;)1<i<n, a basis of S,. We then set
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N, N, Ny N. Ne
v=> v, u’ = ZU?% p= Zm% m = Zni@-, =Y n,
=1 ‘ i j i=1
N ]
m :Zni,[)(ia 772 Zn20<27 >‘f _Z)‘fzum Z)‘szy’z?

Nd'w Ndw
d= Zd¢z7 Ad_z)\le“l’z ) ZAS'LIJ"L )
Ndw Ndw

W = Zwld)z? >‘f - Z)\fzu‘z ) Z)\szp’z

We also introduce the corresponding coordinate vectors,

V = (Ula" : )UNU)Ty VO - (u(l)v 7“?\/1,)—'—5 P = (pl)' o 7pr)T7 Nl - (77%7 777{\[8)1—

)

N\T N\ T N\ T
N2=(77%7"'7772‘) ) N?:(ﬁio,'“ﬂh,o) ) Ng:(ﬁ%ov'“,nzo) )
T T d T
1}:( ?b"‘ ?N;) ) A;’:( g,la"'» ﬁ‘;N;) ;A _()‘flv" )\dew) )
d d T T T
A ()‘slv" A Ntiw) ) A?:(A}U',lva ’}U,N;\iw) ) AlsU:( .1;17"'7 S,N;\iw) :

Forall 1 <id,j <Ny, 1<k<N,, 1<lm<NY, 1<rt<N;,1<0< Nf“’, we introduce the
matrices

(Avw)ij = ap(Pis @;), (Avp)ik = b(;, D), (AUA;)MZ/F . uy - b, (AUN;)M:/F ny - b,
d s
du= [ 6t Ao == [ -8 (Ao == [ n5-6x6,
b= | ey i Ay = [ Ashy- b (Al = - / As; i
Ls
(M)\“A“)mg = /I‘ H? . l";)m (Amng)rt = (Mmy)rt = /O Cr . Ctv (Anzm)rt = _a/o ACT : ACta
d

ls Ls
(An2772)7“t = -7 0 AQ” : ACta (Anzd)iT = /0 A4¢i<7"7

A z:Awwz:/Vzv H (A io = (Awrw)io = — i glw;
(Ada)ij = (Aww)ij A ¢ : Vo, (d,\?) ( ) r\rs¢ iz

(Ad/\‘si)io = (Aw)\g’)io = _A ¢’L : I‘l‘glw7 (A/\glm)or = (A)\g’ng)or = /F ll'gw : éZCT'

We also set
N, = Ny +2Ns, Ng=Np+ Ny, Ng=N;=Ny+ Nyaw and N = N, + Ny + Ng + N,

and define the vectors
Z=(V N Ny', A"=(A} A))T, © = (P AN,
W= (wi,,wn,) ', A= (A} AY)T, W=(W AY)T,
= (di,-,dy,)", A"=(A] A))', D= (D ADT F=(fio v’
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We now introduce the mass matrix M € L(RY,RY), the stiffness matrix A € L(RY,RY), and
the control operator B € L(RNe, RV):

0
M., 0 0 0 A, Ag Am Ag 0
10 000 4. 0 0 Ay | ML
M=t 000" |4 0 Aww o | ™B= 0o |
0 00 0 A0 0 Ag 0
0
where
My, 0 0 Aw 0 0 Ay Avxy Auyy
M.=|0 M, 0], A.=|0 0 Apm| Aw=[0 0 o |,
0 0 M7777 0 A772771 Aﬁznz 0 0 Am)\g
Ap 0 0 Ay 0 0 ATIP 0 0
Am=|0 00|, Ag=[ 0 0 0], A= [4ny 0 0 |,
0 00 Apa 00 AT, 0 Ay,
Apg 0 0 00 0 Aww  Awxy Awxp
Az=10 00|, Am=0 0 0 |, Agg=|Apw O 0 |,
0 00 0 0 Aywy, Al 0 0
0 0 O Add A’LU)\? Ad/\d
Az =0 0 o0f, A= A;? 0 0o |,
0 Axgn, 0 Apa 00
L=(L--Ly,), Lj=(w},-- ,w)", j=1,... N.
Thus, the spatial semi-discretization of system (6.2.5) can be written as
v/ v/
d|e e
Mo\ w|=4|w|+BF (6.2.6)
D D

6.2.2 Eliminating the fluid domain variables W and D

In order to eliminate the fluid domain variables W and D, we follow the same idea used in
[FAC].
From the third and fourth equation in (6.2.6) we deduce that
W=-A_LAp.Z and D = —AdldlAEzZ. (6.2.7)
We recall tha the matrices Azm and Az are given by

A Awxe Aww Ada wajl, Agxe

-
Agg = | Apry 0 0 and Az = |Ape 0 0

The invertibility of these matrices holds provided that the inf-sup condition is satisfied by the
finite element chosen to approximate the variables (w, A¥) (respectively, (d,A?)). Using the
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expressions of W and D given in (6.2.7) in (6.2.6), we obtain the following reduced system:

1\7% (é) =A <Z)> + BF, (6.2.8)

where the matrices M, A € £L(RWN=+No) RN=+No)) and the operator B € L(RNe, RN=N6) are
given by

0

r Mzz 0 T AZZ Az@ o _ 0

M-( 0 O)’ A-(ABZ 0 ), and B = ML | (6.2.9)
0

with

A=A, — AgA_tAg, — AZEA;T;AEZ and Ag, = Ag, — AGEA%AEZ.
We remark that Subsections 6.2.3, 6.2.4 and 6.2.5 collect some of the results presented in [Dell8,
Chapter 3] and [Ndil6].

6.2.3 Finite dimensional controlled system

The aim of this subsection is to reformulate system (6.2.8) solely in terms of the variable
Z by eliminating the multiplier ®, and to express ® as a function of Z and the given data.
In order to do that, we will introduce the projection IT onto Ker(Ay,) parallel to Im (M} A.p).
The characterization of such a projector, as presented in [Dell8, Lemma 3.3.2, p.110], is given
in the following proposition.

Proposition 6.2.1. The projector II of RN> onto Ker(Ag,) parallel to Im(M;* A.g) is defined
by
-1 oA Y g
M=1-M_A, (AQZMZZ Azg) Ay,

The projector IIT of RN= onto Ker(AzT@Mz_Zl) parallel to Im(ﬁgz) is defined by
- ORI |
07 =1 - A, (AlMZ1AG)  alMZ

Then, using this proposition, we deduce the following result:

Proposition 6.2.2. A pair (Z,0) is solution of (6.2.8) if and only if (Z,®) is solution to the
system

d
S N1Z = ATIZ + BF,
(I-T)Z =0, (6.2.10)

e = _(EGZMz_zlAzG)_lgezMz_zlgzzz - (AszMz_zlAZG)_lAVGzM;zléF7
where A = HMZ;ULZ and B = HM;ZlE.
6.2.4 Spectral decomposition of the operators

In this subsection, we are interested in finding a decomposition of Ker(ﬁgz) into a sum of
generalized eigenspaces of the operator A. We consider the eigenvalue problem

peC ZeKer(dy,), Z#0, AZ = puZ. (6.2.11)

We define the operator A# = [IM ' A where I = I — M. JTAS (Al MPA )AL, We now

z2)
consider the eigenvalue problem for A%

peC*, ®cKer(Aly), ®#0, AT® = ®. (6.2.12)
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We recall that a vector Z;, € CV=\{0} is a generalized eigenvector for problem (6.2.11) associated
with a solution (u,Z) of (6.2.11) when

Z, € Ker(ﬁgz), Z,#0, (A— ,u)ka = Z for some k € N. (6.2.13)

Similarly, we have that the vector ®;, € CN= \ {0} is a generalized eigenvector for problem
(6.2.12) associated with a solution (u, ®) of (6.2.12) when

@), c Ker(Aly), ®,#0, (A" — 1)f®), = & for some k € N, (6.2.14)

In the following proposition we establish the equivalence between the eigenvalue problems asso-
ciated to A (see problem (6.2.11)) and the one associated to the pair (M, A) (to be defined in
the statement of the proposition, see problem (6.2.15)).

Proposition 6.2.3. A pair (u,Z) € C* xC"+ is a solution to the eigenvalue problem (6.2.11) if
and only if (11, Z, ©.,), with ®, = —(Ag. M1 A.g) " Ag. M A..Z, is a solution of the eigenvalue
problem

peC*, ZeCM\ {0}, ©, cC, A(é) = uM (g) (6.2.15)

where the matrices A and M are defined in (6.2.9). In a similar way, the pair (u, ®) € C* x
CN: s a solution to the eigenvalue problem (6.2.12) if and only if (n, ®,Os), with Op =
—(A], M PA] ) TYAT MY AL ®, is a solution of the eigenvalue problem

peC* ®cC\{0}, @pcC AT (g’@) = uM (Gi) . (6.2.16)

The proof of the preceding result is provided in [Dell8, Lemmas 3.41 and 3.42, p.118-119].
A similar statement can be established for the generalized eigenvalue problems (see [Dell8, The-
orem 3.4.3, p.119]).

In what follows, we will denote by N, the dimension of the subspace Ker([lgz).

Once the equivalence of the eigenvalue problems is established, an important point in the anal-
ysis is the existence of appropriate bases for Ker(ggz) and Ker(A])) that satisfy a biorthogo-
nality condition. These bases will then be used to characterize suitable projector operators (see
(6.2.19)). The existence of such bases is established in the following two theorems, whose proofs
can be found in [Dell8, Theorems 3.3.12, 3.3.14].

Theorem 6.2.1. There exist two matrices ¥ € L(CN>,CN~) and ¥ € £(CN=,CN*) satisfying
the following assertions:

(i) The columns of ¥ are eigenvectors and generalized eigenvectors of A and form a basis of

Ker(Ayp,).

(ii) The columns of\T/ are eigenvectors or generalized eigenvectors of A* and form a basis of
Ker(A])).

(iii) The following decompositions hold:
Ec = UM AU € L(CN* . CN") and B, = U M, A#T e £(CN, CN7),

where Z¢ is a decomposition of A into complex Jordan blocks.

(iv) The following biorthogonality condition holds:

UM, U =1y (6.2.17)
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Theorem 6.2.2. There exist two matrices E € L(RN>, RN~) and E € L(RN=, RN~) satisfying
the following assertions:

(i) The columns of E form a basis of Ker(ﬁgz), while the columns of E form a basis of
Ker(A]y).

(13) The following decomposition holds:
Er = B M,.AE € LRV RV™) and Ef = E"M,.A*E € L(RN" RN),

where Zr is a real Jordan matrizx.

(iv) The following biorthogonality condition holds:

E"M..E =1Iy,. (6.2.18)

6.2.5 The projected dynamical system and computation of the feedback

Let (uj)1<j<n, be the eigenvalues of the matrix A. We denote by Gr(u;) the real generalized
eigenspace of A and by G (y;) the real generalized eigenspace of A# associated to the eigenvalue
pj. Givenw > 0, we define the subset J,, of N* by J,, := {j € N* | R\; > —w}. We then introduce
the spaces

Zy = P Grlny) and Z; = P Gilwy)-

j€Ju JE€Ju

We denote by EF (respectively, Ek) the k-th column of the matrix F (respectively, E) presented
in Theorem 6.2.2. We assume that

Zy = Vect((E')1<i<n,) and Zj = Vect((E')1<i<n, ),
where N,, = dim(Z,,). We also define
Zs = Vect(E') n, y1<i<n,) and Z* = Vect(E')n, 41<i<n, ),
and N = dim(Zs). Then, we have
Ker(Ag.) = Zu P Zs and Ker(Aly) = Z; P Z:.

We define the following matrices:
e B, € L(RN: RNv) the matrix whose columns are (E%)1<;<n,,

e B, € L(RN= RMs) the matrix whose columns are (E¥)y, 11<i<n,,

o E, € L(RN: RN:

(RY=, the matrix whose columns are (E%)y, ;1<i<n.,
Zu € L(RN« RNu) and Z4 € L(RNs, RNs) are the matrices such that

)

e B, c L(RN= RN«) the matrix whose columns are (Ei)lgiSNu,
)
)

[1]

=

I
VN
o
I] o
N——

—Ss

We now introduce the projector II, € L(RN=,7Z,) (respectively, I, € L(RN=,Z,)) of RV onto
Z,, (respectively, Zs) parallel to Zs @ Ker(II) (respectively, Z,, @ Ker(II) ), which according to
[Dell8, Lemma 3.3.16, p.116] are characterized by

I, = E,E] M., and I, = E,E] M,.. (6.2.19)
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Proposition 6.2.4. If Z is solution of system

d
{dtz(t) = AZ(t) + BF(2), t>0, (6.2.20)
Z(0) = Zy,
then, ¢, = IIL,Z and (s = 1I;Z obey the systems
d
{dtcu(t) = AuC, (1) + BJF(1), t>0, (6.2.21)
Cu(0) = I Zo,
and d
{dtcs(t) = As( () + BF(t), ¢ >0, (6.2.22)
Cs(o) = HUZO’

where A, = HUM;ZIEZZ, Ay = HSMZ*ZIEZZ, B, = HuMZ;lE’ and B; = HSMZ*ZIE. Conversely, if
Cu = IILZ and (s = 1I3Z are solution of systems (6.2.21) and (6.2.22), respectively, then Z is
solution to (6.2.20).

To construct a stabilizing feedback law for (6.2.21), we consider the Riccati equation

Qu(Eu + wshI]RNu) + (EI + wshI]RNu>@u - QuEJBBTEu@u = O,
where wyy, is a shift parameter. Then, the feedback law is given by
K = —-BTE,Q.E] M... (6.2.24)

6.3 Algorithm for FSI direct problem

In this section, we recall the time-marching process introduced in Section 4.3 of Chapter 4.

We consider the ALE mapping A(t,-) : @ — €, ;) defined by

t
At,) = 1+/ w(s, ) ds, (6.3.1)
0
where w(t, ) is solution of the elliptic equation
Aw=01inQ, w=u|p, onTs, w=0 onI'\ T}, (6.3.2)

where u|p, stands for the trace of the fluid velocity on I's. Let At denote the time step, and
define t* = kAt for k € N, representing the time at level k. For all k € N, QF := A(tk,Qref)
with boundary I'* = T; UTg UTS UT,,, where Ty =T, UT,, and T¥ =T%, UTk,  UT%, = We
denote by u¥, p¥ and A* the approximations of u(t*,-), p(t*,-) and A(t¥, ), respectively. Here,
AP = (AF XE )\];top, A’;’bot, )\f,lat)T denotes the Langrange multiplier associated to the Dirichlet
boundary conditions. We also denote by n¥ and n§ the approximation of n;(t*,-) and n(t*, )

defined on (0, £s), respectively.

Then, assuming known u”*, p¥, ¥, w¥, n¥ and 75, let us consider the following problem:
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e H_%(I‘k \T,), nitt phtl ¢ (0, 45) such that

Find a*t1 € HY(OF), pF+! e L2(QF), A HE),

ﬁk-i—l _uk
/Qk T ¢ _ af(/\k+1’¢)) +b(¢ Ak+1) +C(Ak+1 . k Ak+17¢)
Ff AT e [T ¢+/ Notop

s,top
k+1
+/k sbot ¢7 / slat ¢7 v¢ € Hl(Qk)

s,bot s,lat

bt y) =0, Yy € L*(QF),

R . _1 o -3
/ uk+1.7-:/ gZ.T, VreH 2(Fi)a / uk—‘rl.T:O’ vreH 2(1—‘0)7

r; L o
/ ﬁk+1 L= 77];+1e2 T, Vre H™ 2( I;top)’

Fk Fk

s,top s,top

/ GEH L = / &y - T, Yr e H™ 3 (T bot )

Tk, T ot (6.3.3)
/k ﬁk—i-l = /k n§+1e2 T, Vre H™ 2 (Fs l(zt)

Fsﬂlat sylat

uc / e, Ve e H{O}(O 0),
"2 —Uzcza (L ¢) + a2k, )

—/OES 3\];Jtrolp &20\/1+ (nf,)?
- [ R sl G2

N ls

Ls
> wj(Z1)<<z1)ff(t)+/0 fiC, VC € Hy(0,44).

Jj=1

where

a(v.9) = =2 | c(v):=(9), bia) = [ diveq cuv.g) == [ (u-V)v-o.
Ls Ls
as(m,¢) = *a/o Ay A, af(n2, Q) = *7/0 Ay - AG.

Given the solution at the instant ¥, u®, p¥, A\F, wk, n¥ and 7% at the known configuration QF,
the procedure to solve the time advancing scheme from k to k + 1 is described in Algorithm 4
below.

6.4 Numerical experiments

In this section, we present numerical experiments to analyze the performance of the linear
feedback law when it is applied to the nonlinear system. More precisely, by fixing the Reynolds
number Re = 200 and the damping coefficient v = 1076, we consider different values of the rigid-
ity coefficient o and various levels of the perturbation amplitude 5. The geometrical parameters
of the initial domain configuration € are described in Table 4.1 (see Figure 6.1).
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Algorithm 4: Semi-implicit algorithm
For k> 1:
1 : Solve the linear systems that yields after applying the Newton algorithm in system (6.3.3)

~k+1
~k+1 ~k+1 k-+1 k+1
and get a" T pvTL XY g g

2 : Compute the mesh velocity w**!

: OF — R? satisfying the elliptic equation

AWFHL =0 in QF,
whtl = @k+l on Tk, (6.3.4)
whtl =0 on '\ T'*.

3 : Define A¥(X) := % + AtwFH1(X) and QFFL .= AF(QF).
4 : Define uFt1 : QFt1 5 R2 p: QFF1 5 R AL QFFL 5 RZ and wht! . QFH1 5 R2 by

e - SR
u*t(x) = (%), pMx) =P"R), M) =2 (%)

and whtl(x) = (%), vx = A*®), x € O~

Figure 6.1 — Geometrical configuration and triangular mesh used in the numerical simulation.

As in Section 4.4 of Chapter 4, we use a triangular mesh with 30168 cells locally refined
around the structure, see Figure 6.1. For the space discretization of system (6.3.3), we choose
the generalized Taylor-Hood finite elements Py — P; — IP; for the velocity, the pressure and the
Lagrange multiplier, respectively. The displacement and the velocity of the structure are dis-
cretized by using Hermite finite elements. The nonlinearity is treated with a Newton algorithm.
The total of degree of freedom is equal to 394803. All numerical simulation of the unsteady
system were carried out using a time step At = 51074,

In order to facilitate the analysis, for each of the three values of the rigidity coefficient «
(o = 1,1071,1072) and when the Reynolds number Re = 200 and the damping coefficient
v = 1079, we first compare the spectrum of the fluid-structure operator with and without feed-
back. Secondly, for a fixed pertubation amplitude 5, we analyze the influence of the choice of
the unstable subspace Z, by considering two alternatives: the unstable subspace Z!, associated
with the unstable eigenvalues, and the extended subspace Z2 = Z. ® G (us), where G (u15) denotes
the subspace associated to the first stable eigenvalue ps (ordered according to the real parts).
Although other choices are possible, these cases were selected for the sake of simplicity. Finally,
we investigate the performance of the feedback laws under the influence of the perturbation
amplitude f.

We remark that, due to the deterioration of the mesh when a = 1073 (see Figure 4.34), we
do not include analysis of this case, as it prevents a meaningful comparison between the con-
trolled and uncontrolled scenarios.
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6.4.1 Case 1: Rigidity coefficient o = 1, Re = 200 and ~ = 10~°

e Comparison between the spectra of the fluid-structure operator with and without feedback.

Table 6.1 presents the unstable eigenvalues of the fluid-structure operator A, which are denoted
by u, along with the corresponding eigenvalues of the controlled operator A— BK, denoted by i,
where the feedback operator K is defined in (6.2.24). A graphical representation is provided in
Figure 6.2b, where a comparison between portions of the spectra of both operators is presented.

K12 ﬁ1,2 K34 ﬁ3,4
1.21 £25.72¢ | —5.21 £25.727 | 0.85 4+ 14.037 | —4.85 + 14.03:

Table 6.1 — Eigenvalues of the fluid-structure system without feedback (denoted by u) and with
feedback (denoted by f1) corresponding to Reynolds number Re = 200, rigidity coefficient o = 1,
and damping coefficient v = 1076, The feedback law K is based on Z! = G(u1,2) ® G(p3,4) with
a shift coefficient wg, = 2.

40 40
20 s 20
.3 .o.’. AR - . .;': Sl - s,
3 ity ..:s .o 3 . 3 U .,:... N 3 .
NIRRT 4 ' oy R IR $ ? ) Sy
Vi, . . e . s
-20 .ote -20 e
—40 —40
-15.0 -12.5 -10.0 =75 -5.0 =25 0.0 -16 -14 =12 -10 -8 -6 -4 -2
R(u) R(u)
(a) Spectrum of the operator A. (b) Spectrum of the operator A — BK.

Figure 6.2 — Comparison of the fluid-structure spectrum corresponding to Reynolds number
Re = 200, rigidity coefficient o = 1, and damping coefficient v = 1076, with and without
control. The unstable eigenvalues of the operator A (denoted by p) and those of the operator
A — BK (denoted by i) are colored in red (the conjugate pairs p12 and fi;2) and green (the
conjugate pairs u34 and fiz4). The feedback law K is based on Z. = G(u1.2) ® G(us4) with a
shift coefficient wgp, = 2.

3.0 3.0
2.5 2.5
2.0 2.0
15 15
1.0 1.0
0.5 0.5
0'&.00 0.05 0.10 0.15 020 025 030 0.35 0.40 0.&00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
X2 X2
(a) Profile of the inflow condition ¢’ ;. (b) Profile perturbation g, at t = 0.

Figure 6.3 — Profile of the inflow condition g;l and perturbation g;;.
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Figure 6.4 — Profile of the first component of the inflow data g’ at different time instants for

different values of the perturbation parameter j3.

e Influence of the unstable subspace Z,. In order to compute the feedback law, we consider

two unstable subspaces Z,: Z. = G(u12) ® G(pus4) and Z2 = G(u12) ® G(us4) ® G(us), where
s = —0.23. To carry out the numerical simulations, we set the perturbation amplitude 8 to 1.5
(see Figure 6.4). Figure 6.5b corroborates the expected decay rate in each case. Furthermore,
as is expected, the best decay rate is obtained in the case when Z, = Z2 (see Figure 6.5a).

—— Z}=G(u1,2) ®Glus,a)
0.30 y\ —— Z2=G(u1,2) ® Gl3,4) ® Gluis)

[lU = Ug]|e2

(a) Time evolution of ||U — U||Le.

log([|U — Us|c2)

- Z}=Glu1,2) @ Glus,a)

—— Expected decay with 2}: ~023
=== 25 =Glp,2) @ Glus,a) @ Glus)
—— Expected decay with 22: ~0.69

,_.
2

.4
2

,_.
2

2 4 6 8 10 12 14 16
t

(b) Time evolution of log(||U — Ug||2).

Figure 6.5 — Comparison between the decay rates when Z. = G(u12) ® G(usza) and Z2 =
7L @ G(us), in the case of rigidity coefficient a@ = 1, damping coefficient v = 1076, Reynolds
number Re = 200 and perturbation amplitude 5 = 1.5.
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(a) Time evolution of ||n]|re. (b) Time evolution of || f|| 2.

Figure 6.6 — Time evolution of |9z~ and ||f||z2 for the unstable subspaces Z! = G(u12) ®
G(ps.4) and Z2 = Z! &G (pus5), when the rigidity coefficient @ = 1, damping coefficient y = 1075,
Reynolds number Re = 200 and the perturbation amplitude 5 = 1.5.

We first observe that in the case of the feedback law based on Z., the control mainly acts
during the first two seconds (see red curve in Figure 6.6b). This coincides with the period during
which the structure experiences the most significant displacements (see red curve in Figure 6.6a),
which is expected given that the control acts on the structure. Similarly, when the feedback
law control is based on Z, = Z2, Figure 6.6b (see blue curve) shows that the control action is
mainly concentrated during the first two seconds. As in the case Z., during this interval of time
we observe that the structure experiences the most significant displacements (see blue curve
in Figure 6.6a). Furthermore, over the same period, the magnitude of the control is greater
compared to that associated to Z., as shown in Figure 6.6b.

Figure 6.7 shows a sequence of snapshots illustrating the evolution of the structure’s deflec-
tion at different time instants, considering both the open-loop and closed-loop systems (feedback
control law based on Z. and Z2), when the perturbation amplitude is fixed at 8 = 1.5. From
Figures 6.7c, 6.7d and 6.7¢, we observe that the displacement of the structure is stabilized around
n = 0, which is also corroborated by the information displayed in Figures 6.11b and 6.11e.

o o o
—— Open loo —— Open loo —— Open loo|
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Figure 6.7 — Snapshots of the structure’s deflection at different time instants, without and
with control (based on the unstable subspaces Z. = G(u12) ® G(us4) and Z2 = ZL & G(us))
corresponding to the rigidity coefficient o = 1, damping coefficient v = 1079, Reynolds number
Re = 200 and the perturbation amplitude 5 = 1.5.
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In Figure 6.9, we compare the magnitude of the fluid velocity in the open loop system, and
the closed loop system where the feedback law is based on the unstable subspace Z, = Z.. As
observed at time instants ¢ = 1[s] and ¢ = 2[s], the global behavior appears to be similar in both
cases. However, from ¢ = 4[s] onward, we notice that the fluid velocity stabilizes around the
stationary fluid velocity (see also Figure 6.8). Similar conclusions are drawn when the feedback
law is based on the unstable subspace Z2 (see Figure 6.10).

0.0e+00 04 06 08 1 12 14 1.6 18 2 23e+00
| —

>—

Figure 6.8 — Fluid velocity magnitude Uy corresponding to Reynolds number Re = 200.

(¢) t =2[s] (d) t = 2[s]
(e) t = 4[s] (f) t = 4s]

) t = 15[s]

Figure 6.9 — Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient o = 1, damping coefficient v = 1075, Reynolds number Re = 200,
perturbation amplitude 3 = 1.5, and unstable subspace Z. = G(u12) ® G(us4). In the left
column (a)-(c)-(e)-(g)-(i), we show the velocity magnitudes for the case without control, whereas
in the right column (b)-(d)-(f)-(h)-(j), we display the velocity magnitudes when the control is
applied.



6.4. Numerical experiments 227

Open Ioop Closed Ioop
o e e e

__
(c) t =2[s] (d) t =2[s]
(e) t = 4[s] (f) t = 4fs]
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Figure 6.10 — Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient o = 1, damping coefficient v = 1075, Reynolds number Re = 200,
perturbation amplitude 8 = 1.5, and unstable subspace Z2 = G(u1,2) ® G(u34) ® G(ps). In the
left column (a)-(c)-(e)-(g)-(i)-(k ) we show the velocity magnitudes for the case without control,
whereas in the right column (b)-(d)-(f)-(h)-(j)-(1), we display the velocity magnitudes when the
control is applied.

e Influence of the perturbation amplitude 3. We analyze the performance of the feedback
control law based on each of the two unstable subspaces Z,. More precisely, in order to get a
first glance of the performance of the control, we plot the evolution of the norms ||U — Us||1.2,
Inllzee and || f]|z2, for three given values of the perturbation amplitude 8: 0.5, 1, 1.5.

| ZL (dim(Z}) = 4) | 72 (dim(Z2) = 5) |

| B IU=Ullez nllze Ifllzz | 10 =Ugllez [Inllze Ifllze |
0.5 1073 5-1007 6-107° 5-10°° 2.10710 7.10°11
1 2.1073 1076  2.10°8 9.10°6 6-10710 2.10710
1.5 3.1073 1076 4.10°8 10~° 9.10710 2.10°10

Table 6.2 — Order of quantities |[U — Us||2, ||n]|z~ and ||f||z2 at t = 15.5[s], for two different
choices of the unstable subspaces Z! = G(u12) ® G(usa) and Z2 = Z1 @ G(us), and for three
different values of the perturbation amplitude 8. The rigidity coefficient is fixed at a = 1,
damping coefficient v = 107% and Reynolds number Re = 200.



6.4. Numerical experiments 228

Joule
il
1Al

v
>
il
1l

Figure 6.11 — Evolution of (a): |U—Ug||g2, (b): ||n]|z~ and (c): || f]| 12, for three different values
of the amplitude perturbation 3, when the rigidity coefficient o = 1, damping coefficient v =
1079 and Reynolds number Re = 200. Row (a)-(b)-(c): Control based on Z1 = G(u12)®G (13.4)-
Row (d)-(e)-(f): Control based on Z2 = Z.L © G(us).

An initial expected conclusion that it is possible to deduce from Figures 6.11c and 6.11f, is
that the magnitude of the control grows with increasing perturbation amplitude 5. The effect
of the size of the perturbation amplitude is also observed in the evolution of the quantities
|U — Usl|y2 and ||n]|z~, as show Figures 6.11a, 6.11d, and 6.11b, 6.11e, respectively. Table
6.2 shows the orders of magnitudes of the quantities |U — Ug||p2, |7z, and || f]|z2 at time
t = 15.5[s]. This table allows us to observe the difference of the orders of magnitudes between
the feedback control based on Z! (dim(Z.) = 4) and Z2 (dim(Z2) = 5). This information
supports the claim that using Z2 instead of Z! improves the stabilization performance.

6.4.2 Case 2: Rigidity coefficient o = 10™!, Re =200 and v = 107°

o Comparison between the spectra of the fluid-structure operator with and without feedback.

Figure 6.12b shows how the spectrum is modified after applying the feedback law. Figure
6.12a displays the spectrum of the fluid-structure operator without the action of the feedback
operator. As complementary information, Table 6.3 shows the values of the unstable eigenvalues,
along with their corresponding modifications after the feedback law is applied.

K12 B o K34 ﬁ3,4
3.05 +21.617 | —7.06 £21.61¢ | 0.50 £11.96¢ | —4.50 &= 11.96%

Table 6.3 — Eigenvalues of the fluid-structure system without feedback (u) and with feedback
(i) corresponding to Reynolds number Re = 200, rigidity coefficient & = 10~!, and damping
coefficient v = 1075, The feedback law K is based on Z. = G(u12) ® G(us4) with a shift
coefficient wgp, = 2.
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(a) Spectrum of the operator A. (b) Spectrum of the operator A — BK.

Figure 6.12 — Comparison of the fluid-structure spectrum corresponding to Reynolds number
Re = 200, rigidity coefficient o« = 10!, and damping coefficient v = 1076, with and without
control. The unstable eigenvalues of the operator A (denoted by ) and those of the operator
A — BK (denoted by fi) are colored in red (the conjugate pairs uj2 and fi;2) and green (the
conjugate pairs p34 and fi34). The feedback law K is based on 7t = G(m,2) @ G(ps,a) with a
shift coefficient wg;, = 2.

e Influence of the unstable subspace Z,. As expected, from Figure 6.13a we confirm that the
control based on the unstable subspace Z2 = G (u1.2) DG (113,4) ®G(ps), where ps = —0.16, yields
a better decay rate compared to the control based on the unstable subspace Z. = G(u12) @
G(p3,4), when the amplitude of the perturbation is fixed at 8 = 1.5. Moreover, the expected
value of the decay rates in each case are corroborated by the information displayed in the semi-
logarithmic plot shown in Figure 6.13b.
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(a) Time evolution of ||U — Uy||r2 (b) Time evolution of log(||U — Us||2)

Figure 6.13 — Comparison between the decay rates when Z. = G(u12) ® G(usa) and Z2 =
71 ®G(us), in the case of rigidity coefficient a = 10~!, damping coefficient v = 1075, Reynolds
number Re = 200 and perturbation amplitude 5 = 1.5.

As in the previously analyzed case with a = 1, Figures 6.14a and 6.14b, which respectively
show the evolution of the quantities ||n||z~ and || f||z2, allow us to conclude that the period of
significant activation of the control approximatelly coincides with the period of most pronounced
displacement of the structure.
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Figure 6.14 — Time evolution of ||n||z~ and || f||z2 for the unstable subspaces Z! = G(u12) ®
G(us4) and Z2 = ZL ® G(us), when the rigidity coefficient & = 1071, damping coefficient
v = 1075, Reynolds number Re = 200 and the perturbation amplitude 5 = 1.5.

Figure 6.15 show snapshots of the evolution of the structure’s displacement at different time
instants, when 5 = 1.5. From these plots we observe the stabilization of the displacement of the
structure around 7 = 0 in both cases. On the other hand, concerning the behavior of the fluid
velocity, Figures 6.16 and 6.17, which show a comparison between the open loop system and
the closed loop system based on the unstable subspaces Z. and Z2, respectively, corroborate
the insight mentioned above. Specifically, they show that the velocity fluid is stabilized around
the stationary solution (see Figure 6.8). These results are similar to those obtained in the case
when o = 1. The main difference is that the structure exhibits larger deflection when o = 0.1,
as can be observed by comparing Figures 6.15 and 6.7.
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Figure 6.15 — Snapshots of the structure’s deflection at different time instants, without and
with control (based on the unstable subspaces Z. = G(u12) ® G(usa) and Z2 = ZL & G(us)
corresponding to the rigidity coefficient o = 107!, damping coefficient v = 1075, Reynolds
number Re = 200 and perturbation amplitude g = 1.5.
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Figure 6.16 — Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient & = 1071, damping coefficient v = 1075, Reynolds number Re = 200,
perturbation amplitude 3 = 1.5, and unstable subspace Z. = G(u12) ® G(u34). In the left
column (a)-(c)-(e)-(g)-(i), we show the velocity magnitudes for the case without control, whereas

in the right column (b)-(d)-(f)-(h)-(j), we display the velocity magnitudes when the control is
applied.
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Figure 6.17 — Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient a = 10~1, damping coefficient v = 1076, Reynolds number Re = 200,
perturbation amplitude 8 = 1.5, and unstable subspace Z2 = G(p12) ® G(usza) & G(us). In
the left column (a)-(c)-(e)-(g)-(i), we show the velocity magnitudes for the case without control,

whereas in the right column (b)-(d)-(f)-(h)-(j), we display the velocity magnitudes when the
control is applied.

e Influence of the perturbation amplitude 5. An in the case of @ = 1, we analyze the per-
formance of the feedback control based on the unstable subspaces Z. = G(u12) ® G(p3,4) and
72 = G(p12) ® G(usa) ® G(us). The conclusions in this case are similar to those obtained for
the case a = 1. First, from Figure 6.18, we observe the influence of the perturbation amplitude
B on the quantities ||U — Ug||2, ||7]|ze and ||f||z2. Secondly, Table 6.4 is a complement to the
information displayed in Figure 6.18 that supports the claim that the feedback operator based
on Z2 (dim(ZL) = 5) enhances the stabilization performance compared to the one based on Z.
(dim(ZL) = 4).

| | ZL (dim(ZL) = 4) | 72 (dim(Z2) = 5) |

| B 1 IU=Udlrz mllee Ifllze [ 10 =Usllz Il 12 |
0.5 31073 2-10° 108 31076 5-1079 9.10° 11
1 5-1073 3-107% 3.10°8 5.1076 10-8 1010
1.5 6-1073 4.1075 3.10°% 8.10°6 108  8-1071

Table 6.4 — Order of quantities ||U — Us||r2, ||7]|ze and || f||12 at t = 15.5]s], for two different
choices of the unstable subspace Z!, = G(u1,2) ® G(usa) and Z2 = Z. & G(us), and for three
different values of the perturbation amplitude 3. The rigidity coefficient is fixed at o = 1071,
damping coefficient v = 107% and Reynolds number Re = 200.
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Figure 6.18 — Evolution of (a): |U—Ugl|12, (b): ||n]|z~ and (c): || f]| 12, for three different values
of the amplitude perturbation /3, when the rigidity coefficient o = 10!, damping coefficient v =
1079 and Reynolds number Re = 200. Row (a)-(b)-(c): Control based on Z1 = G(u12)®G (13.4)-
Row (d)-(e)-(f): Control based on Z2 = Z.L & G(us).

6.4.3 Case 3: Rigidity coefficient o = 1072, Re = 200 and v = 1076

o Comparison between the spectra of the fluid-structure operator with and without feedback.

In contrast to the two previously analyzed cases, which exhibited four unstable eigenvalues,
the case with a = 1072 exhibits five unstable eigenvalues. Table 6.5 reports those values (de-
noted by u), together with the corresponding eigenvalues of the controlled system (denoted by
fi) obtained by using the feedback law K based on Z!1 = G(u12) ® G(u3) ® G(ja,5) with a shift
coefficient wy;, = 2. A graphical representation of a portion of the spectrum for the uncontrolled
and controlled systems is presented in Figures 6.19a and 6.19b, respectively.

Hi2 ﬁ1,2 H3 I3 45 ﬁ4y5
2.04+19.217 | —6.0£19.21¢ | 0.38 | —4.38 | 0.02 £ 8.277 | —4.02 £ 8.27¢

Table 6.5 — Eigenvalues of the fluid-structure system without feedback (1) and with feedback
(1) corresponding to Reynolds number Re = 200, rigidity coefficient o = 1072, and damping
coefficient v = 107%. The feedback law K is based on Z, = G(pu12) ® G(us) ® G(pas) with a
shift coefficient wgp, = 2.
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(a) Spectrum of the operator A. (b) Spectrum of the operator A — BK.

Figure 6.19 — Comparison of the fluid-structure spectrum corresponding to Reynolds number
Re = 200, rigidity coefficient o« = 1072, and damping coefficient v = 1076, with and without
control. The unstable eigenvalues of the operator A (denoted by ) and those of the operator
A — BK (denoted by f1) are colored in red (the conjugate pairs pj 2 and fiy2), green (the real
values 113 and fi3) and blue (the conjugate pairs pg 5 and fig5). The feedback law K is based on
Zt = G(p12) ® G(us) ® G(uas) with a shift coefficient wy, = 2.

e Influence of the unstable subspace Z,. To compute the feedback law, we consider two un-
stable subspaces Z: Z1 = G(112) ©G (13) G (pa5) and Z2 = G (p1,2) DG (113) DG (pa,5) DG (16),
where pug = —0.48. The amplitude of the perturbation is fixed at § = 1.5. As visible in Fig-
ures 6.20a and 6.21a, the feedback control law based on the unstable subspace Z. stabilizes the
fluid velocity and the structure’s displacement (see also Figures 6.23 (green curve) and 6.24).
However, as shown in Figure 6.20b, the observed decay rate does not match the expected one,
at least within the time period in which the numerical simulation was carried out. In fact, the
results indicate that the decay rate is slower compared with the expected one.

71 =Gluy,2) ® Gu3) ® Glua,s)
cted decay with Z}: ~0.48

= 2} =Gl1,2) © Gl3) © Gk, 5) © Gkts)
—— Expected decay with 2: ~0.68

—— 2}=G(1.2) ® G(u3) @ Glhta.5)
030 — Z§=Gl1.2) ®G(3) ® G(ua, 5) @ Gle) 100

o
log(||U — Us12)

2 4 6 8 10 12 14 2 4 6 8 10 12 14 16
t t

(a) Time evolution of ||U — Ug||r2 (b) Time evolution of log(||U — Ug||2)
Figure 6.20 — Comparison between the decay rates when Z. = G(u12) ® G(us) ® G(pa5) and

72 = 71 @ G(ug), in the case of rigidity coefficient o = 10~2, damping coefficient v = 1075,
Reynolds number Re = 200 and perturbation amplitude 8 = 1.5.
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Figure 6.21 — Time evolution of ||n||z~ and || f||z2 for the unstable subspaces Z! = G(u12) ®
G(u3) ® G(pas) and Z2 = ZL ® G(ug), when the rigidity coefficient a« = 1072, damping coeffi-
cient ¥ = 107%, Reynolds number Re = 200 and perturbation amplitude 3 = 1.5.

In the case of the feedback operator based on the unstable subspace Z2, with dim(Z2) = 6,
Figure 6.20a (curve in blue) is not sufficiently informative to determine whether the fluid velocity
is stabilized. Figure 6.25, which displays snapshots of the fluid velocity magnitude, also does not
provides this information. Figure 6.22a shows a zoomed-in view of the evolution of | U — Ug||g.2.
From this plot, we observe that, starting around ¢ = 7[s], the quantity ||[U—Ujs||1,2 decreases very
slowly and exhibits an oscillatory behavior, which allows us to claim that the fluid velocity seems
to be stabilized, but very weakly. Furthermore, as shown in Figure 6.20b, the observed decay
rate is significantly lower than the expected one. On the other hand, it is not clear from Figure
6.21a whether the displacement of the structure is stabilized or not around n = 0. However, in
the zoomed-in view presented in Figure 6.22b, it seems that the displacement of the structure

is stabilized, although very weakly.
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Figure 6.22 — Zoom-in view of evolution of (a) [|[U— Us||y2 and (b) ||n]| L, when Z2 = G (p1.2) ®
G(p3) ® G(uas) ® G(ug), in the case of rigidity coefficient a = 1072, damping coefficient v =
10~%, Reynolds number Re = 200 and perturbation amplitude § = 1.5.
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Figure 6.23 — Snapshots of the structure’s deflection at different time instants, without and with
control (based on the unstable subspaces Z. = G(u12) ® G(u3) ® G(pas) and Z2 = ZL © G(ue)
corresponding to the rigidity coefficient e = 10~2, damping coefficient v = 107%, Reynolds
number Re = 200 and perturbation amplitude g = 1.5.
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Figure 6.24 — Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient & = 1072, damping coefficient v = 1075, Reynolds number Re = 200,
perturbation amplitude 8 = 1.5, and unstable subspace Z. = G(u12) ® G(uz) ® G(pas) - In
the left column (a)-(c)-(e)-(g)-(i), we show the velocity magnitudes for the case without control,
whereas in the right column (b)-(d)-(f)-(h)-(j), we display the velocity magnitudes when the
control is applied.
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Figure 6.25 — Snapshots of the fluid velocity magnitude at different time instants, corresponding
to the rigidity coefficient & = 1072, damping coefficient v = 1075, Reynolds number Re = 200,
perturbation amplitude 3 = 1.5, and unstable subspace Z! = G(u12) ® G (13) ® G(pa5) DG (116)-
In the left column (a)-(c)-(e)-(g)-(i), we show the velocity magnitudes for the case without

control, whereas in the right column (b)-(d)-(f)-(h)-(j), we display the velocity magnitudes when
the control is applied.

o Influence of the perturbation amplitude 3. The plots shown in Figure 6.26 provide a first
insight into the performance of the feedback operators based on Z! and Z2 according to the
three values of the perturbation amplitude . In the case when the feedback operator is based on
ZL (dim(ZL) = 5), the plots in Figures 6.26a and 6.26b show that the corresponding norms tend
to zero for all three values of the perturbation amplitude. These results are also corroborated
by the information displayed in Figures 6.23 and 6.24, which show snapshots of the structure’s
deflection and the magnitude of the fluid velocity, respectively, in the worst-case scenario with
8 = 1.5. However, as we pointed out above, in the worst-case scenario for the perturbation
amplitude (8 = 1.5), the observed decay rate does not match the expected one, at least within
the time interval considered for the numerical simulation.

| | 7L (dim(Z)) = 5) | 72 (dim(Z2) = 6) |
| B 1 IIU=Ulrze nlleee Ifllze | 10U =Usllee  nlleee I fllzz |
0.5 2.107° 10~ 7 10~10 9.-10~4 3-107° 2.10°6
1 5-107° 3-1077 2-.107° 9.10~4 3-107° 2.10°6
1.5 5-107° 2-1077 3-1079 5-1073 104 107°

Table 6.6 — Order of quantities ||U — Us||r2, ||n||z and || f||z2 at t = 15.5]s], for two different
choices of the unstable subspace Z! = G(u12) ® G(us) ® G(pas) and Z2 = Z1 & G(us), and
for three different values of the perturbation amplitude 3. The rigidity coefficient is fixed at
a = 1072, Reynolds number Re = 200 and damping coefficient v = 1075,
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Figure 6.26 — Evolution of (a): |U—Ugl|12, (b): ||n]|z~ and (c): || f]| 12, for three different values
of the amplitude perturbation (3, when the rigidity coefficient a = 1072, damping coefficient
v = 1075 and Reynolds number Re = 200. Row (a)-(b)-(c): Control based on Z.L = G(u12) @
G(u3) ® G(pas). Row (d)-(e)-(f): Control based on Z2 = G(u12) ® G(us) ® G(pas) ® G(ue).

As previously pointed out, in the case Z2 (dim(Z2) = 6) and 3 = 1.5 (worst-case scenario),
it appears that neither the fluid-velocity is stabilized around the stationary solution nor the
structure’s displacement. However, from Figure 6.26d and 6.26e (see black and red curves),
it is not clear whether similar conclusions apply for 3 = 0.5 and § = 1. From the plots
shown in Figures 6.27b and 6.28b, we observe a similar behavior compared to that presented
in Figure 6.20b (see blue curve). By doing a zoom-in view on Figure 6.26e (see black and red
curves), we observe from Figure 6.29 a similar type of oscillation in the displacement of the
structure as in the case of § = 1.5. This indicates that the displacement of the structure is
not stabilized around 7 = 0 when the feedback operator is based on Z2. Thus, in summary,
in the case where the rigidity coefficient is & = 1072 and the feedback control is based on
72 = G(u12) DG (u3) ®G (1a,5) DG (16), neither the fluid velocity nor the stucture’s displacement
is stabilized. Furthermore, in contrast to the conclusions obtained for the cases where the
rigidity coefficient « is 1 and 107!, the inclusion of the eigenspace G(ug) into the subspace
ZL = G(u12) ®G(us) ® G(pas) to construct the feedbaw law does not improve the stabilization
process (see also Table 6.6). On the contrary, it seems to deteriorate the bahavior. A possible
explanation of this phenomenon is that the inclusion of the eigenspace G(ug) into the subspace
Z} may activate or amplify the nonlinear effects of the system.
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Figure 6.27 — Behavior of |[U — Ug||p2 in the case of rigidity coefficient o = 1072, damping
coefficient v = 1079, Reynolds number Re = 200 and perturbation amplitude 8 = 0.5 when
72 = G(u12) ®G(p3) ®G(pas) ® G(us). (a) Zoom-in view of the evolution of ||U — Ug||g2. (b)
Semi-log plot of [|[U — Ugl|1,2 versus ¢, illustrating exponential decay of ||[U — Ug]|g.2.

0.035

0.030 ‘ \

0.025

{
0.020 ‘

[lU = U2

|
\
0.015 ‘ \

\
0.010 \

0.0051| \\
[
|

0.0 —

— B=1.0

log(||U — Us]|12)

._‘
2

,_.
2

<= 2} =Gl 2) © Glji3) @ Glua,5) @ Glkis)
—— Expected decay (w = - 0.68)

Figure 6.28 — Behavior of |[U — Ug||y2 in the case of rigidity coefficient o = 1072, damping

coefficient v = 1075, Reynolds number Re = 200 and perturbation amplitude f = 1 when

72 = G(u12) ®G(p3) & G(pas) ® G(ue). (a) Zoom-in view of the evolution of ||[U — Ug||g2. (b)
Semi-log plot of [|[U — Ugl|1,2 versus ¢, illustrating exponential decay of ||[U — Ug||y.2.
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Titre : Analyse d'un modeéle d'interaction fluide-structure : caractere bien posé, stabilisation et simulations numériques
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Résumé : Cette thése porte sur I'étude d’'un modéle d'interaction fluide-structure qui couple les équations de Navier-Stokes dans un domaine
rectangulaire bidimensionnel avec des conditions aux limites mixtes, et une structure régie par une équation d’Euler-Bernoulli amortie. La
structure, supposée encastrée a une extrémité et libre a I'autre, est immergée dans le domaine fluide.

Dans la premiére partie de la these, nous établissons I'existence locale en temps de solutions fortes. La démonstration de ce résultat repose
principalement sur trois éléments : la réécriture du systéme dans un domaine de référence fixé ; une analyse minutieuse du systéme de Stokes
stationnaire avec des conditions aux limites mixtes dans un domaine présentant des coins rentrants, dans le cadre des espaces de Sobolev
hétérogenes ; et enfin, des estimations ad hoc pour les termes non linéaires, lesquelles, combinées a un argument de point fixe, nous
permettent de conclure le résultat.

La deuxieme partie consiste & montrer que le systéme fluide-structure est localement exponentiellement stabilisable autour d’une solution
stationnaire instable, avec un taux de décroissance arbitrairement prescrit, au moyen d’un contréle par retour d’état appliqué comme terme de
forcage dans I'équation de la structure. Bien que la démonstration et les difficultés soient similaires a celles rencontrées lors de I'établissement de
I'existence de solutions fortes, des défis supplémentaires apparaissent, propres a la stabilisation du systéme linéarisé. Par exemple, I'analyse des
problémes aux valeurs propres direct et adjoint avec des conditions non standard.

Dans la troisieme partie de la thése, nous abordons les simulations numériques a la fois du probléme direct et du probléme de stabilisation. Pour
résoudre le probléme direct, nous utilisons un algorithme monolithique semi-implicite disponible dans la littérature. En ce qui concerne le
probléme de stabilisation semi-discret (en espace), il est possible de raisonner de maniére similaire au cas continu. La principale nouveauté
réside dans le fait que, pour réécrire le systéme dans le domaine de référence fixe, au lieu d'utiliser une transformation géométrique, nous
considérons un prolongement harmonique approprié pour définir I'application. Plusieurs expériences numériques sont présentées.

Title: Analysis of a fluid-structure interaction model: well-posedness, stabilization and numerical simulations

Key words: Fluid-Structure Model, Incompressible Navier-Stokes equation, Stabilization, Arbitrary Lagrangian Euler Approach, Numerical
simulations

Abstract: This thesis deals with the study of a fluid-structure interaction model that couples the Navier-Stokes equations in a two-dimensional
rectangular domain with mixed boundary conditions, and a structure governed by a damped Euler-Bernoulli equation. The structure, which is
assumed to be clamped at one end and free at the other one, is immersed in the fluid domain.

In the first part of the thesis, we establish the local-in-time existence of strong solutions. The proof of this result relies primarily on three main
ingredients: rewriting the system in a fixed reference domain; a careful analysis of the stationary Stokes system with mixed boundary conditions
in a domain with reentrant corners in the framework of heterogeneous Sobolev spaces; and finally, ad-hoc estimates for the nonlinear terms,
which, together with a fixed-point argument, enable us to conclude the result.

The second part consists in showing that the fluid-structure system is exponentially stabilizable-locally around an unstable stationary solution-
with any prescribed decay rate, using a feedback control applied as a forcing term in the structure equation. Although the proof and difficulties
are similar to those encountered in establishing the existence of strong solutions, additional challenges arise that are intrinsic to the stabilization
of the linearized system. For instance, the analysis of both the direct and adjoint eigenvalue problems involves non-standard conditions.

In the third part of the thesis, we address numerical simulations of both the forward problem and the stabilization problem. To solve the
forward problem, we use a semi-implicit monolithic algorithm available in the literature. Regarding the semi-discrete (in space) stabilization
problem, it is possible to argue in a manner similar to the continuous case. The main novelty lies in the fact that, to rewrite the system in the
fixed referenced domain, instead of using a geometric transformation, we consider an appropriate harmonic extension to define the mapping.
Several numerical experiments are presented.
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